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Abstract. Applying two different methods, the complex rotation and the wave 

packet propagation method, the position and width of the lowest (resonant) state 

of hydrogen atom in external electric field are calculated for different field 

strengths. Using these results the validity of Landau formula for ionization rate in 

the tunneling regime is demonstrated. 

1. INTRODUCTION 

Ionization of the hydrogen atom in external electric field is a problem 

which is many times considered using different theoretical methods. Since the 

Hamiltonian of the system (here we use the atomic units) 
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is separable in parabolic coordinates, for small values of the strength of electric 

field F it was possible to obtain approximate analytical expressions for the 

energy levels as functions of F, as well as the ionization rates when the atom is 

in the ground state (the so-called Landau formula) [1] 
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The latest expression essentially determines the probability (per unit time) of the 

ionization of a hydrogen atom in an electric filed due to the electron tunneling 

through the potential barrier formed by the nuclear Coulomb potential and the 

constant external field (see Figure 1). A consequence of the presence of this 

finite barrier is that all states of the system described by Hamiltonian (1) have in 

fact the resonant character and formula (2) also determines the width of the 

lowest state. 
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Even today the hydrogen atom in constant electric field is frequently 

used as a good example for testing new theories and methods treating the 

problems with a perturbation which makes the spectrum continuous. Finally, 

within the so-called static filed approximation this problem may be the first step 

in the analysis of ionization of atoms due to the absorption of electromagnetic 

radiation. Here we analyze the lowest state of the system described by 

Hamiltonian (1) by the use of two different methods: the complex rotation 

method and the wave packet propagation method.  

2. COMPLEX ROTATION METHOD 

 A resonant state �(r) can be regarded as an extension of the concept of 

bound state in a sense that it is an eigensolution of the Schrödinger equation 

which asymptotically behaves as a purely outgoing wave (�(r) is not square 

integrable, see Figure 1) with complex eigenenergy Eres. The real and imaginary 

parts of Eres determine the energy (position) and the width of resonance, E = 

Re(Eres), � = −2 Im(Eres). The basic idea of the complex rotation method (see e.g. 

Ref. [2]) is to make the resonance wave function �(r) square integrable by a 

complex rotation of the coordinate, �(r) � ��(r) = �(e
i�

r), where � is a real 

parameter called the ‘rotation angle’. Such a ‘rotated’ state ��(r) is an 

eigenfunction of the so-called complex rotated Hamiltonian H� obtained from the 

original Hamiltonian H by the transformations r � e
i�

r, p � e
−i�

p. The 

spectrum of Hamiltonian (1) can be computed by diagonalizing the 

corresponding rotated Hamiltonian in a square integrable basis which is complete 

in a sense that it covers the continuous part of the spectrum, too. For this purpose 

we have used here the Sturmian basis [3]. Some results are shown in Table 1 as 

well as in Figure 2. 

3. WAVE PACKET APPROACH 

 Alternatively the resonant states can be studied using a time dependent 

approach. If �(r,0) is an initial wave function (wave packet) one can calculate 

the wave function �(r,t) at an arbitrary time t by integrating the time dependent 

Schrödinger equation. Technically, this method reduces to the construction of a 

sufficiently accurate representation for the evolution operator U(�t), where �t is 

a small time step. Then, the wave function �(r,t) at a discretized time t can be 

obtained by integrating numerically the relation �(r,t +�t) = U(�t)�(r,t). The 

energy spectrum for a given system can be obtained from the autocorrelation 

function c(t), which is the overlap between the functions �(r,t) and �(r,0), by 

calculating its power spectrum (i.e. |FT[c(t)]|
2
, where FT[c(t)] is the Fourier 

transform of c(t)). In the power spectrum resonances appear as (approximate) 

Lorentzian profiles containing the information about their positions (E) and 

widths (�). In order to calculate E and � for the lowest state of the system 

determined by Hamiltonian (1), we choose for �(r,0) to be the unperturbed 

ground state wave function of the hydrogen atom and calculate its evolution by 

the use of a variant of the second-order-differential scheme [4]. Since �(r,0) for 
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F > 0 is not a stationary state, initially it moves periodically as a wave-packet in 

the potential V = –1/r –Fz. However, at each reflection from the potential barrier 

a part of the packet transmits in the outer region, and after some time (~100 a.u.) 

it reduces to an almost stationary state with well defined outgoing wave – the 

resonance wave function � (see the top of Figure 1). 

Figure 1. Bottom: The potential V = –1/r –Fz (in cylindrical coordinates) for the 

field strength F = 0.05 a.u. and the corresponding lowest energy level E. The 

vertical arrow shows the position of the saddle point (s.p.) of the potential 

barrier. Top: The real part of the total wave function � corresponding to the 

lowest level. 

4. RESULTS 

Table 1. The positions E and widths � of the lowest energy level of hydrogen 

atom in external electric field for different field strengths F (all in atomic units) 

obtained using the complex rotation (CR) and the wave packet (WP) methods. 

F  E  (CR) � (CR) E  (WP) � (WP) 

0 –0.5 0 –0.5 0 

0.05 –0.5061 0.772E–4 –0.5061 0.66E–4 

0.10 –0.5274 0.01453 –0.5276 0.01405 

0.15 

0.20 

0.25 

–0.5511 

–0.5701 

–0.5850 

0.06004 

0.1212 

0.1895 

–0.5514 

–0.5694 

–0.586 

0.05878 

0.1212 

0.192 

The values for the energy (position) E and width � of the lowest state at 

several strengths of electric field are shown in Table 1. The results obtained by 

the two methods are mutually in a good agreement and also in agreement with 

results of other authors [5]. Generally, the complex rotation method produces the 
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results with higher accuracy, but the time dependent method gives a better 

insight into dynamics of the ionization process. Roughly speaking, this process, 

depending on the field strength, realizes either as the tunnel ionization if  E < Vsp

or as the over-barrier ionization if E < Vsp. Vsp is the value of the potential V at 

the saddle point of potential barrier (see Figure 1). It is found that E = Vsp for F �

0.065 a.u. Finally, we have compared the numerically obtained results with 

Landau formula (2) (with the assumption that w = �) and confirmed that the 

formula is valid in the regime of tunnel ionization (see Figure 2). 

Figure 2. The comparison between numerical data (complex rotation method) 

for the width � of the lowest energy level of hydrogen atom in external electric 

field F (circles) and the formula (2) for the ionization rate w (full line). The 

vertical dashed line denotes the value of the field (F � 0.065 a.u.) when the 

lowest energy level is equal to the saddle point of the potential barrier. 
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