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Abstract. Inelastic transitions in slow ion-atom(ion) collisions He2++H
or He++H+ are determined by properties of the quasi-molecule HeH2+.
Assuming straight-line trajectories of the heavy particles one can define
dynamical adiabatic potential energy curves (DAPEC) which depend on
internuclear separation R and an additional parameter ω = ρv - product of
the impact parameter and relative collision velocity. We study the analytic
continuations of DAPEC into the complexR-plane. Probabilities of the non-
adiabatic transitions are determined by the positions of the branch points
connecting various DAPEC surfaces. We investigate how the positions of
various branch points change with the variation of the parameter ω.

1. INTRODUCTION

The crossings of electronic adiabatic eigenvalues (potential energy
curves (PEC))in the complex plane of internuclear separations R, play the
key role in the standard (separable) one-electron two-Coulomb-center prob-
lem (see review paper [1]). They can be verified only by direct numerical
calculation in the complex R-plane as branch points Rb connecting two PEC
εi(R) and εf (R) of the same symmetry - ∆εif (R) ∼

√
R−Rb. If the dis-

tance from the real R-axis to the branch point Rb is proportional to ~ it
is named hidden crossing, whereas if it is exponentially small with respect
to the inverse of Planck constant ~ it is named avoided crossing. In fact,
εi(R) and εf (R) are different branches of a single (multivalued) analytic
function ε(R). If we adopt the impact-parameter method for description of
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a collision problem, that is assume that nuclei follow classical trajectories
defined by the given function R = R(t, ρ, v) of time t, impact parameter ρ,
and asymptotic relative collision velocity v, then the ”single pass” electron
transition probability via crossing is determined by expression

pif (ρ, v) = exp
(
−2

~

∣∣∣Im ∫
L

ε(R)
dR

vR(R, ρ, v)

∣∣∣), (1)

where vR(R, ρ, v) = dR/dt is the radial collision velocity. The contour
L in complex R-plane starts at any real R1 where ε(R1) = εi(R1) goes
around complex branch point Rb and ends up back on any real R2 where
ε(R2) = εf (R2).

The transitions caused by the rotation of the internuclear axis which
are known to be localized in the regions of degeneracies (exact crossings) of
PEC corresponding to states with different symmetries, in the standard adi-
abatic approach can be taken into account only by numerical close-coupling
calculations.

2. DYNAMICAL ADIABATIC THEORY

We consider a collision system consisting of a single electron and two
bare nuclei of charges ZA and ZB travelling along the straight-line trajecto-
ries in the (x, y)-scattering plane, so that R(t) = RB(t)−RA(t) = vtx̂+ρŷ.
We next modify the electronic time-dependent Schrödinger equation (for
details see Ref.[2]): the electronic coordinates (x, y, z) are divided by the
internuclear separation R(t) and subsequently transformed to the rotating
(molecular) coordinate system (q1, q2, q3) with the q1 axis directed along
the internuclear axis. Finally, one arrives at the eigenvalue problem for
DAPEC:

H(R,ω)Φj(q, R, ω) = Ej(R,ω)Φj(q, R, ω), (2)

with (we use atomic units throughout)

H(R,ω) = −1

2
∆q −R

(
ZA

|q+ αq̂1|
+

ZB

|q− βq̂1|

)
+ ωL3 +

1

2
ω2q2 (3)

where q̂1 is the unit vector along q1 axis, α and β (α + β = 1) define the
position of the coordinate origin on the internuclear axes and L3 is the
operator of the projection of the electronic angular momentum onto the
direction perpendicular to the scattering plane. The parity Π3(q3 → −q3)
is the only conserved symmetry.

The general properties of DAPEC Ej(R,ω) for the complete range
of real internuclear separations R ∈ (0,+∞) have been studied in our recent
work [2]. An example for ω = 1 in the case of HeH2+ system is show in
Fig.1. Note, that any DAPEC Ej(R,ω) is related to the usual PEC εj(R)
of the two-Coulomb center problem by relation Ej(R, 0) = εj(R)R2.

27th SPIG Atomic Collision Processes 

103



0 2 4 6 8 10
1.0

1.5

2.0

2.5

3.0

3.5

3p
3d

2s

2p

2p

_ _ _ 
a.u.

N
U
A

j
(R
,

)

Re R [a.u.]

1s

j=1

2

3
4

5

6

H++He+(1s)

H(1s)+He2+

H++He+(n=2)

Im R =0

Figure 1. Solid lines are low-lying scaled DAPEC represented in terms
of ”effective united atom principal quantum number” NUA

j (R,ω) = (ZA +

ZB)[−2Ej(R,ω)/R2]−1/2. Dashed lines correspond to standard PEC of the
(HeH)2+ molecular ion labeled by united-atom quantum numbers

3. RESULTS

Here, we are interested in analytic continuations of DAPEC into
the complex R-plane, i.e. the solutions of the eigenvalue problem Eq.(2) for
complex values of R. The numerical method used is the same as described
in our previous work [2] for real values of R. The solutions enable us to
detect the various branch points Rb(i, f ;ω) connecting the pairs of complex
DAPEC Ei(R,ω) and Ef (R,ω). The single-pass electron transition proba-
bilities will be given by Eq.(1) with substitution: ε(R) → E(R,ω)/R2.

In dynamical adiabatical representation the rotational transitions
are transformed into radial transitions through the operator L3 in Eq.(3),
generating the so cold L3 − crossings. Two examples of the L3 -crossings
are shown in Fig.2. At ω → 0 they correspond to 2pσ − 2pπ or (i, f) =
(2, 3) and 2sσ − 2pπ or (i, f) = (3, 4) rotational coupling in the united-
atom limit. However, as ω increases, one can notice the transformations:
Rb(2, 3; 0.3) → Rb(2, 4; 0.5) and Rb(2, 4; 0.75) → Rb(2, 5; 0.8). This kind of
transformations are caused by the relative motion of other branch points in
the complex R-plane. For example, the first of these transformations occurs
due to the change of position of the branch points in the other shown L3-
trajectory, namely due to the fact that Re Rb(3, 4; 0.3) < Re Rb(2, 3; 0.3)
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and Re Rb(3, 4; 0.5) > Re Rb(2, 4; 0.5). Also sown in Fig.2 as full squares in
the limited region are hidden crossings labeled as ω = 0− 1(1− 2), (1− 5)
which at ω → 0 correspond to 1sσ 2pσ (i.e. (j=1 - j’=2)-radial coupling
between the ground and the first excited state. As detailed calculations
show they undergo the transition Rb(1, 2; 0.75) → Rb(1, 5; 0.8) which can
be explained by the positions of the branch points from the L3 - trajectory
just below them: Rb(2, 4; 0.75) < Re Rb(1, 2; 0.75) and Re Rb(2, 5; 0.8) >
Re Rb(1, 5; 0.8). Additional types of branch pints and their transformations
will be discussed at the conference.
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Figure 2. Each branch point Rb(i, f ;ω) is labeled as ω(i− f). Full circles
are L3-crossings which undergo transformations Rb(2, 3; 0.3) → Rb(2, 4; 0.5)
and Rb(2, 4; 0.75) → Rb(2, 5; 0.8). Full triangles are part of the L3-crossings
trajectory Rb(3, 4;ω). Full squares labeled ω = 0 − 1(1 − 2), (1 − 5) are the
hidden crossings.
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