Advances in Quantum Chemistry

Volume Editor Belkić

65

2013

Advances in Quantum Chemistry

Theory of Heavy Ion Collision Physics in Hadron Therapy

Volume 65

Volume Editor Dževad Belkić

Series Editors John R. Sabin and Erkki Brändas

 (\mathbb{AP})

VOLUME SIXTY FIVE

Advances in QUANTUM CHEMISTRY

Theory of Heavy Ion Collision Physics in Hadron Therapy

EDITORIAL BOARD

Guillermina Estiú (University Park, PA, USA)
Frank Jensen (Aarhus, Denmark)
Mel Levy (Greensboro, NC, USA)
Jan Linderberg (Aarhus, Denmark)
William H. Miller (Berkeley, CA, USA)
JohnW. Mintmire (Stillwater, OK, USA)
Manoj Mishra (Mumbai, India)
Jens Oddershede (Odense, Denmark)
Josef Paldus (Waterloo, Canada)
Pekka Pyykko (Helsinki, Finland)
Mark Ratner (Evanston, IL, USA)
Dennis R. Salahub (Calgary, Canada)
Henry F. Schaefer III (Athens, GA, USA)
John Stanton (Austin, TX, USA)
Harel Weinstein (New York, NY, USA)

VOLUME SIXTY FIVE

Advances in QUANTUM CHEMISTRY

Theory of Heavy Ion Collision Physics in Hadron Therapy

Edited by

DŽEVAD BELKIĆ

Professor of Mathematical Radiation Physics Nobel Medical Institute, Karolinska Institute Stockholm Sweden

Series Editors John R. Sabin and Erkki Brändas

Amsterdam • Boston • Heidelberg • London New York • Oxford • Paris • San Diego San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford, OX51GB, UK 32, Jamestown Road, London NW1 7BY, UK Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands 225 Wyman Street, Waltham, MA 02451, USA 525 B Street, Suite 1900, San Diego, CA 92101-4495, USA

First edition 2013

Copyright © 2013 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@elsevier.com.Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material.

Notices

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-12-396455-7 ISSN: 0065-3276

For information on all Academic Press publications visit our web site at *store.elsevier.com*

Printed and bound in USA

13 14 10 9 8 7 6 5 4 3 2 1

CONTENTS

Pre Ack Coi	face knowledgment ntributors	xiii xv xvii
1.	Stochastics of Energy Loss and Biological Effects of Heavy Ions in Radiation Therapy	1
	Hans Bichsel	
	1. Introduction	2
	2. Energy loss at macroscopic level	4
	2.1 Continuous transport of particles through matter: Classical approach	4
	2.2 Convolutions for range straggling	5
	2.3 Straggling in thin segments	7
	2.4 Monte Carlo methods	7
	3. Bragg functions	8
	3.1 Nuclear interactions	10
	3.2 Practical details for protons	12
	3.3 Practical details for C-ions	12
	4. Energy loss and deposition at microscopic levels	14
	4.1 Energy loss	14
	4.2 Energy deposition	15
	4.3 Energy deposition in microscopic volumes	15
	5. Stochastics of energy loss in cells	17
	5.1 General features	1/
	5.2 Mic simulation of stochastics at the Bragg peak	20
	 b. BIO-Effects 7. Conclusions 	21
	7. Conclusions	22
	Appendix R. Rotho, Eano collicion cross section	25
	Appendix C. Multiple scattering	20
	Appendix D. Nuclear reactions	32
	Appendix E. Cell survival	33
	Acknowledgments	33
	References	33
2		55
2.	Used for Hadron Therapy	39
	Helmut Paul	
	1. Introduction	39
	2. Tables and programs	41
		v

	3. Liquid water as a target	43
	3.1 Stopping power of water for hydrogen ions	43
	3.2 Range measurements for water, and mean ionization energy	45
	4. Other target substances, and statistical comparisons	49
	4.1 Statistical comparisons for H and He ions	51
	4.2 Application to therapy using H ions	55
	4.3 Statistical comparisons for carbon ions	56
	5. Conclusions	58
	6. List of acronyms	58
	References	59
3.	On the Determination of the Mean Excitation Energy of Water	63
	John R. Sabin, Jens Oddershede and Stephan P.A. Sauer	
	1. Introduction	63
	2. Some basic theory	65
	3. Theoretical determination of I ₀	67
	4. Experimental determination of I ₀	69
	5. Conclusion	73
	Acknowledgments	74
	References	74
4.	Molecular Scale Simulation of Ionizing Particles Tracks for	
	Radiobiology and Hadrontherapy Studies	79
	Ziad Francis	
	1. Introduction	80
	2. Detailed step by step track structure codes	84
	2.1 Monte-Carlo codes	84
	2.2 Collision processes: cross sections	85
	2.3 Sub excitation electrons and the chemical phase	88
	3. Radiation microdosimetry analysis	89
	3.1 Theoretical and experimental microdosimetry	89
	3.2 lons RBE estimation	94
	4. DNA damage estimation	99
	4.1 Track structure detailed approach	99
	4.2 Stewart and Semenenko MCDS method	100
	4.3 Garty statistical approach	101
	4.4 DBSCAN clustering estimation	102
	5. Conclusion	104
	Acknowledgments	107
	References	107

5.	Verifying Radiation Treatment in Proton Therapy via PET	111
	Joanna Bacha-Wang, Paul Vaska, E. Avraham Dilmanian, Stonhon G. Paggs	
	and David L Schwar	
	and David J. Schlyer	
	1. Introduction	112
	2. Positron emitter production	113
	3. Nuclear reaction cross sections	114
	4. Monte Carlo simulations	119
	5. Results	121
	6. Discussion and conclusions	124
	Acknowledgments	125
	Keterences	125
6.	Inelastic Collisions of Energetic Protons	
	in Biological Media	129
	Isabel Abril, Rafael Garcia-Molina, Pablo de Vera, Ioanna Kyriakou and	
	Dimitris Emfietzoglou	
	1 Introduction	130
	2 Dielectric formalism for inelastic scattering	130
	2.1 Projectile description: Electronic charge density	134
	2.2 Target description: Electronic excitation spectrum	135
	2.3 Mean excitation energy	142
	3. Charge-exchange processes	145
	4. Inelastic energy-loss magnitudes	146
	5. Simulation of the depth–dose distributions	153
	6. Conclusions	159
	Acknowledgments	161
	References	161
_		
7.	The Dielectric Formalism for Inelastic Processes in High-Energy	165
		105
	Claudia C. Montanari and Jorge E. Miraglia	
	1. Introduction	166
	2. The shellwise local plasma approximation	167
	2.1 Historical aspects	167
	2.2 I heoretical details: the Levine–Louie dielectric function and the	
	independent-shell approximation	168
	3. Energy loss in particle penetration of matter	173
	3.1 The SLPA in stopping power of metals for protons	173
	3.2 Stopping number and Bethe limit	178

	 3.3 Stopping for dressed ions 4. Energy loss straggling 4.1 The SLPA for stopping and straggling of gases 5. Ionization probabilities 5.1 Total ionization cross sections 5.2 Multiple ionization 5.3 Differential cross sections 6. Conclusions and Future Prospects Acknowledgments References 	180 183 187 191 193 194 195 196 196
8.	Single Ionization of Liquid Water by Protons, Alpha Particles, and Carbon Nuclei: Comparative Analysis of the Continuum Distorted Wave Methodologies and Empirical Models Mario A. Bernal-Rodríguez and Jacinto A. Liendo	203
	 Introduction Introduction The liquid water in radiation physics The ionization problem Theoretical approaches The first Born approximation (B1) The distorted wave formalism and its main variants Experimental works Semiempirical methods The Rudd model The HKS method Formalism based on the dielectric response function Comparison between experimental, theoretical, and semiempirical results Ionization cross sections for water Conclusions and perspectives Acknowledgments 	204 205 206 210 213 214 215 215 216 216 216 217 218 226 227 227
9.	Computation of Distorted Wave Cross Sections for High-Energy Inelastic Collisions of Heavy Ions with Water Molecules Roberto D. Rivarola, Mariel E. Galassi, Pablo D. Fainstein and Christophe Champion 1. Introduction	231
	2. The distorted wave model for inelastic collisions	234

	2.2 The theoretical description for neutral projectiles	239	
3.	Electronic stopping power	241	
4.	The case of water molecules	245	
	4.1 Differential and total cross sections	246	
	4.2 Electronic stopping power	250	
5.	Multiple ionization of water molecules	253	
	5.1 Linear energy transfer	260	
	5.2 Free radicals formation in water radiolysis	260	
6.	Concluding remarks	262	
Re	References		

10.	The First Born Approximation for Ionization and Charge Transfer in Energetic Collisions of Multiply Charged Ions with Water	269
	Christophe Champion, Jocelyn Hanssen and Roberto D. Rivarola	
	1. Introduction	270
	2. Ion-induced ionization and charge transfer cross sections in water: a review	,
	of the existing data	272
	2.1 Experimental background	273
	2.2 Theoretical background	275
	3. Molecular description of the water target	281
	4. Born approximations	283
	4.1 Theoretical description of the ionization process within the 1st Born	
	approximation	288
	4.2 Theoretical description of the charge transfer process within the	
	1st Born approximation	305
	5. Conclusions	309
	References	310

11. Ion Collisions with Water Molecules: A Time-Dependent Density
Functional Theory Approach
Tom Kirchner, Mitsuko Murakami, Marko Horbatsch and Hans Jürgen Lüdde

1.	. Introduction			
2.	Theory			
	2.1	The density-functional theory approach to heavy-particle collisions	318	
	2.2	The basis generator method adapted for ion-molecule collisions	320	
	2.3	Extraction of measurable cross sections	323	
	2.4	Computational aspects	324	
3.	. Results		325	
	3.1	Net cross section results	328	

315

	3.2 Fragmentation cross sections	332
	4. Summary and Outlook	334
	Acknowledgments	335
	References	333
12.	Four-Body Theories for Transfer Ionization in Fast Ion-Atom	
	Collisions	339
	Dževad Belkić, Ivan Mančev and Nenad Milojević	
	1. Introduction	339
	2. The independent particle/event models	340
	3. The four-body continuum distorted wave method	347
	4. The four-body Born distorted wave method	354
	5. Conclusions	358
	Acknowledgments	360
	References	360
13	Distorted Wave Theories for One- and Two-Electron Canture	
	in Fast Atomic Collisions	363
	Volodymyr Yu. Lazur and Mykhaylo V. Khoma	
	1. Introduction	364
	2. Basic kinematics and dynamics	367
	3. The first Born method with correct boundary conditions (CB1)	374
	4. The continuum-intermediate state method with the correct boundary	
	conditions (BCIS)	381
	5. Angular and energy dependencies of charge-transfer cross sections	387
	6. The Dodd–Greider integral equation in the theory of two-electron	
	processes	391
	7. Conclusion	404
	References	405
14.	Mechanistic Repair-Based Padé Linear-Quadratic Model for Cell	
	Response to Radiation Damage	407
	Dževad Belkić and Karen Belkić	
	1. Introduction	408
	2. Dose-effect curve (response curve or cell surviving curve)	410
	2.1 Poisson distribution of radiation events, mean lethal dose	410
	2.2 Extrapolation number and quasi-threshold dose	413
	3. The linear-quadratic model	415
	3.1 Biological effect, relative effectiveness, and biologically effective dose	415

	3.2	The Barendsen formula	416
	3.3	Low- and high-dose asymptotes of biological effect and surviving	
		fraction	417
4.	The	Padé linear-quadratic model	419
	4.1	Differentiation between physical and biological doses	419
	4.2	Repair-mediated non-linear damping of linear direct cell	
		kill mechanism	425
	4.3	Initial slope, final slope, and extrapolation number	429
	4.4	The Padé linear-quadratic model and the Michaelis-Menten kinetics	432
5.	Resu	ults: comparison of radiobiological models with measurements	440
6.	Disc	sussion and conclusion	445
	6.1	Biologically expressed response of the cell to irradiation	446
	6.2	Dose-effect relationships at low, intermediate (shoulder), and high	
		doses	446
	6.3	Beyond the linear-quadratic model of the cell inactivation	447
	6.4	Mixed-order chemical kinetics for enzymatic cell repair systems	448
Acknowledgments			448
References 4			448

Index

453

This page is intentionally left blank

Preface

This Special Issue is within a wider realm of physical and biological effects of irradiation of tissue and tissue-like targets by energetic heavy ions of high relevance to hadron therapy. The main goal is to review the leading theories describing fast collisions of ions with atoms and molecules by emphasizing the possibilities for improving the existing data bases for energy losses of heavy charged particles during their passage through matter. Ion-atom collisions are included in this topic by presenting those theoretical formalisms that are universally applicable to general targets, including molecules from tissue. Although the main focus is on energy losses due to electromagnetic interactions, also reviewed are the pertinent cross sections and stopping powers for nuclear reactions. Data bases of electronic and nuclear stopping powers coupled with the associated modeling of biological responses of cells to irradiation are essential to hadron therapy.

When determining a treatment plan for a patient with cancer, the radiation oncologist must make a key assumption on the actual amount of dose needed to eradicate all the tumor cells. It is here that the biophysical input is required, accounting for the precise extent of the deposited physical doses, as well as for their biological counterparts that modify the initial impact of radiation by the cell repair processes. The overall success of radiotherapy is contingent upon the dose planning, dose delivery and dose verification systems. To meet with success, radiotherapy must include the most adequate descriptions of energy losses of particle beams in tissue and the cell recovery. Deep-seated tumors are usually treated with energetic hadrons because of the optimal conformity of heavy ions to the targets by way of a very precise local deposition of doses in the vicinity of the Bragg peak.

Versatile biophysical aspects of the topics of this Special Issue are expounded through 14 chapters with the following specific themes:

Chapter 1 (H. Bichsel) examines the stochastic variations of energy losses and biological effects of protons and carbon nuclei in their highenergy collisions with water.

Chapter 2 (H. Paul) performs a comparative analysis of the accuracy of different methods and simulation codes for stopping powers and ion ranges.

Chapter 3 (J.R. Sabin, J. Oddershede and S.P.A. Saue) reviews the theoretical and experimental aspects of determination of the mean excitation energy of water. Chapter 4 (F. Ziad) studies the molecular scale Monte Carlo simulations of ion tracks using the GEANT4-DNA code with the inclusion of the effects of secondary electrons.

Chapter 5 (J. Beebe-Wang, P. Vaska, F.A. Dilmanian, S.G. Peggs and D.J. Schlyer) investigates the radiation treatment verifications in proton therapy using positron-emission tomographic imaging and Monte Carlo simulations.

Chapter 6 (I. Abril, R. Garcia-Molina, P. de Vera, I. Kyriakou and D. Emfietzoglou) reports on inelastic collisions of energetic protons in tissuelike media using a combination of molecular dynamics and Monte Carlo simulations.

Chapter 7 (C.C. Montanari and J.E. Miraglia) presents a combination of the dielectric formalism with the shell-wise local plasma approximation for inelastic processes in high-energy ion-matter collisions.

Chapter 8 (M.A. Bernal-Rodriguez and J.A. Liendo) assesses the usefulness of the available empirical cross sections relative to the continuum distorted wave theories and experimental data for single ionization of liquid water by protons, alpha particles and carbon nuclei.

Chapter 9 (R.D. Rivarola, M.E. Galassi, P.D. Fainstein and C. Champion) reviews distorted wave methods for electron capture, ionization and excitation processes in high-energy inelastic collisions of ions with water.

Chapter 10 (C. Champion, J. Hanssen and R.D. Rivarola) presents the results of the first Born approximation for ionization and electron transfer in energetic collisions between multiply-charged ions and water.

Chapter 11 (T. Kirchner, M. Murakami, M. Horbatsch and H.J. Lüdde) reports on cross sections for single- and multiple-electron processes in ionwater collisions using the time-dependent density functional theory in the independent electron model.

Chapter 12 (Dž. Belkić, I. Mančev and N. Milojević) deals with the four-body formalism of distorted wave second-order perturbation methods for double electron transitions through simultaneous electron transfer and ionization processes in ion-atom collisions at high impact energies.

Chapter 13 (V.Yu. Lazur and M.V. Khoma) reviews the theoretical concept of the Dodd-Greider integral equations with Coulomb interactions for one- and two-electron capture processes in fast ion-atom collisions.

Chapter 14 (Dž. Belkić and K. Belkić) contributes to a further improvement of the effectiveness of the current radiation treatments of cancer through the amended dose planning systems based on an adequate description of cell survival valid at all doses as predicted by the new mechanistic repair-based Padé linear-quadratic biophysical model.

Dževad Belkić, Guest Editor Professor of Mathematical Radiation Physics Nobel Medical Institute, Karolinska Institute Stockholm Sweden

Acknowledgment

The Guest Editor is highly appreciative of the support from the Swedish Cancer Fund, Karolinska University Hospital's Radiumhemmet and the Karolinska Institute Research Fund.

This page is intentionally left blank

CONTRIBUTORS

Isabel Abril

Departament de Física Aplicada, Universitat d'Alacant, E-03080 Alacant, Spain

Joanne Beebe-Wang

Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973, USA

Dževad Belkić

Nobel Medical Institute, Karolinska Institute, P.O. Box 260, S-171 76 Stockholm, Sweden

Karen Belkić

Nobel Medical Institute, Karolinska Institute, P.O. Box 260, S-171 76 Stockholm, Sweden

Mario A. Bernal-Rodríguez

Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Brazil

Hans Bichsel

CENPA, University of Washington, Seattle, WA 98195-4290, USA

Christophe Champion

Université Bordeaux 1, CNRS/IN2P3, Centre d' Etudes Nucléaires de Bordeaux-Gradignan, CENBG, Gradignan, France

Pablo de Vera Departament de Física Aplicada, Universitat d'Alacant, E-03080 Alacant, Spain

F. Avraham Dilmanian Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973, USA

Dimitris Emfietzoglou

Medical Physics Laboratory, University of Ioannina Medical School, GR-45110 Ioannina, Greece

Pablo D. Fainstein

Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Avda E. Bustillo 9500, 8400 Bariloche, Argentina

Ziad Francis

Saint Joseph University, Faculty of Sciences, Department of Physics, Mkalles, Beirut, Lebanon

Mariel E. Galassi

Instituto de Física Rosario (CONICET-UNR) and Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario, Avenida Pellegrini 250, 2000 Rosario, Argentina

Rafael Garcia-Molina

Departamento de Física, Centro de Investigación en Óptica y Nanofísica, Universidad de Murcia, E-30100 Murcia, Spain

Jocelyn Hanssen

Laboratoire de Physique Moléculaire et des Collisions, UMR CNRS 7565, Université de Lorraine, Metz, France

Marko Horbatsch

Department of Physics and Astronomy, York University, Toronto, Ontario, Canada M3J 1P3

Mykhaylo V. Khoma Theoretical Physics, Uzhgorod National University, Uzhgorod, Ukraine

Tom Kirchner

Department of Physics and Astronomy, York University, Toronto, Ontario, Canada M3J 1P3

Ioanna Kyriakou

Medical Physics Laboratory, University of Ioannina Medical School, GR-45110 Ioannina, Greece

Volodymyr Yu. Lazur Theoretical Physics, Uzhgorod National University, Uzhgorod, Ukraine

Jacinto A. Liendo

Departmento de Física, Universidad Simón Bolívar, Caracas, Venezuela

Hans Jürgen Lüdde

Institut für Theoretische Physik, Goethe-Universität, D-60438 Frankfurt, Germany

Ivan Mančev

Department of Physics, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia

Nenad Milojević

Department of Physics, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia

Jorge E. Miraglia

Instituto de Astronomía y Física del Espacio, CONICET and Universidad de Buenos Aires, casilla de correo 67, sucursal 28, C1428EGA, Buenos Aires, Argentina

Claudia C. Montanari

Instituto de Astronomía y Física del Espacio, CONICET and Universidad de Buenos Aires, casilla de correo 67, sucursal 28, C1428EGA, Buenos Aires, Argentina

Mitsuko Murakami

Department of Physics and Astronomy, York University, Toronto, Ontario, Canada M3J 1P3

Jens Oddershede

Institute for Physics, Chemistry, and Pharmacology, University of Southern Denmark, 5230 Odense M, Denmark

Helmut Paul

Atomic Physics and Surface Science, Institute for Experimental Physics, Johannes Kepler University, Altenbergerstrasse 69, A-4040, Linz, Austria

Stephen G. Peggs

Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973, USA

Roberto D. Rivarola

Instituto de Física Rosario (CONICET-UNR) and Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario, Avenida Pellegrini 250, 2000 Rosario, Argentina

John R. Sabin

Departments of Physics and Chemistry, University of Florida, Gainesville, Florida 32611, USA

Stephan P.A. Sauer

Department of Chemistry, University of Copenhagen, Copenhagen, Denmark

David J. Schlyer

Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973, USA

Paul Vaska

Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973, USA

This page is intentionally left blank