

17th Summer School and International Symposium on the Physics of Ionized Gases

August 29th- September 1st, 1994, Belgrade, Yugoslavia

CONTRIBUTED PAPERS

& ABSTRACTS OF INVITED LECTURES AND PROGRESS REPORTS

Editors:

B. Marinković and Z. Petrović

Institute of Physics Belgrade, Yugoslavia

EXCITATION OF THE FIRST FOUR VALENCE STATES OF H₂S BY LOW ENERGY ELECTRONS

B.Marinković, V.Pejčev, D.Filipović⁺ and L.Vušković^{*}

Institute of Physics, 11001 Belgrade, P.O.Box 57, Yugoslavia

Utilizing the crossed electron-beam molecular-beam scattering technique, energy-loss spectra of H_2S molecule were obtained. The covered energy region was from 4.5 to 10.5 eV (first ionization limit is 10.47 eV [1]). Two distinct regions were observed, the first from 4.5 to 7.0 eV as a continuum and the second from 7.0 to 10.5 eV as discrete states excitation. Excitation of the first valence states ${}^{3,1}B_1$ and ${}^{3,1}A_2$ states was observed as a broad feature. The maximum of the feature moves to the smaller energy-losses when the impact energy is lowered and the scattering angle increased (Fig.1). The excitation occurs in two molecular orbitals: $6a_1$, non-bonding mixed valence and Rydberg orbital, and $3b_2$, anti-bonding valence orbital. Theoretical calculation of the excitation energies of these states is given in Table 1.

transition:	mixed &Rydberg $2b_1 \rightarrow 6a_1$	valence states (4sa ₁)	valence $2b_1 \rightarrow 3b_2$	states
authors	³ B ₁	¹ B ₁	³ A ₂	${}^{1}A_{2}$
[2] Shih et al. (1976)	5.75	6.13	5.88	6.30
[3] Hatano (1978)	6.14	6.62	6.48	7.02
[4] Roberge and Salahub (1979)	5.39	6.08	5.60	6.89

Т	à	b	I	e	1	
	**	~	*	~	-	-

- 28 -

⁺ also Faculty of Physics, Belgrade University, 11000 Belgrade, Yugoslavia

^{*} Present address: Old Dominion University, Physics Dept., Norfolk, Virginia 23529-0116

- 29

On the broad feature there were observed four superimposed peaks with 142 meV energy separation (Fig.2). These could be attributed to vibrational bending mode v'_2 . The small difference from the mode frequency of the ground state (147 meV) indicates very small change of molecular geometry after the excitation and confirms non-bonding character of the orbital. In Table 2 are presented energy positions of superimposed discrete structures observed in optical spectroscopy [5,6,7] and in electron spectroscopy [8,9,10].

Table 2.

authors	maximum (eV)	superimposed (etvi) tures	
[5] Watanabe & Jursa(1964)	6.326	6.184, 6.326, 6.468, 6.613	
[6] Masuko et al. (1979)	6.47	(6.045), 6.184, 6.326, 6.471, 6.616	
[7] Lee et al. (1987)	6.38	6.20, 6.38, 6.57, 6.76, 6.89	
[8] Knoop (1972)	5.8	not observed	
[9] Cvejanović <i>et al</i> (1982)	5.6	not observed	
[10]Pradeep and Hegde (1988)	6.30	not observed	
PRESENT E(eV), θ (deg.)			
10 6	6.15	not observed	
10 148	5.91	not observed	
15 4	6.17	(6.10), 6.17, 6.31, 6.43, 6.58	
15 148	5.95	5.81, 5.95, (6.11)	
20 4	6.25	(5.94), 6.12, 6.25, 6.40, 6.57	
20 148	5.95	not observed	
60 2	6.30	6.15, 6.30	

In poliatomic molecular spectra many continua correspond to dissociation processes as there exist several dissociation limits with different products. For nonlinear triatomic molecules potential energy surface is fourdimensional. Theoretical calculation of potential energy hypersurfaces exists for the A_1 symmetry [11] and recently for the B_1 and A_2 states [12,13]. The cause of the extreme width of the feature probably lies in the process of predissociation. If the B_1 and A_2 hypersurfaces cross, then the process is heterogen

- 30 -

predissociation of type I with the lower B_1 state having vibrational progression and dissociative limit $H_2 + S^*$ and the upper A_2 state with dissociative limit SH - H. If dissociation process occurs via vibrational progression of the same electronic hypersurface then predissociation is of type II.

Acknowledgement

This work is partly supported by the Ministry of Science and Technology of Republic of Serbia.

References

- M.A.Baig, J.Hormes, J.P.Connerade and S.P.McGlynn, J.Phys.B: At.Mol.Phys. 14 (1981) L725-30
- [2] S.Shih, S.Peyerimhoff and R.Buenker, Chem. Phys. 17 (1976) 391
- [3] Hatano, Chem. Phys. Lett. 56 (1978) 314
- [4] R.Roberige and D.R.Salahub, J.Chem. Phys. 70 (1979) 1177
- [5] K.Watanabe and A.S.Jursa, J.Chem.Phys. 41 (1964) 1650
- [6] H.Masuko, Y.Marioka, M.Nakamura, E.ishiguro and M.Sasanuma, Can.J.Phys. 57 (1979) 745
- [7] L.C.Lee, X.Wang and M.Suto, J.Chem. Phys. 86 (1987) 4353
- [8] F.W.E.Knoop, Ph.D. Thesis, Univ.of Leiden (1972)
- [9] S.Cvejanović, J.Jureta and D.Cvejanović, Proc. 11th Symp. on the Phys. of Ionized Gases, Book of Contributed Paperes edited by G.Pichler (Institute of Physics of the Univ. of Zagreb, Dubrovnik, Yugoslavia, 1982) p.75
- [10] T.Pradeep and M.S.Hegde, Spectrochemica Acta 44A (1988) 883-7
- [11] F.Flouquet, Chem. Phys. 13 (1976) 257-63
- [12] R.Dixon, C.Marston and G.Balint-Kurti, J.Chem. Phys. 93 (1990) 6520-34
- [13] A.N.deBrito, Phys. Rev.A 45 (1992) 7953-62