Measuring the time resolved fluorescence spectra from powder samples of YAG:Dy

D. Šević¹, M.S. Rabasović¹, M. Terzić², J. Možina³, P. Gregorčić³, J. Križan⁴, and B.P. Marinković¹

¹Institute of Physics, University of Belgrade, Belgrade, Serbia

² Faculty of Science, University of Novi Sad, Serbia
³ Faculty of Mechanical Engineering, University of Ljubljana, Slovenia
⁴AMI d.o.o., Ptuj, Slovenia

e-mail: <u>sevic@ipb.ac.rs</u>

Yttrium aluminum garnet (YAG) materials have been widely used as scintillators, solid-state lasers, as well as phosphors. Dysprosium-doped YAG is thermographic phosphor used to measure surface temperature by applying a thin coating of phosphors to the substrate. In this study we investigate time resolved fluorescence spectra from powder samples of YAG:Dy. Other powder samples are also synthesized [1] and ready for time resolved analysis of fluorescence properties.

The basic setup of our time resolved laser induced fluorescence experiment consists of Nd-YAG Vibrant OPO laser system and Hamamatsu streak camera. The output of the OPO can be continuously tuned over a spectral range from 320 nm to 475 nm. The emission spectra are recorded using a streak scope (Hamamatsu model C4334-01) with integrated video streak camera. A detailed description of our TR-LIF and recent results are published elsewhere [2-4]. Inherent advantage of our detection system is its 2D nature. Compared to other spectroscopic systems streak camera records whole time development of spectra, so researcher doesn't have to guess which part of time resolved spectrum is of interest.

The fluorescence emission is collected at 90° from the excitation and dispersed by a 0.3 m focal length triple grating imaging spectrograph (SpectraPro-2300i). For measurements presented here the grating of 50 g/mm was used covering a 330 nm spectral range.

We didn't perform complex coating of phosphors as described for example in [5]. Powder samples of YAG:Dy were used as a target without any preparation. The fluorescence spectra of YAG:Dy powder were recorded at room temperature. We used OPO tuned 340 nm excitation and obtained similar spectra as presented in [6].

Acknowledgments: This work has been done within the projects MESTD RS OI 171020 and Bilateral Project Serbia – Slovenia #651-03-1251/2012-09/03

REFERENCES

[1] J. Križan, J. Možina, I. Bajsić and M. Mazaj, Acta Chim. Slov. 59, 163–168 (2012).

[2] M. S. Rabasovic, D. Sevic, M. Terzic, B. P. Marinkovic, Nucl.Instrum. Meth. B. **279** 16-19 (2012).

[3] M. S. Rabasović, D. Šević, M. Terzić, B. P. Marinković, Phys. Scr. T149 014076 (2012).

[4] M. S. Rabasovic, D. Sevic, M. Terzic, S. Savic- Sevic, B. Muric, D. Pantelic and B.P. Marinkovic, Acta Physica Polonica A **116** (4) 570 – 572 (2009).

[5] Dianying Chen, Eric H. Jordan, Michael W. Renfro, Maurice Gellz, J. Am. Ceram. Soc., **92**, 268–271 (2009).

[6] M R. Cates, S. W. Allison, S. L. Jaiswal, D. L. Beshears, Oak Ridge National Laboratory, ORNL/TM-2002/71

IV International School and Conference on Photonics August 26 - 30, 2013, Belgrade, Serbia

www.photonica.ac.rs

PHOTONICA'13 and joint COST actions BM1205 and MP1204 training school

Organized by the Institute of Physics, University of Belgrade, Pregrevica 118, 11080, Belgrade, Serbia

IV International School and Conference on Photonics

PHOTONICA'13

26th- 30th August, 2013

Book of Abstracts

Lectures, Talks & Contributed Papers

Editors

Dragana Jović, Borislav Vasić, Dejan Timotijević,, Radmila Panajotović, and Radoš Gajić

> Institute of Physics Belgrade, Serbia

Belgrade, 2013

Book of Abstracts of Lectures, Talks & Contributed Papers

of the International School and Conference on Photonics PHOTONICA'13 26th August – 30th August, 2013 Belgrade Serbia

Editors

Dragana Jović Borislav Vasić Dejan Timotijević Radmila Panajotović Radoš Gajić

ISBN 978-86-82441-36-6

Technical assistance Jelena Pešió Marijana Milićević

Publisher

Institute of Physics Pregrevica 118 11080 Belgrade, Serbia

Printed in electronic form by

Institute of Physics, Belgrade, Serbia The Book of Abstracts contains abstracts of all presentations at the 4th International School and Conference on Photonica - PIIOTONICA'13.

More than 150 scientists from twenty three countries took part at the Conference and COST Actions BM1205 and MP1204 Training School.

During five days of the Conference, five Plenary/Tutorial Lectures, four Keynote Lectures, and nineteen Invited Talks were presented. In addition, there were twelve oral, ninety four poster presentations of the contributed papers, and four industrial talks about the latest progress in scientific technology.

Conference Topics

- Optical materials
- Metamaterials
- Photonic crystals
- Plasmonics
- Quantum optics
- Quantum information
- Ultracold systems
- Nonlinear optics
- · Lasers, laser spectroscopy

- Laser induced material
- modifications
- Biophotonias
- Optoelectronics and optical communications
- Holography
- Optical Methods in Nanoparticles Research

COST Actions

BMBS COST Action BM1205 - European Network for Skin Cancer Detection Using Laser Imaging

MPNS COST Action MP1204 . TERA . MIR Radiation: Materials, Generation, Detection and Applications

A.A. Svinarenko	79
Act, Drinkeling	12
Algebraic model and experimental verification of magnetic resonance induced either by amplitude-modulated or polarization-modulated light Z. D. Grujić, E. Breschi, P. Knowles and A. Weis	80
Z. D. Grups, E. Bresch, P. Knowles and A. weis	80
THz Wave Generation From a Two Color Plasma Filament O. Grigore, R. Ungureanu, G. Cojocaru, R. Banici, N.Pavel, T.Dascalu	81
Nuno-FTTR: infrared spectroscopic chemical identification of materials at the	
Nanoscale	
S. Amarie, A. Cernescu and F. Keilmann	82
C. Laser induced material modifications	
Multipulse nanosecond laser modification of steel surface	
A.N. Chumakov, I.S. Nikonchuk, B. Gaković, S. Petrović, M. Trtica	83
Laser ablation of nickel/palladium multilayer thin films by picosecond pulses	
Suzana Petrovic, A. Stupar, D.Perusko, B.Gakovic, I. Bogdanovic-Radovic, D.	
Milovanovic, V. Lazovic and M. Trtica.	84
Damage effects on few-layer graphene from femtosecond laser interaction	
A. Beltaos, A. Kovačević, A. Matković, U. Ralević, Dj. Jovanović, B. Jelenković	
and R. Gajić	85
Influence of dental LED light-curing unit photoactivation mode on surface	
microstructure of dimethacrylate-based nanocomposite - SEM and AFM analysis	
T. Lainović, D. Kukuruzović, D. Kakaš, M. Vilotić, T. Vukadinov, L. Blažić	86
Femtosecond laser surface patterning of steel and titanium alloy	
D. S. Milovanović, B. Gaković, C. Radu, M. Zamfirescu, B. Radak, S. Petrović,	
M. Trtica and I.N. Mihailescu	87
D. Optical materials	
Visible absorption structure of chromium doped (80-x)Sb ₂ O ₃ -20K ₂ O-xPbO glasses	
P. Petkova, A. Ghamri, N. Geneva, Ismail Ismailov and M.T. Soltani	88
	00
The Behavior of Ni2* cations in the aqueous and alcoholic solutions of	
NiCh.6H2O	89
P. Petkova, V. Nedkov, P. Vasilev and I. Ismailov	89
Measuring the time resolved fluorescence spectra from powder samples of YAG:Dy	
D. Šević, M.S. Rabasović, M. Terzić, J. Možina, P. Gregorčič, J. Križan, and B.P.	
Marinković	90

Measuring the time resolved fluorescence spectra from powder samples of YAG:Dy

D. Šević¹, M.S. Rabasović¹, M. Terzić², J. Mollina³, P. Gregorčič³, J. Križan⁴, and B.P. Marinković¹

¹Intiliante of Physics, University of Belgrande, Belgrande, Serbia ²Facally of Sciences, University of Novi Sast, Sarbia ²Facally of Machanical Engineering, University of Ljubljana, Sciencesia AMI d.o.a, Pay, Sciencesia e-mail: sciencesiijana.cs

Yttrium aluminum gamet (YAG) materials have been widely used as scintillators, solid-state lasers, as well as phosphors. Dysproxium-doped YAG is thermographic phosphor used to measure surface temperature by applying a thin coating of phosphors to the substrate. In this study we investigate time resolved fluorescence spectra from powder samples of YAG:Dy. Other powder samples are also synthesized [1] and ready for time resolved analysis of fluorescence properties.

The basic setup of our time resolved laser induced fluorescence experiment consists of Nd-YAG Vibrant OPO laser system and Hamamatsu streak camera. The output of the OPO can be continuously tuned over a spectral range from 320 nm to 475 nm. The emission spectra are recorded using a streak scope (Hamamatsu model C4334-01) with integrated video streak camera. A detailed description of our TR-LIF and recent results are published elsewhere [2-4]. Inherent advantage of our detection system is its 2D nature. Compared to other spectroscopic systems streak camera records whole time development of spectra, so researcher doesn't have to guess which part of time resolved spectrum is of interest.

The fluorescence emission is collected at 90° from the excitation and dispersed by a 0.3 m focal length triple grating imaging spectrograph (SpectraPro-2300i). For measurements presented here the grating of 50 g/mm was used covering a 330 nm spectral range.

We didn't perform complex coating of phosphors as described for example in [5]. Powder samples of YAG:Dy were used as a target without any preparation. The fluorescence spectra of YAG:Dy powder were recorded at room temperature. We used OPO tuned 340 nm excitation and obtained similar spectra as presented in [6].

Acknowledgments: This work has been done within the projects MESTD RS OI 171020 and Bilateral Project Serbia - Slovenia #651-03-1251/2012-09/03

REFERENCES

[1] J. Križan, J. Možina, I. Bajsić and M. Mazaj, Acta Chim. Slov. 59, 163-168 (2012).

[2] M. S. Rabasovic, D. Sevic, M. Terzic, B. P. Marinkovic, Nucl.Instrum. Meth. B. 279 16-19 (2012).

 [3] M. S. Rabasović, D. Šević, M. Terzić, B. P. Marinković, Phys. Scr. **T149** 014076 (2012).
[4] M. S. Rabasović, D. Sević, M. Terzić, S. Savie-Sević, B. Murie, D. Pantelic and B.P. Marinković, Acta Physica Polonica A **116** (4) 570 – 572 (2009).

[5] Dianying Chen, Eric H. Jordan, Michael W. Renfro, Maurice Gellz, J. Am. Ceram. Soc., 92, 268–271 (2009).

[6] M.R. Cates, S. W. Allison, S. L. Jaiswal, D. L. Beshears, Oak Ridge National Laboratory, ORNL/TM-2002/71

ISBN 978-86-82441-36-6