The New View of comet coma processes after Rosetta; The Importance of Electrons

Comenius University, Bratislava, Slovakia 24 - 26 May 2017

Editors: Nigel Mason, Juraj Országh, Peter Papp, Štefan Matejčík

Supported by:

Europlanet H2020 RI funded from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654208

ELEvaTE – Achievement of excellence in electron processes for future technologies funded from the European Union's Horizon 2020 research and innovation programme under grant agreement No 692335

The new view of comet coma processes after Rosetta: The importance

of electrons

Comenius University; Bratislava, Slovakia, May 24 to 26 2017 Hotel Sorea Regia, Bratislava

Wednesday May 24;

19.30 Arrive Social function welcome

Thursday May	Thursday May 25;			
Session 1	Data from the Rosetta mission			
09.00 to 09.45	Opening and Introductory talk			
	Rosetta observations of electron impact dissociative emission in the coma			
	of 67P			
	Dennis Bodewits, University of Maryland, USA			
09.45 to 10.30	The organics on the nucleus of 67P as revealed by COSAC			
	Jan Bredehöft, University of Bremen, Germany			
10.30 to 11.00	Coffee			
11.00 to 11.45	Ground based observations of 67P			
	Colin Snodgrass, The Open University, UK			
11.45 to 12.30	Observations of two CMEs inside the 67P comet coma and upstream of the			
	comet			
	Annie Wellbrock, University College London, UK			
12.30 to 13.00	Electron-impact ionization and excitation around comet 67P			
	Kevin Heritier, Imperial College London			
13.00 to 14.00	Lunch			
14.00 to 14.45	Observing Electron Impact Excitation of Cometary Comae from the Ground			
	Alan Fitzsimmons, Queens University of Benast, UK			
Session 2	Electron collision processes in cometary environments			
14.45 to 15.30	Review of relevant electron processes for comets			
	Nigel Mason, The Open University, UK			
15.30 to 16.15	Electron/molecular cation collisions in comet comas from reactional			
	mechanisms to rate coefficients			
	Ioan Schneider, University of le Havre, France			
16.15 to 16.45	Tea			
16 45 to 17 30	Electron Induced emission spectra of molecules in the UV-Vis range			
10.45 to 17.50	Štefan Mateičík, Comenius University, Bratislava, Slovakia			
17.30 to 18.00	Electron Collision cross section and resonant states in HNCO			
	Juraj Fedor, J Heyrovsky Institute of Physical Chemistry, Prague			
17.30 to 18.00	Electron-CO vibrational-resolved cross sections			
	Vincenzo Laporta, University of le Havre, France			
10.00				
19.00	worksnop ainner			

Friday May 26;

<u>Session 3</u>	
09.00 to 09.45	Electron and ion driven processes is cold clusters
	Paul Scheier, University of Innsbruck
09.45 to 10.30;	Electron attachment to astrophysically relevant molecules
,	Thomas Field, Queen's University of Belfast, UK
10.30 to 11.00	Coffee
11.00 to 11.30	Reactive collisions of electrons with CO and H_2^+ in cometary coma
	Youssef Moulane, University of le Havre, France
11.30 to 12.00	Electron Impact Excitation data for H ₂ O, N ₂ O and H ₂ S triatomic molecules
	Bratislav Marinković, Institute of Physics Belgrade, Serbia
12.00 to 12.30	Low energy electron attachment to aminoacetonitrile and cyanamide
	Stefan Denifl, University of Innsbruck
12.30 to 13.00	Electronic excitation and neutral dissociation of ground and metastable
	states of oxygen molecule and electron impact ionisation of metastable
	states
	James Hamilton, University College London and Quantemol ltd, UK

13.00 to 14.00 Lunch

Break out Session 14.00 to 15.45 D Data needs

15.45 to 16.15 Tea

16.15 Lab tours

Reactive collisions of electrons with CO⁺ and H₂⁺ in cometary coma

Y. Moulane ^{1, 2, 3,*}, J. Zs. Mezei ^{3, 4}, E. Jehin ², Z. Benkhaldoun ¹ and I. F. Schneider ³ ¹Oukaimden Observatory, High Energy Physics and Astrophysics Laboratory, Cadi Ayyad University, Marrakech, Morocco

²*Institut d'Astrophysique et de Géophysique, Université de Liège, Belgium*

³Laboratoire Ondes et Milieux Complexes, CNRS-UMR-6294, Université du Havre, France ⁴Laboratoire des Sciences des Procédés et des Matériaux, CNRS-UPR-3407, Univ. Paris 13, France

*E-mail: moulaneyoussef@gmail.com

In order to improve our understanding of the kinetics of the cometary coma, a theoretical study of the major reactive collisions in these environments is nowadays needed. In the collisional inner cometary coma, the production of various species in ground state, but also in several excited states, is partly due to inelastic collisions between the thermal electrons and the molecular ions, namely the dissociative recombination (DR)/dissociation and vibrational excitation (VE)/de-excitation (VdE) [1]. The aim of our work is to reveal the importance of these reactive collisions, focusing on CO + and H2 + . The DR of CO + is expected to be a major source of excited C(1D) atoms [2], whose emission has been detected in the Hale–Bopp comet [3]. We have computed the DR and the VE/VdE cross sections using a method based on Multichannel Quantum Defect Theory (MQDT) [4-7] and eventually the corresponding Maxwell rate coefficients. We will present their variation with the cometocentric using an electron temperature profile inferred from the observations of the Giotto Neutral Mass Spectrometer on Halley's coma [8].

[1] Larsson, M., Geppert, W. D., & Nyman, G. 2012, Reports on Progress in Physics, 75, 066901

- [2] Raghuram, S., Bhardwaj, A., & Galand, M. 2016, ApJ, 818, 102
- [3] Oliversen R J, Doane N, Scherb F, Harris W M and Morgenthaler J P 2002, ApJ. 581 770-5
- [4] Epée Epée M. D., Mezei J. Z., Motapon O., Pop N., Schneider I. F., 2016, MNRAS, 455, 276

[5] J. Zs. Mezei et al, 2015, Plasma Sources Science and Technology, 24, 035005

[6] Schneider I. F., invited talk to this meeting

[7] Moulane et al 2017, article in preparation

[8] Eberhardt, P. & Krankowsky, D. 1995, A&A, 295, 795

Electron Impact Excitation data for H20, N20 and H2S triatomic molecules

Bratislav Marinkovic

Laboratory for Atomic Collision Processes, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

Triatomic molecules that have been investigated by electron collisions in Laboratory for Atomic Collision Processes at the Institute of Physics Belgrade comprise several different classes of such molecules: C2v symmetry molecules H₂O, D₂O and H₂S [1]; linear C ∞v molecule N₂O [2]; D ∞ h molecules NO₂, CO2 and CS₂ [3] and Cs molecule SO₂ [4]. The excitation processes have been studied by electron energy loss spectroscopy and threshold electron spectroscopy (when residual electron energy is close to zero). For some of the excited states the angular behaviour has been investigated and these states are characterised by differential cross sections. The main advantage of electron spectroscopy over synchrotron radiation or other types of optical spectroscopy is that the optically forbidden states are more pronounced in electron spectra. Another type of distinct features in electron spectra are resonances, i.e. peaks that arise from temporary negative ions formed in the process of collision. To fully model electron scattering process, one needs to know energy loss spectrum and the energy and angular behaviour of cross sections $DCS(\varepsilon,\theta)$. Energy loss spectra and DCSs for H₂O, H₂S and N₂O molecules will be presented.

[1] D. S. Belić and M. Kurepa, Fizika, 17 (1985) 117; B. Marinković Thesis (1985); N. Lj. Durić, et al. Int. J. Mass Spectr. Ion Proc. 83 (1988) R7; Gy. Vikor and M. Kurepa, J. Serb. Chem. Soc. 60 (1995) 199; J. Jureta EPJD 32 (2005) 319.

[2] D. Cubić Thesis (1985); B. Marinković Thesis (1985); B. Marinković et al. J. Phys. B 19 (1986) 2365; 32 (1999) 1949; D Cubric et al., J. Phys. B 19 (1986) 4225.

[3] D. S. Cvejanović et al. J. Phys. B 18 (1985) 2541; D Lukić et al. Int. J. Mass Spectr. 205 (2001) 1.

[4] I. Čadež et al. J. Phys. D: Appl. Phys. 16 (1983) 305.

Low energy electron attachment to aminoacetonitrile and cyanamide

Stefan Denifl University of Innsbruck

Aminoacetonitrile as well as cyanamide are relevant molecules in interstellar chemistry and the chemical evolution of life. In the present study we investigated electron attachment to these compounds in the gas phase. Ion yields of formed anions were studied as function of the initial electron energy and resonance energies for the most abundant fragment anions were determined. No long-lived parent anion was observed for both compounds.

<u>Electronic excitation and neutral dissociation of ground and metastable states of oxygen</u> <u>molecule and electron impact ionisation of metastable states</u>

James Hamilton University College London and Quantemol ltd, UK

Molecular oxygen was recently detected in the coma of comet 67P by Bieler et al. (2015). Despite the ubiquity of oxygen in the universe many holes still persist in the data we have of molecular oxygen. A 2016 "Workshop on Oxygen Plasma Kinetics"[1] specifically identified a dearth in the data regarding the role of metastable states and electron impact cross sections for dissociation and electronic excitation. The radiative lifetime of the first metastable state of O_2 , $O_2(a \ ^1\Delta_g)$, has a lifetime of over 1 hour, see, for instance, Newman *et al.* (1999) and Miller *et al.* (2001), and is therefore very influential in any system containing O_2 . According to selection rules excitation of O_2 by photon impact from ground to metastable states is forbidden and therefore the creation of these states in a system is an electronic phenomenon. In this talk cross sections are presented and discussed for electron impact dissociation with and electronic (super)excitation of ground state O_2 , $O_2(X \ ^3\Sigma^+{}_g)$, along with metastable states of O_2 , $O_2(a \ ^1\Delta_g)$ and $O_2(b \ ^1\Sigma^+{}_g)$. Quenching and electron impact ionisation cross sections of the metastable states are also presented.

Bieler, A. et al. Nature 526, 678–681 (2015) Newman, S. M. et al. J.J. Chem.Phys. ,110, 10749 (1999) Miller, H. C. et al. J. Quant. Spectrosc. Radiat. Transfer, 69, 305 (2001) [1] http://langmuir.raunvis.hi.is/~tumi/wox.html

Contacts

Dennis Bodewits	University of Maryland	dennis@astro.umd.edu
Jan Hendrik Bredehöft	University of Bremen	jhbredehoeft@uni-bremen.de
Stephan Denifl	University of Innsbruck	stephan.denifl@uibk.ac.at
Juraj Fedor	J. Heyrovsky Institute of Physical Chemistry CAS	juraj.fedor@jh-inst.cas.cz
Tom Field	Queen's University Belfast	t.field@qub.ac.uk
Alan Fitzsimmons	Queen's University Belfast	a.fitzsimmons@qub.ac.uk
James Hamilton	University College London/Quantemol Ltd.	james.hamilton@ucl.ac.uk
Faro Hechenberger	University of Innsbruck	faro.hechenberger@student.uibk.ac.at
Kevin Heritier	Imperial College London	k.heritier15@imperial.ac.uk
František Krčma	Brno University of Technology	krcma@fch.vut.cz
Vincenzo Laporta	Université du Havre	vincenzo.laporta@univ-lehavre.fr
Robert Macke	Vatican Observatory	rmacke@specola.va
Bratislav Marinković	Institute of Physics Belgrade	bratislav.marinkovic@ipb.ac.rs
Nigel Mason	The Open University	nigel.mason@open.ac.uk
Štefan Matejčík	Comenius University Bratislava	matejcik@fmph.uniba.sk
Pavol Matlovič	Comenius University Bratislava	matlovic@fmph.uniba.sk
Andreas Mauracher	University of Innsbruck	andreas.mauracher@uibk.ac.at
Youssef Moulane	Université du Havre	moulaneyoussef@gmail.com
Juraj Országh	Comenius University Bratislava	juraj.orszagh@uniba.sk
Peter Papp	Comenius University Bratislava	papp@fmph.uniba.sk
Paul Scheier	University of Innsbruck	paul.scheier@uibk.ac.at
Ioan F. Schneider	Université du Havre	ioan.schneider@univ-lehavre.fr
Colin Snodgrass	The Open University	colin.snodgrass@open.ac.uk
Juraj Tóth	Comenius University Bratislava	toth@fmph.uniba.sk
Anne Wellbrock	Mullard Space Science Laboratory/University College London	a.wellbrock@ucl.ac.uk