INTEGRIRANI PRESECI ZA ELEKTRONSKU EKSCITACIJU 4¹P STANJA ATOMA KALCIJUMA

S. MILISAVLJEVIĆ, D. ŠEVIĆ, V. PEJČEV*, D. M. FILIPOVIĆ** i B. P. MARINKOVIĆ

Institut za fiziku, 11001 Beograd, SCG, bratislav.marinkovic@phy.bg.ac.yu *Prirodno matematicki fakultet, Univerzitet u Kragujevcu, Kragujevac,SCG **Fizički fakultet, Univerzitet u Beogradu, 11001 Beograd, SCG

SAŽETAK

U eksperimentu sa ukrštenim elektronskim i atomskim mlazom izmereni su relativni diferencijalni preseci za ekscitaciju rezonantnog 4¹P stanja atoma kalcijuma elektronima upadne energije 10, 20, 40 I 60 eV u intervalu uglova od 1⁰ do 150⁰. Apsolutni preseci su dobijeni normiranjem relativnih vrednosti na optičku jačinu oscilatora. Integralni presek, presek za prenos impulsa i presek za viskoznost su dobijeni numeričkom integracijom diferencijalnih preseka.

Ključne riječi: Integrirani preseci, kalcijum, ekscitacija

1. Uvod

Diferencijalni i integrirani preseci za ekscitaciju atoma metala udarom elektrona su od interesa u mnogim oblastima fizike kao sto su fizika plazme i astrofizika. Kalcijumove linije su zastupljene u spektrima mnogih zvezda i uspesno se koriste za dijagnostiku i analizu istih dok je u fizici plazme poznavanje ovih preseka neophodno zbog modelovanja procesa.

Poslednjih godina primecena je tendencija korišćenja kalcijuma u eksperimentima dobijanja ultrahladnih atoma i zahvaljujući tome kalcijum je nasao primenu u mnogim preciznim merenjima u metrologiji, kvantnoj optici itd.

U ovom radu prikazani su integrirani preseci za elektronsku ekscitaciju atoma kalcijuma kao i spektar gubitaka energije datog stanja.

2. Eksperimentalni rezultati

Elektronski spektrometar ESMA korišćen u ovom eksperimentu je detaljno objašnjen ranije [1]. Atomski mlaz kalcijuma je dobijen u specijalno konstruisanoj peći ciji je opis kao i parametri eksperimenta dat u [2].

Standardna eksperimentalna procedura obuhvatala je snimanje spektra gubitaka energije pre svakog merenja kako bi se utvrdilo da nema dvostrukog rasejanja. Spektar gubitaka energije za rezonantno 4¹P stanje atoma kalcijuma prikazan je na slici 1.

Slika 1. Dekompozicija spektra gubitaka energije $4^{l}P(2.93 \text{ eV})$ stanja atoma kalcijuma na $E_{0}=20 \text{ eV}$ upadnoj energiji elektrona I uglu rasejanja 10^{0} .

Kao što se vidi, eksperimentalno dobijena linija kao i njen teorijski profil nisu simetrični. Zbog relativno slabe rezolucije (oko 200 meV) stanja $3^{1}D_{2}$ i $3^{3}D_{1, 2, 3}$ nisu potpuno razdvojena i zato znatno utiču na oblik linije ali ne i na visinu glavog pika.

Posle dovođenja relativnih diferencijalnih preseka na apsolutnu skalu [2], krive diferencijalnih preseka su ekstrapolisane na 0⁰ i 180⁰. Za 40eV i 60eV korišćeni su teorijski proračuni diferencijalnih preseka

Секција 2: Атомска и молекулска физика и оптика (Постер)

2-68

Конгрес физичара Србије и Црне Горе, Петровац на Мору, 3-5. јун 2004.

Srivastave i saradnika [3] dok je na 10eV i 20eV izvršeno fitovanje polinomom. Ekstrapolacija na 0^0 je urađena pomoću odgovarajuće krive za generalisanu jačinu oscilatora. Zatim su numeričkom integracijom po celokupnom prostornom uglu izračunati integralni presek (Q_i), presek za prenos impulsa (Q_m) i presek za viskoznost (Q_v) po sledećim formulama:

$$Q_I = 2\pi \int_0^{\infty} \sigma(\theta) \sin \theta \, d\theta \tag{1}$$

$$Q_M = 2\pi \int_0^{\pi} \sigma(\theta) \left[1 - \left(1 - \frac{\omega}{E_0} \right)^{1/2} \cos \theta \right] \sin \theta \ d\theta$$
⁽²⁾

$$Q_{V} = 2\pi \int_{0}^{\pi} \sigma(\theta) \left[1 - \left(1 - \frac{\omega}{E_{0}} \right) \cos^{2} \theta \right] \sin \theta \ d\theta$$
(3)

gde je ω gubitak energije a E₀ je energija upadnog elektrona. Dobijene vrednosti su prikazane u tabeli 1 sa odgovarajućim apsolutnim greškama u zagradama.

Tabela1.	Integrirani preseci	za elektronsku e	kscitaciju 4' P	' stanja atoma	kalcijuma
----------	---------------------	------------------	-----------------	----------------	-----------

Upadna energija	Integrirani preseci (10 ⁻²⁰ m ²)				
(eV)	10	20	40	60	
Qi	20.0(4.8)	25.2(6.1)	23.3(6.1)	14.7(2.6)	
Q _m	4.9(1.3)	2.84(.62)	1.17(.30)	0.84(.24)	
Q _v	6.9(1.7)	4.5(1.1)	2.08(.53)	1.09(.27)	

3. Literatura

π

- [1] R. Panajotović, Doktorska disertacija, Univerzitet u Beogradu, 1999
- [2] S. Tošić, D. Šević, V. Pejčev, D. M. Filipović, B. P. Marinković, Fifth General Conference of the Balkan Physical Union (BPU-5), Vrnjačka Banja, SCG, Avgust 25- 29, 2003, Book of Abstracts, Eds. S. Jokić *et al*, p.54

[http://www.phy.bg.ac.yu/~bpu5/proceedings/Papers/SO04%20-%20002.pdf]

[3] R. Srivastava, T. Zuo, R. P. McEachran and A. D. Stauffer, J Phys. B: At. Mol. Opt. Phys. 25, (1992) 3709 Конгрес физичара Србије и Црне Горе, Петровац на Мору, 3-5. јун 2004.

Секција 2: Атомска и молекулска физика и оптика (Постер)

2-70