
Atmospheric Research 92 (2009) 420–426

Contents lists available at ScienceDirect

Atmospheric Research

j ourna l homepage: www.e lsev ie r.com/ locate /atmos
The statistical characters of PM10 in Belgrade area

Zoran Mijić⁎, Mirjana Tasić, Slavica Rajšić, Velibor Novaković
Institute of Physics, Pregrevica 118, 11080 Belgrade, Serbia
a r t i c l e i n f o
⁎ Corresponding author. Tel.: +381 11 3713 004; fa
E-mail address: mijic@phy.bg.ac.yu (Z. Mijić).

0169-8095/$ – see front matter © 2009 Elsevier B.V.
doi:10.1016/j.atmosres.2009.01.002
a b s t r a c t
Article history:
Received 10 March 2008
Received in revised form 5 December 2008
Accepted 4 January 2009
The concentrations of air pollutants depend on meteorological conditions and pollutant
emission level. From the statistical properties of air pollutants the number of times the daily
average concentrations exceed the assigned air quality standard (AQS) can be estimated, as well
as the level of reduction of particle matter emission sources required to meet the AQS. In this
paper three statistical distributions (lognormal, Weibull and type V Pearson distribution) were
used to fit the complete set of PM10 data for the Belgrade urban area during a three-year period
(2003–2005). The method of moments and the method of least squares were both used to
estimate the parameters of the three theoretical distributions. The type V Pearson distribution
represented the PM10 daily average concentration most closely. However, the parent
distributions sometimes diverged in predicting a high PM10 concentration and therefore
asymptotic distributions of extreme values were used to fit the high PM10 concentration
distribution more correctly. This method can successfully predict the return period and
exceedances over a critical concentration in succeeding years. The estimated emission source
reduction of PM10 to meet the assigned standard varied from 53% to 63% in the Belgrade urban
area. The results provide useful information for air quality management and could be used to
examine the similarities and differences among air pollution types in diverse areas.

© 2009 Elsevier B.V. All rights reserved.
Keywords:
PM10

Probability distribution
Extreme theory
Source reduction
1. Introduction

Atmospheric aerosols are of major scientific interest due to
their confirmed role in climate change (IPCC, 2001) and their
effect on human health (Schwartz et al.,1996; Dockery and Pope,
1994) and local visibility. The impact of atmospheric aerosols
on the radiative balance of the Earth is of comparable magni-
tude to greenhouse gas effects (Anderson et al., 2003). In order to
protect public health and the environment i.e. to control
and reduce particulate matter (PM) levels, air quality standards
(AQS) were issued and target values for annual and daily mean
PM10 (particles below 10 μm in diameter) mass concentra-
tions were established. For the first stage the EU Directive (EC,
1999) required an annual limit of 40 μg m−3 and a 24 h limit of
50 μgm−3 (not to be exceededmore than 35 times in a calendar
year) to bemet by 2005 and, in the second stage, an annual limit
of 20 μg m−3 and a 24 h limit of 50 μg m−3 (not to be exceeded
more than 7 times in a calendar year) to be met by 2010.
x: +381 11 3162 190.
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Although PM is of great concern for public health, studies
related to the influence of suspended PM10 on air quality in
the Belgrade urban atmosphere were not initiated until 2002.
Some results of preliminary investigations concerning PM10

have been published (Rajšić et al., 2004).
The obtained data for PM10 mass concentrations have been

subjected to statistical processing in order to determine the
frequency distribution. Similarly to other air pollutants, PM
concentrations are randomvariables influencedby theemission
level, meteorological conditions and topography. Each area is
specific and the required emission reduction to meet AQS is
different. Information about the frequency distribution of
pollutants is useful for developing air pollution control
strategies. When the specific probability function of an air
pollutant is known, it is easy to predict the required emission
reduction, the frequencyof exceedanceof theAQS, aswell as the
returnperiod.Many types of probability distributionshavebeen
used tofit air pollutant concentrations. These include lognormal
distribution (Mage andOtt,1984; Kao and Friedlander,1995; Lu,
2002; Lu and Fang, 2002), pseudo-lognormal distribution
(Vukmirović, 1990), Weibull distribution (Georgopoulos and
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Seinfeld, 1982), gamma distribution (Lu, 2004) and type V
Pearson distribution (Morel et al., 1999).

Lognormal, Weibull and type V Pearson distributions were
chosen to fit the data for PM10 in Belgrade. The distributional
parameters were estimated by the moments and maximum
likelihood methods. The reduction in emission sources of PM10

required to meet AQS was estimated employing a rollback
equation. Moreover, since the tail of theoretical distributions
diverged in the high concentration region, a two-parameter
exponential distribution and asymptotic distribution of
extreme value were used to fit high PM10 concentrations and
estimate exceedances and return period more precisely.

Thus, the goal of this work was to present some statistical
characteristics of PM10 mass concentrations measured in the
Belgrade urban area during the period 2003–2005, and to
estimate the reduction of average PM10 source emission
required to meet AQS.

2. Methods

Daily average mass concentrations of PM10 were taken
from 2003 to 2005 in order to estimate the parameters for
three theoretical distributions. The measurements were
performed in the central urban area of Belgrade.

Suspended particles were collected on preconditioned
(48 h at 20 °C and constant relative humidity around 50%) and
pre-weighed Pure Teflon filters (Whatman, 47 mm diameter,
2 μm pore size) using two MiniVol air samplers (Airmetrics,
Co. Inc,. 5 l min−1

flow rate) provided with PM10 cutoff inlets
and positioned at 2 m height. The sampling time was 24 h
yielding a sample volume of 7.2 m3. Routine maintenance of
the samplers and calibration of the flow meters were
conducted in order to ensure the sampling quality (Air-
metrics, 2001). After particle collection, the filters were
sealed in plastic bags and kept in portable refrigerators, in a
horizontal position during transportation back to the labora-
tory where there were reconditioned for another 48 h.

The samples were handled and processed in a Class 100
clean laboratory, at the Institute of Physics. Particle matter
mass concentrationwas determinedbyweighting of thefilters
using a semi-micro balance (Sartorius, R 160P), with a
minimum resolution of 0.01 mg. Loaded and unloaded filters
(stored in Petri dishes) were weighed after 48 h conditioning
in a desiccator, in a clean room at a relative humidity of 45–
55% and temperature of 20±2 °C. Quality assurance was
provided by simultaneous measurements of a set of three
“weigh blank” filters that were interspersed within the pre-
and post-weighing sessions of each set of sample filters and
the mean change in “weigh blank” filter mass between
weighing sessions was used to correct the sample filter mass
changes.

The daily average concentrations of PM10 were used to
estimate the parameters of the three theoretical distributions
whose probability density functions are:

lognormal

pl xð Þ = 1

xσg 2πð Þ12
exp −

ln x − ln μg
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where x is the pollutant concentration and μg and σg are the
parameters of distribution;

Weibull
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where Γ is the gamma function and ρi and xi
eq are the para-

meters of type V Pearson distribution (Morel et al., 1999).
The appropriateness of each distributionwas assessed by the

Kolmogorov–Smirnov (K–S) and chi-squares tests. The K–S
statistic is defined as the maximum difference between the
sample cumulative probability and the expected cumulative
probability i.e.D=max| fn(x)−F(x)| where fn(x) and F(x) are the
expected and observed cumulative frequency functions, respec-
tively. The D value declines with increasing goodness of fit.

2.1. Parameter estimation

Distribution parameters were estimated from the mea-
sured data by the method of moments and the method of
maximum likelihood.

2.1.1. Method of moments
Parameters for lognormal distribution can be estimated by

calculating thefirst (M1)andsecond(M2)momentsandusing the
following relations (Georgopoulos and Seinfeld, 1982; Lu, 2002):

ln μg = 2ln M1 − 1
2
ln M2 ð4Þ

ln σg

� �2
= ln M2 − 2 ln M1 ð5Þ

The relations between the estimated parameters and
moments for Weibull distribution are:
C 1 + 2=λð Þ
C2 1 + 1=λð Þ −1
� 	1

2
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σ =
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In addition, the parameters of the type V Pearson
distribution can be computed from Eqs. (8) and (9):
xeqi = M1 ð8Þ
ρi =
M2

M2 − M2
1

: ð9Þ

2.1.2. Method of maximum likelihood
For lognormal distribution the estimated values of the

parameters are given by:
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For the Weibull distribution the estimated values of λ and
σ are:

λ =
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xλi ln xi
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For the type V Pearson distribution the estimated values of
parameters are:
xeqi =
ρi + 1
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In order to calculate parameters of the distributions all
equations can be solved numerically.
2.2. Estimation of emission source reduction

Assuming unchanged spatial distribution of emission
sources, meteorological conditions and nonreactive species,
according to the rollback equation (Georgopoulos and
Seinfeld,1982; Seinfeld and Pandis, 1998) the emission source
reduction R (%) required to meet AQS can be estimated by:

R =
E Cp

n o
− E Cf gs

E Cp

n o
− Cb

: ð16Þ

In this equation E{C}s is themean (expected) concentration of
distributionwhen the extremevalue equalsCs (the concentration

of the AQS), E{Cp} the mean concentration of the actual
distribution and Cb the background concentration. If Cs=125 μg
m−3, the PM10 daily average concentration is not exceededmore
than once per year (P[PM10NCs]=1/365=0.00274), then E{C}s
is the expected daily PM10 average concentration of a distribution
where the probability of a concentration exceeding 125 μg m−3

equals 0.00274.

2.3. The distribution of high PM10 concentrations

Previous theoretical distributions can give good result for
estimating the mean concentration and required reduction of
source emission. However, the fitted results of the parent
distributions are not accurate enough in the high concentration
region. Therefore, a two-parameter exponential distribution
and asymptotic distribution were applied to predict the return
period and exceedances of the critical PM10 concentration.

2.3.1. Two-parameter exponential distribution
A two-parameter exponential distribution derived from

extreme value theory (Lu and Fang, 2003) represents the
cumulative frequency distributionof high concentrationsover a
specific percentile.

FL = 1− e−yn ð17Þ

yn = bm xn − /ð Þ ð18Þ
where yn, bm and ϕ are the variate and the parameters of the
distribution and xn is the chosen PM10 concentration exceeding
the specific percentile. From the complete data set of PM10

(2003–2005) concentrations exceeding 80th percentile were
chosen to fit the two-parameter exponential distribution. The
estimated cumulative probability can be calculated from the
chosen high PM10 concentration, xn, using Eq. (19):

FL xnð Þ = N1 − r + 1
N1 + 1

= PrN1
ð19Þ

whereN1 is the size of the chosen high PM10 concentration and
PrN1

is the probability of a value that is ranked r out of N1 values.
The relation between variate yn and PrN1

is:

yn rð Þ = − ln 1− PrN1

� �
ð20Þ

and the parameters bm and ϕ can be estimated by the least-
squares method. In addition, the return period R(xc), defined as
the average number of averaging periods (or observations)
between exceedances of a given critical concentration, xc, can
be calculated as:

R xcð Þ = 1
1− fð Þ 1− FL xcð Þð Þ ð21Þ

where f is the chosen specific percentile. After determining
return period the days of exceedances within one year can be
calculated in order to develop air control strategy.

2.3.2. Asymptotic distribution of the extreme value theory
The cumulative distribution of mth largest value xm out of

samples of size n is denoted as Gmn(x). If the parent distri-
bution of the random variable X is exponential type, then the
extreme values are themselves random variables and the
statistical distribution of the series of N extremes approaches
Gumbel's type I asymptote (Gumbel, 1958; Roberts, 1979). For
type I asymptotic distribution the approximation is shown as:

Gmn xmð Þ = exp −exp −ymð Þ½ � ð22Þ
where ym(xm)=am(xm−um) is the asymptote variate of
Gumbel's type I asymptote and αm and um are the parameters
of type I asymptotic distribution. The cumulative probability of
measured extremes can be calculated by Eq. (23):

Gmn xð Þ = N − r + 1
N + 1

= PrN ð23Þ

whereN is the number of extreme values, PrN is the probability
of a value that is ranked r out of N extremes. In addition, the
relation between the asymptotic variate ym and PrN is:

ym rð Þ = − ln −ln PrNð Þ ð24Þ
and the appropriate parameters can be estimated (Surman
et al., 1987). The maximum values of daily average PM10

concentrations of each month for 2003–2005 were chosen to
obtain the asymptotic distribution Gmn(x). Then, the expected
return period can be calculated as:

R xcð Þ = 1
1− Gmn xcð Þ

: ð25Þ



Table 1
Estimated parameters for three theoretical distributions.

Type V Pearson Lognormal Weibull

Method of moments xeq ρ μg σg λ σ
68.275 3.293 56.826 1.823 1.192 62.226
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3. Results and discussion

The fitted results of three theoretic distributions and the
measured data for PM10 in Belgrade from 2003 to 2005 are
presented in Fig. 1.
Fig. 1. Comparisons of two methods for estimating the daily average
concentration distribution of PM10 for (a) lognormal distribution, (b)
Weibull distribution and (c) type V Pearson distribution.

K–S 0.077 0.051 0.226
χ2 51.83 34.77 136.50
Maximum likelihood xeq ρ μg σg λ σ

98.790 6.420 70.316 1.632 1.621 74.032
K–S 0.038 0.041 0.073
χ2 21.37 22.34 47.21
Using the method of moments the values of the estimated
parameters are xeq=68.2 µg m−3, ρ=3.29 for type V Pearson
distribution; µg=56.82 µg m−3, σg=1.82 µg m−3 for lognor-
mal distribution and λ=1.19, σ=62.22 for Weibull distribu-
tion. With the method of maximum likelihood the estimated
parameters are xeq=98.7 µg m−3, ρ=6.42 for type V Pearson
distribution; µg=70.31 µg m−3, σg=1.63 µg m−3 for lognor-
mal distribution and λ=1.62, σ=74.03 for Weibull distribu-
tion. Once the distribution parameters were determined, the
chi-square and K–S tests could be used to assess which type of
distribution is more appropriate for representing the PM10

distribution. The results of both tests are presented in Table 1.
Smaller values of chi-square as well as Dmax were obtained

by themethod of least squares and this method yields a better
fit with the actual data. It is clear that theWeibull distribution
is inappropriate for representing PM10 distribution, while
type V Pearson distribution is the most suitable one (Fig. 2).

In addition, the probability of exceeding the AQS can be
predicted using predetermined distribution parameters by
least square methods and integrating probability distribution
functions. Fig. 3 shows the relation between exceeding
probability and PM10 concentration for different distribution
functions.

It was found that the probabilities of exceeding the AQS
(xPM10

N125 μgm−3) were 0.12, 0.096 and 0.088 for lognormal,
Weibull and type V Pearson distribution, respectively. This
means that the number of days exceeding the AQS in the
following year would be 43, 35 and 32, respectively. The
actual probability for this period was 0.075 (27 days) and it is
clear that all three distributions overestimated the exceeding
probability but type V Pearson distribution most closely
represented the true PM10 data.

3.1. Estimating the emission source reduction

After determining the most appropriate distribution func-
tion for PM10 the emission source reduction required to meet
AQS can be predicted from a rollback equation. Parameters of
distribution which control the size of fluctuation are not
influenced by pollution emission level, unlike the mean
(expected) value of PM10 daily average concentration (E{Cp}).
The complementary distribution function for calculating the
probability of variable xi exceeding the critical value x for
lognormal and type V Pearson distribution can be found in a
statistical textbook. The actual mean concentration for the
measured periodwas 68.4 μgm−3 with a standard deviation of
46.3 μgm−3. In order tomeet AQS,mean values of PM10 should
be reduced. The relation between μg and mean concentration



Fig. 2. Comparison of measured data with the theoretical distributions by the
method of least squares.
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for lognormal distribution is: ln E Cp

 �

= ln μg + 1
2 ln σg
� �2

(Georgopoulos and Seinfeld, 1982). The parameter σg=1.63
was used to calculate the relationship between mean
(expected)PM10 concentrationand theprobabilityof exceeding
AQS for lognormal distribution. It was found that the value of E
{c}s (the average concentration of lognormal distributionwhere
the probability of a concentration exceeding 125 μgm−3 equals
0.00274) was 32.1 μg m−3. Therefore, the mean PM10 concen-
tration should be reduced from the current value of 68.4 μgm−3

to 32.1 μg m−3 and the estimated emission reduction can be
calculated as follows:

R =
E Cp

n o
− E Cf gs

E Cp

n o
− Cb

=
68:4 μgm−3 − 32:1 μgm−3

68:4 μgm−3 = 0:531

i.e. 53.1%. For type V Pearson distribution the estimated source
reduction required to meet AQS is 58.6%. Therefore, the source
emissions should be controlled much more to reduce PM10

concentration and meet AQS in the future period. However, the
Fig. 3. Relation between PM10 mass and probab
tail property of distributions is important for estimating emission
reduction and the probability of exceedance. Two-parameter
exponential distribution and asymptotic distributions were
employed to provide better fit for the high region of PM10

concentrations.

3.2. High PM10 concentration analyses

Fig. 4 shows the fitted theoretical line of the variate yn and
PM10 concentration over 80th percentile, xn. The fitted
equation for the theoretical two-parameter exponential
distribution is FL(xn)=1−exp[−0.016(x−75.37)]. The coef-
ficient of determination, R2=0.94, indicates that this theore-
tical distribution fits the high-concentration region quite
successfully. From Eqs. (17) and (21) for critical concentra-
tion, xc=125 μg m−3, FL and the return period can be
calculated as: FL(xc)=1− exp[−0.016(125− 75.37)]
=0.548 and R(xc)=1/ [(1−0.8)(1−0.548)]=11 days.
From this calculation predicted exceedances over AQS are
estimated to be 33 days in the following year. The prediction
of return period for a critical concentration can also be used
for estimating source emission reduction. If the AQS of PM10 is
125 μgm−3 and the allowed exceeding probability is once per
year, then the expected return period is 365 days and FL
(125 μg m−3)=0.986. In addition, the PM10 concentration
expected to be equaled or exceeded once per year can be
calculated from Eq. (17). The expected concentration is 337 μg
m−3 and it can be seen that a reduction of 212 μg m−3 needs
to be achieved in Belgrade in order tomeet AQS (125 μgm−3).
The standard deviation of the expected PM10 concentration
Sx0

can be obtained from Eq. (26) (Kleinbaum et al., 1988)

Sxo = Sy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

1
n

+
x0 − xð Þ2
n − 1ð ÞS2x

s
ð26Þ

where Sy
2 is the estimate of variance of y; x̅ the average and Sx

2

the variance of x. The calculated value is: Sx0
=2 μg m−3, and,

if we assume direct proportionality between emission level
and high PM10 concentration, the needed reduction can be
expressed as (62.9±0.6)%.
ility for different distribution functions.



Fig. 4. The fitted theoretical line of variate and PM10 concentration over a specific percentile by type I two-parameter exponential distribution.
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PM10 monthly extremes (xm) and the asymptotic variate (ym)
fitted by type I asymptotic distribution are shown in Fig. 5
together with the return period and cumulative probability of
extremes. As the extreme data were selected as the monthly
maximum concentration, the asymptotic distribution Gmn can
be written as G1,30. The fitted asymptotic distribution is
G1,30=exp[−exp[−0.013(x−74.84)]]. If the same AQS is
assumed as earlier, it is easy to calculate G1,30(xc=125 µg−3)
=exp[−exp[−0.013(125−74.84)]]=0.594 and from Eq.
(25) a return period of 2.46 months is obtained. In this case
the return period represents the average period within the
monthlymaximumexceedingAQSwill occur again and the unit
of the return period is in months.

In addition, predicted exceedances over AQS during the
sampling period is 14 days. After determining the return period
one can estimate the required source emission reduction in a
similar way. The expected return period for the AQS in this case
is 12 months i.e. G1,30=0.917 and from Eq. (22) the expected
PM10 concentration is 263 μgm−3. The corresponding standard
Fig. 5. The fitted theoretical line of the asymptotic variate and P
deviation, Sc, of the expected PM10 concentration can be
calculated according to Chow et al. (1988):

Sc =
1
N

1 + 1:1396K + 1:1K2
� �� �1=2

S ð27Þ

where S is the standard deviation of the original sample of sizeN,
and K is the frequency factor given by K = −

ffiffi
6

p
π 0:5772 +f

ln ln P
P − 1

� �� �g, where P is the return period. The calculated value
for Sc is 4 μg m−3, so a reduction of 138±4 μg m−3 needs to be
achieved. Therefore, a decrease in emission level of 53±2%
should be met in the future years.

Although many assumptions have been introduced,
which have caused some inaccuracy in estimating the
required source reduction, these results might be useful for
air pollution control strategy.

In our previous paper multivariate analysis, principal
component analysis and cluster analysis were used to identify
the possible emission sources of trace elements (Rajšić et al.,
M10 monthly extremes by type I asymptotic distribution.
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2008). The results implied that the main source of trace
elements in urban suspended particles is traffic, with a
considerable portion of resuspended road dust and products
of other fossil fuel combustion processes. Finally, the analyses
indicated that in the urban area of Belgrade, vehicle-related
sources contribute more to pollutant concentration levels
than industrial sources, being the major source emission
which should be reduced.

4. Conclusion

In this paper three theoretical distributions (lognormal,
Weibull and type V Pearson) were used to fit PM10 concentra-
tions in the Belgrade urban area for the period 2003–2005. The
type V Pearson distribution was found to be the most
appropriate for representingPM10 dailyaverage concentrations.

The average reduction of PM10 emission required to meet
the assigned Air Quality Standard was predicted from rollback
equation. The calculated values are 53% for lognormal
distribution and 58% for type V Pearson distribution.

The tail properties of the distribution are very important
for predicting the probability of exceedance, so a two-
parameter exponential distribution was used to fit the high
PM10 daily concentration region, while the monthly max-
imum level of PM10 was fitted by type I asymptotic distri-
bution. The return period and exceedances of the critical PM10

concentrationwere estimated. These methods can reasonably
predict the return period and exceedances in the succeeding
period and can also be used for predicting source emission
reduction. The estimated source emission reduction ranged
from 53% to 63%. These results, together with those obtained
earlier, confirm the need for further emission source reduc-
tion in Belgrade, especially from traffic, and may be useful for
developing air control strategy in future years.
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