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1. Introduction   

Atmospheric aerosols can be defined as solid and liquid particles suspended in air. Due to 
their confirmed role in climate change (IPCC, 2001), impact on human health (Dockery and 
Pope, 1994; Schwartz et al., 1996; Schwartz et al., 2001; WHO, 2002, 2003; Dockery and Pope, 
2006), role on the radiative budget (IPCC, 2007), effects on ecosystems (Niyogi et al., 2004; 
Bytnerowicz et al., 2007), and local visibility they are of major scientific interest. The human 
activities in various aspects cause a change in the natural air quality. This change is more 
marked in very inhabited areas with high industrialization. Epidemiological research over 
the past 15 years has revealed a consistent statistical correlation between levels of airborne 
particulate matter (PM) and adverse human health effects (Pope et al., 2004; Dockery and 
Stone, 2007). Airborne particulate matter contains a wide range of substances, such as heavy 
metals, organic compounds, acidic gases, etc. Chemical reactions occurring on aerosols in 
the atmosphere can transform hazardous components and increase or decrease their 
potential for adverse health effects. Especially organic compounds react readily with 
atmospheric oxidants, and since small particles have a high surface-to-volume ratio, their 
chemical composition can be efficiently changed by interaction with trace gases such as 
ozone and nitrogen oxides. The impact of atmospheric aerosols on the radiative balance of 
the Earth is of comparable magnitude to greenhouse gases effect (Anderson et al., 2003). 
Atmospheric aerosol in the troposphere influences climate in two ways: directly, through 
the reflection and absorption of solar radiation, and indirectly through the modification of 
the optical properties and lifetime of clouds. Estimation of the radiative forcing induced by 
atmospheric aerosols is much more complex and uncertain compared with the well-mixed 
greenhouse gases because of the complex physical and chemical processes involved with 
aerosols and because of their short lifetimes which make their distributions inherently more 
inhomogeneous. 
In order to protect public health and the environment i.e. to control and reduce particulate 
matter levels, air quality standards (AQS) were issued and target values for annual and 
daily mean PM10 (particles with aerodynamic diameter less than 10 m) and PM2.5 (particles 
with aerodynamic diameter less than 2.5 m) mass concentrations were established. For the 
first stage, the EU Directive (EC, 1999) required an annual limit of 40 g m-3 and a 24h limit 
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of 50 g m-3 (not to be exceeded more than 35 times in a calendar year) for PM10 to be met by 
2005. In the spring 2008 EU decided on the future PM10 regulations and the conclusions are 
that PM10 regulations have been somewhat relaxed despite the fact that the numerical values 
of the limits have not changed (EC, 2008). The annual PM2.5 limit value was set on 25 g m-3, 
to be met in 2015 (WHO, 2006). The discussion of these limit values, regulations and 
relations of new EU standards to US EPA standards can be found elsewhere (Brunekreef 
and Maynard, 2008). Many epidemiology studies related to the adequacy of the new cut off 
values were published (Pope et al., 2002; Laden et al., 2006). Although current regulations 
only target total mass concentrations, future regulations could be focused on to the specific 
components that are related to inducing the adverse health effects. 
One of the main difficulties in air pollution management is to determine the quantitative 
relationship between ambient air quality and pollutant sources. Source apportionment is the 
process of identification of aerosols emission sources and quantification of the contribution 
of these sources to the aerosol mass and composition. The term “source” should be 
considered short for “source type” because this more general term accounts for the potential 
that there could be a cluster of sources within short distances of each other and/or there 
could be multiple sources along the wind flow pattern reaching the receptor thereby 
creating source types. Identification of pollutant sources is the first step in the process of 
devising effective strategies to control pollutants. After sources are identified, 
characterization of the source’s emission rate and emission inventory can be followed by the 
development of a control strategy including the possibility of revised or new regulations.  
Although significant improvements have been made over the past decades in the 
mathematical modelling of the dispersion of pollutants in the atmosphere, there are still 
many instances where the models are insufficient to permit the full development of effective 
and efficient air quality management strategies (Hopke, 1991). These difficulties often arise 
due to incomplete or inaccurate source inventories for many pollutants. Therefore it is 
necessary to have alternative methods available to assist in the identification of sources and 
the source apportionment of the observed pollutant concentrations. These methods are 
called receptor-oriented or receptor models since they are focused on the behaviour of the 
ambient environment at the point of impact as opposed to the source-oriented dispersion 
models that focus on the transport, dilution, and transformations that begins at the source 
and continue until the pollutants reach the sampling or receptor site. The problem is, using 
the data measured at the receptor site alone, to estimate the number of sources, to identify 
source composition and most importantly, from a regulatory point of view, to asses the 
source contributions to the total mass of each sample.  
This paper will briefly review the most popular receptor models that have been applied to 
solve the general mixture problem and link ambient air pollutants with their sources. Some 
of these models will be applied on originally PM data set from Belgrade and the results will 
be discussed. Atmospheric monthly deposition fluxes for Belgrade urban area already 
determined were also used to demonstrate the applicability of receptor modelling for 
pollution source apportionment. Deposition fluxes were calculated from monthly sampled 
bulk deposits composed from dry and wet atmospheric deposition.  

 

 

2. Receptor Modelling 

The fundamental principle of receptor modelling is that the mass conversation can be 
assumed and a mass balance analysis can be used to identify and apportion sources of 
airborne particulate matter. In order to obtain data set for receptor modelling individual 
chemical measurements can be performed at the receptor site what is usually done by 
collecting particulate matter on a filter and analyzing it for the elements and other 
constituents. Electron microscopy can be used to characterize the composition, size and 
shape of particles as well. If we assume that N samples are analyzed for n  species which 
come from m sources a mass balance equation can be written as 
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where ijC is the concentration of the j-th species in the i-th sample. The mass fraction of 
species j in source k is jka (e.g. source composition) and ikS is the total mass of material from 
source k in the i sample (e.g. source contribution). Obviously, equation above represents the 
general mixture problem and includes errors ije  which may be the result of analytical 
uncertainty and variations in the source composition. It is well known that there are 
insufficient numbers of constraints to define a unique solution, therefore this problem is 
related to the class of so called ill-posed problems. There is variety of ways to solve equation 
(1) depending on some physical constraints (like non negativity of source composition and 
contribution) and a priori knowledge about sources (Henry et. al., 1984; Kim and Henry, 
2000). 
From a receptor point of view, pollutants can be roughly categorized into three source types: 
source known, known source tracers (i.e. pollutant is emitted with another well 
characterized pollutant) and source unknown. One of the main differences between models 
is the degree of knowledge required about the pollution sources prior to the application of 
receptor models. The two main extremes of receptor models are chemical mass balance 
(CMB) and multivariate models. 
The chemical mass balance method requires knowledge of both the concentrations of 
various chemical components of the ambient aerosol and their fractions in source emissions. 
A complete knowledge of the composition of emissions from all contributing sources is 
needed and if changes of the source profiles between the emitter and the receptor may be 
considered as minimal, CMB can be regarded as the ideal receptor model. This method 
assumes a priori that certain classes of sources are responsible for ambient concentrations of 
elements measured at the receptor. Furthermore it is assumed that each source under 
consideration emits a characteristic and conservative set of elements. However, these 
requirements are almost never completely fulfilled, and thus, pure CMB approaches are 
often problematic. For sources that have known tracers but do not have complete emission 
profiles, factor analysis tools such as Principal Component Analysis (PCA), UNMIX, 
Positive Matrix Factorization (PMF) can be used to identify source tracers. These are 
commonly used tools, because software to perform this type of analysis is widely available 
and detailed prior knowledge of the sources and source profiles is not required. There are 
many related published papers (Poirot et al., 2001; Song et al., 2001; Azimi et al., 2005; Elbir 
et al., 2007; Olson et al., 2007; Brown et al., 2007; Song et al., 2008; Duan et al., 2008; Nicolas 
et al., 2008; Marković et al., 2008; Aničić et al., 2009). Principal component and factor 
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relations of new EU standards to US EPA standards can be found elsewhere (Brunekreef 
and Maynard, 2008). Many epidemiology studies related to the adequacy of the new cut off 
values were published (Pope et al., 2002; Laden et al., 2006). Although current regulations 
only target total mass concentrations, future regulations could be focused on to the specific 
components that are related to inducing the adverse health effects. 
One of the main difficulties in air pollution management is to determine the quantitative 
relationship between ambient air quality and pollutant sources. Source apportionment is the 
process of identification of aerosols emission sources and quantification of the contribution 
of these sources to the aerosol mass and composition. The term “source” should be 
considered short for “source type” because this more general term accounts for the potential 
that there could be a cluster of sources within short distances of each other and/or there 
could be multiple sources along the wind flow pattern reaching the receptor thereby 
creating source types. Identification of pollutant sources is the first step in the process of 
devising effective strategies to control pollutants. After sources are identified, 
characterization of the source’s emission rate and emission inventory can be followed by the 
development of a control strategy including the possibility of revised or new regulations.  
Although significant improvements have been made over the past decades in the 
mathematical modelling of the dispersion of pollutants in the atmosphere, there are still 
many instances where the models are insufficient to permit the full development of effective 
and efficient air quality management strategies (Hopke, 1991). These difficulties often arise 
due to incomplete or inaccurate source inventories for many pollutants. Therefore it is 
necessary to have alternative methods available to assist in the identification of sources and 
the source apportionment of the observed pollutant concentrations. These methods are 
called receptor-oriented or receptor models since they are focused on the behaviour of the 
ambient environment at the point of impact as opposed to the source-oriented dispersion 
models that focus on the transport, dilution, and transformations that begins at the source 
and continue until the pollutants reach the sampling or receptor site. The problem is, using 
the data measured at the receptor site alone, to estimate the number of sources, to identify 
source composition and most importantly, from a regulatory point of view, to asses the 
source contributions to the total mass of each sample.  
This paper will briefly review the most popular receptor models that have been applied to 
solve the general mixture problem and link ambient air pollutants with their sources. Some 
of these models will be applied on originally PM data set from Belgrade and the results will 
be discussed. Atmospheric monthly deposition fluxes for Belgrade urban area already 
determined were also used to demonstrate the applicability of receptor modelling for 
pollution source apportionment. Deposition fluxes were calculated from monthly sampled 
bulk deposits composed from dry and wet atmospheric deposition.  

 

 

2. Receptor Modelling 

The fundamental principle of receptor modelling is that the mass conversation can be 
assumed and a mass balance analysis can be used to identify and apportion sources of 
airborne particulate matter. In order to obtain data set for receptor modelling individual 
chemical measurements can be performed at the receptor site what is usually done by 
collecting particulate matter on a filter and analyzing it for the elements and other 
constituents. Electron microscopy can be used to characterize the composition, size and 
shape of particles as well. If we assume that N samples are analyzed for n  species which 
come from m sources a mass balance equation can be written as 

   
1

1,... ; 1,...
m

ij jk ik ij
k

C a S e i N j n


       (1) 
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insufficient numbers of constraints to define a unique solution, therefore this problem is 
related to the class of so called ill-posed problems. There is variety of ways to solve equation 
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contribution) and a priori knowledge about sources (Henry et. al., 1984; Kim and Henry, 
2000). 
From a receptor point of view, pollutants can be roughly categorized into three source types: 
source known, known source tracers (i.e. pollutant is emitted with another well 
characterized pollutant) and source unknown. One of the main differences between models 
is the degree of knowledge required about the pollution sources prior to the application of 
receptor models. The two main extremes of receptor models are chemical mass balance 
(CMB) and multivariate models. 
The chemical mass balance method requires knowledge of both the concentrations of 
various chemical components of the ambient aerosol and their fractions in source emissions. 
A complete knowledge of the composition of emissions from all contributing sources is 
needed and if changes of the source profiles between the emitter and the receptor may be 
considered as minimal, CMB can be regarded as the ideal receptor model. This method 
assumes a priori that certain classes of sources are responsible for ambient concentrations of 
elements measured at the receptor. Furthermore it is assumed that each source under 
consideration emits a characteristic and conservative set of elements. However, these 
requirements are almost never completely fulfilled, and thus, pure CMB approaches are 
often problematic. For sources that have known tracers but do not have complete emission 
profiles, factor analysis tools such as Principal Component Analysis (PCA), UNMIX, 
Positive Matrix Factorization (PMF) can be used to identify source tracers. These are 
commonly used tools, because software to perform this type of analysis is widely available 
and detailed prior knowledge of the sources and source profiles is not required. There are 
many related published papers (Poirot et al., 2001; Song et al., 2001; Azimi et al., 2005; Elbir 
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analyses attempt to simplify the description of a system by determining a minimum set of 
basis vectors that span the data space to be interpreted. PCA derives a limited set of 
components that explain as much of the total variance of all the observable variables (e.g., 
trace element concentrations) as possible. An alternative approach called Absolute Principal 
Components Analysis (APCA) (Thurston and Spengler, 1985) has also been used to produce 
quantitative apportionments. 
For pollutant sources that are unknown, hybrid models that incorporate wind trajectories 
(Residence Time Analysis, Potential Source Contribution Function (PSCF), Concentration 
Weighted Trajectory (CWT) can be used to resolve source locations. Hybrid models combine 
the advantages and reduce the disadvantages of CMB and factor analysis. The multilinear 
engine (ME) can solve multilinear problems with the possibility of implementing many 
kinds of constraints using a script language. Receptor models offer a powerful advantage to 
the source attribution process as their results are based on the interpretation of actual 
measured ambient data, what is especially important when ubiquitous area sources exist 
(e.g., windblown dust). Dispersion models can estimate point source contributions reliably if 
the source and atmospheric conditions are well characterized. From a mathematical point of 
view none of these models can give a unique solution but only solutions physically 
acceptable with different probability levels. These models therefore must be integrated by 
an at least indicative knowledge of the source profiles and/or by specific analyses such as 
the determination of the dimensional and morphological characterizations of the particulate 
matter. The comparison of source apportionment results from different European regions is 
very complex and many recent publications focus on this issue (Viana et.al, 2008). The 
combined application of different types of receptor models could possibly solve the 
limitations of the individual models, by constructing a more robust solution based on their 
strengths. Each modelling approach was found to have some advantages compared to the 
others. Thus, when used together, they provide better information on source areas and 
contribution than it could be obtained by using only one of them. 
When evaluating the European publications (Vianna et. al. 2008) PCA was the most 
frequently used model up to 2005, followed by back-trajectory analysis. Other models 
commonly used were PMF, CMB and mass balance analysis. Data from 2006–2007 show a 
continued use of PCA (50% of the new publications) and an increase in the use of PMF and 
Unmix. Investigation of uncertainty estimates for source apportionment studies as well as 
quantification of natural emission sources and specific anthropogenic sources is of growing 
interest, therefore the US Environmental Protection Agency supported development user 
friendly software for some receptor models which is widely available. 
The capabilities of some of the most commonly used models (PMF, Unmix, PSCF and CWT) 
will be demonstrated using original data set obtained in Belgrade and the fundamentals of 
these models are described below. 

 
2.1 Unmix 
The latest version of Unmix is available from the US Environmental Protection Agency (U.S. 
EPA, 2007). The concepts underlying Unmix have already been presented in geometrical 
and intuitive manner (Henry, 1997) and mathematical details are presented elsewhere 
(Henry, 2003). If the data consist of many observations of n species, then the data can be 
plotted in an n-dimensional data space where the coordinates of a data point are the 
observed concentrations of the species during a sampling period. The problem is to find the 

 

vectors (or points) that represent the source composition. In the case of two sources the data 
are distributed in a plane through the origin. If one source is missing from some of the data 
points, then these points will lie along a ray defined by the composition of the single, 
remaining source. Points that have one source missing are the key for solving the mixture 
problem. The appropriate number of these vectors (also called factors) is determined using 
computationally intensive method known as the NUMFACT algorithm (Henry et. al., 1999). 
If there are N sources, the data space can be reduced to an N-1-dimensional space. Fig. 1 
illustrates the essential geometry of multivariate receptor models for three sources of three 
species, the most complex case that can be easily graphed. It is assumed that for each source 
there are some data points where the contribution of the source is not present or small 
compared to the other sources. These are called edge points and Unmix works by finding 
these points and fitting a hyperplane through them; this hyperplane is called an edge (if N = 
3, the hyperplane is a line). For any number of sources and species, the relative source 
composition can be identified if there are sufficient edge points for each source to define 
identified edges in the data space. The source vectors are plotted in the direction of the 
source compositions and the open circles are observed data. The non-negativity constraints 
on the data and the source compositions require that the vectors and data lie in the first 
quadrant. Furthermore, the non-negativity of the source contributions requires that all the 
open circles lie inside the region bounded by the source vectors. This is made easier to see 
by projecting the data and source vectors from the origin into a plane. The source vectors are 
the vertices of a triangle in this plot and the projected data points are the filled circles. The 
solution to the multivariate receptor modelling problem can now be seen as finding three 
points that represent the source compositions that form a triangle that encloses the data 
points and lie in the first quadrant, thus guaranteeing the nonnegativity constraints are 
satisfied. The edge-finding algorithm developed for Unmix is completely general and can be 
applied to any set of points in a space of arbitrary dimension. Unmix itself can be applied to 
any problem in which the data are a convex combination of underlying factors. The only 
restriction is that the data must be strictly positive. 
Some special features of Unmix are the capability to replace missing data and the ability to 
estimate large numbers of sources (the current limit is 15) using duality concepts applied to 
receptor modelling (Henry, 2005). Unmix also estimates uncertainties in the source 
compositions using a blocked bootstrap approach that takes into account serial correlation 
in the data.  
 

 
 
Fig. 1. Plot of three sources and three species case: the grey dots are the raw data projected 
to a plane, and the solid black dots are the projected points that have one source missing 
(edge points) 
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2.2 Positive Matrix Factorization (PMF) 
Positive Matrix Factorization (PMF) has been shown to be a powerful receptor modelling 
tool and has been commonly applied to particulate matter data (Song et al., 2001; Pollisar et 
al., 2001; Chuenita et. al., 2000) and recently to VOC (volatile organic compounds) data 
(Elbir et al., 2007; Song et al., 2008). To ensure that receptor modelling tools are available for 
use in the development and implementation of air quality standards, the United States 
Environmental Protection Agency’s Office of Research and Development has developed a 
version of PMF with the name of EPA PMF1.1 that is freely available (Eberly, 2005). 
PMF solves the general receptor modelling equation using a constrained, weighted, least-
squares approach (Paatero, 1993; Paatero and Tapper, 1993; Paatero and Tapper, 1994, 
Paatero, 1997; Paatero, 1999; Paatero, et. al., 2005; Paatero and Hopke, 2003). The general 
model assumes there are p sources, source types or source regions (termed factors) 
impacting a receptor, and linear combinations of the impacts from the p factors give rise to 
the observed concentrations of the various species. 
The model can be written as 
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where ijx is the concentration at the receptor for the j-th species on the i-th sample, ikg  is the 
contribution of the k-th factor to the receptor on the i-th sample, kjf is the fraction of k factor 
that is species j or chemical composition profile of factor k and ije is the residual for the j-th 
species on the i-th sample. The objective of PMF is to minimize the sum of the squares of the 
residuals weighted inversely with error estimates of the data points. Furthermore, PMF 
constrains all of the elements of G and F to be non-negative. The task of PMF analysis can 
thus be described as to minimize Q, which is defined as 
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where ijs is uncertainty of the j-th species measured in i-th sample. 
In this study the robust mode has been used for analyzing element concentrations in bulk 
atmospheric deposition data set. The robust mode was selected to handle outlier values (that 
is any data that significantly deviates from the distribution of the other data in the data 
matrix) meaning that outliers are not allowed to overly influence the fitting of the 
contributions and profiles. This can be achieved by a technique of iterative reweighing of the 
individual data values, thus, the least-squares formulation becomes to 
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The parameter  is called the outlier threshold distance and the value 4  was used in this 
analysis. One of the most important advantages of PMF is the ability to handle missing and 
below detection limit data by adjusting the corresponding error estimates. In this analysis 
missing values were replaced with the geometrical mean of the measured concentrations for 
each chemical species, and large error estimates were used for them. 

 
2.3. Potential Source Contribution Function (PSCF) 
The potential source contribution function (PSCF) was originally presented by Ashbaugh et. 
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where [ ]ijP A is a measure of the residence time of a randomly selected air parcel in the ij-th 
cell relative to the total time period. In the same ij cell there is a subset of ijm  segment 
endpoints for which the corresponding trajectories arrive at the receptor site at the time 
when the measured concentration are higher than a pre-specified criterion value. The choice 
of this criterion values has usually based on trial and error and in many applications, the 
mean value of the measured concentration was used. In some publications the use of the 
60th and 75th percentile criterion produced results that appeared to correspond better with 
known emission source locations. Thus, the probability of this high concentration event  is 
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where [ ]ijP B  is subset probability related to the residence time of air parcel in the ij-th cell 
for the contaminated air parcel. Finally, the potential source contribution function is defined 
as 
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2.2 Positive Matrix Factorization (PMF) 
Positive Matrix Factorization (PMF) has been shown to be a powerful receptor modelling 
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version of PMF with the name of EPA PMF1.1 that is freely available (Eberly, 2005). 
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squares approach (Paatero, 1993; Paatero and Tapper, 1993; Paatero and Tapper, 1994, 
Paatero, 1997; Paatero, 1999; Paatero, et. al., 2005; Paatero and Hopke, 2003). The general 
model assumes there are p sources, source types or source regions (termed factors) 
impacting a receptor, and linear combinations of the impacts from the p factors give rise to 
the observed concentrations of the various species. 
The model can be written as 
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where ijs is uncertainty of the j-th species measured in i-th sample. 
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atmospheric deposition data set. The robust mode was selected to handle outlier values (that 
is any data that significantly deviates from the distribution of the other data in the data 
matrix) meaning that outliers are not allowed to overly influence the fitting of the 
contributions and profiles. This can be achieved by a technique of iterative reweighing of the 
individual data values, thus, the least-squares formulation becomes to 
 

     
2

1 1

n m
ij

i j ij ij

e
Q

h s 

 
   

 
          (4) 

where  

 





  


2
1 if / ,

/ / otherwise

ij ij

ij

ij ij

e s
h

e s
 

 
The parameter  is called the outlier threshold distance and the value 4  was used in this 
analysis. One of the most important advantages of PMF is the ability to handle missing and 
below detection limit data by adjusting the corresponding error estimates. In this analysis 
missing values were replaced with the geometrical mean of the measured concentrations for 
each chemical species, and large error estimates were used for them. 
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of the potential source contribution function can be described as follows: if a trajectory end 
point lies at a cell of address (i, j), the trajectory is assumed to collect material emitted in the 
cell. Once aerosol is incorporated into the air parcel, it can be transported along the 
trajectory to the receptor site. The objective is to develop a probability field suggesting likely 
source locations of the material that results in high measured values at the receptor site.  
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segment trajectory endpoints fall into the ij-th cell (represented by ijn ) the probability of this 
event  is given by  
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where [ ]ijP A is a measure of the residence time of a randomly selected air parcel in the ij-th 
cell relative to the total time period. In the same ij cell there is a subset of ijm  segment 
endpoints for which the corresponding trajectories arrive at the receptor site at the time 
when the measured concentration are higher than a pre-specified criterion value. The choice 
of this criterion values has usually based on trial and error and in many applications, the 
mean value of the measured concentration was used. In some publications the use of the 
60th and 75th percentile criterion produced results that appeared to correspond better with 
known emission source locations. Thus, the probability of this high concentration event  is 
given by  
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where [ ]ijP B  is subset probability related to the residence time of air parcel in the ij-th cell 
for the contaminated air parcel. Finally, the potential source contribution function is defined 
as 
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where PSCF is the conditional probability that an air parcel which passed through the ij -th 
cell had a high concentration upon arrival at the receptor site. A sufficient number of 
endpoints should provide accurate estimates of the source location. Cells containing 
emission sources would be identified with conditional probability close to 1, if the 
trajectories that have crossed over the cells effectively transport the emitted contaminant to 
the receptor site. One can draw the conclusion that PSCF model provides a map of source 
potential of geographical areas, but it can not apportion the contribution of the identified 
source area to the measured concentration at the receptor site. Thus, the potential source 
contribution function can be interpreted as a conditional probability describing the spatial 
distribution of probable geographical source locations inferred by using trajectories arriving 
at the sampling site. Cells related to the high values of potential source contribution function 
are the potential source areas. However, the potential source contribution function maps do 
not provide an emission inventory of a pollutant but rather show those source areas whose 
emissions can be transported to the measurement site. To reduce the effect of small values of 
nij, an arbitrary weight function W(nij) is multiplied into the PSCF value to better reflect the 
uncertainty in the values for these cells.  

 
2.4. Concentration Weighted Trajectory (CWT) 
In the current PSCF method, grid cells having the same PSCF values can result from samples 
of slightly higher than the criterion concentrations or extremely high concentrations. As a 
result, larger sources can not be distinguished from moderate sources. According to this 
problem, a method of weighting trajectories with associated concentrations (CWT - 
concentration weighted trajectory) was developed (Hsu et. al, 2003). In this procedure, each 
grid cell gets a weighted concentration obtained by averaging sample concentrations that 
have associated trajectories that crossed that grid cell as follows:  
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ijC is the average weighted concentration in the grid cell (i,j), lC  is the measured PM 

concentration observed on arrival of trajectory l , ijl  is the number of trajectory endpoints 
in the grid cell (i,j) associated with the lC  sample, and M  is the total number of trajectories. 
Similar to PSCF model, a point filter is applied as the final step of CWT to eliminate grid 
cells with few endpoints. Weighted concentration fields show concentration gradients across 
potential sources. This method helps determine the relative significance of potential sources.  

 

 

3. Experimental Methods and Procedures 

3.1 Studies Sites and Sampling 
Sampling of particulate matter PM10 and PM2.5 started in the very urban area of Belgrade in 
June 2002 and has continued afterwards. Belgrade, (Hs = 117 m, 0 '44 44  N and 

0 '20 27  E) the capital of Serbia, with about 2 million inhabitants, is situated at the 
confluence of the Sava and Danube rivers. The sampling site was the platform above the 
entrance steps to the Faculty of Veterinary Medicine (FVM) at a height of about 4 m from the 
ground, 5 m away from a street with heavy traffic and close to the big Autokomanda 
junction with the main state highway. This point can be considered as traffic-exposed. 
During the sampling, meteorological parameters including temperature, relative humidity, 
rainfall, wind direction and speed were provided by the Meteorological Station of the 
Hydro-Meteorological Institute of the Republic of Serbia located inside the central urban 
area, very close (  200 m) to the Autokomanda sampling site. 
Suspended particles were collected on preconditioned and pre-weighed Pure Teflon filters 
(Whatman, 47 mm diameter, 2 µm pore size) and Teflon-coated Quartz filters (Whatman, 47 
mm diameter) using two MiniVol air samplers (Airmetrics Co. Inc., 5 l min-1 flow rate) 
provided with PM10 and PM2.5 cutoff inlets. Particulate matter mass concentration was 
determined by weighting of the filters using a semi-micro balance (Sartorius, R 160P), with a 
minimum resolution of 0.01 mg. Loaded and unloaded filters (stored in Petri dishes) were 
weighed after 48 hours conditioning in a desiccator, in the clean room at a relative humidity of 
45-55% and a temperature of 20 ± 2 C. Quality assurance was provided by simultaneous 
measurements of a set of three ‘‘weigh blank’’ filters that were interspersed within the pre- 
and post- weighing sessions of each set of sample filters and the mean change in “weigh 
blank” filter mass between weighing sessions was used to correct the sample filter mass 
changes. After completion of gravimetric analysis, PM samples were digested in 0.1 N HNO3 
on an ultrasonic bath. An extraction procedure with dilute acid was used for the evaluation of 
elements which can become labile depending on the acidity of the environment. This 
procedure gives valid information on the extractability of elements, since the soluble 
components in an aerosol are normally dissolved by contact with water or acidic solution in 
the actual environment. Details on sampling procedures and PM analysis are given in detail 
elsewhere (Rajšić et al., 2004; Tasić et al., 2005; Rajšić et al., 2008, Mijić et. al., 2009). 
The bulk deposition (BD) collection was performed using an open polyethylene cylinder (29 
cm inner diameter and 40 cm height) fitted on a stand at about 2 m above the ground. The 
devices collected both rainwater and the fallout of particles continuously for one month 
periods from June 2002 to December 2006 at FVM site. The collection bottles were filled 
before each sampling period with 20 ml of 10% acidified (HNO3 65% (Suprapure, Merck) 
ultra pure water. Precautions were taken to avoid contamination of samples in both the field 
and laboratory. Details on studied sites and sampling procedures are given by Tasić et al 
(2008; 2009). 
The elemental composition (Al, V, Cr, Mn, Fe, Ni, Cu, Zn, Cd, and Pb) of the aerosol 
samples and bulk deposition, was measured by the atomic absorption spectroscopy (AAS) 
method. Depending on concentration levels, samples were analyzed for a set of elements by 
flame (FAAS) (Perkin Elmer AA 200) and graphite furnace atomic absorption spectrometry 
(GFAAS) using the transversely-heated graphite atomizer (THGA; Perkin Elmer AA 600) 
with Zeeman-effect background correction. 
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where PSCF is the conditional probability that an air parcel which passed through the ij -th 
cell had a high concentration upon arrival at the receptor site. A sufficient number of 
endpoints should provide accurate estimates of the source location. Cells containing 
emission sources would be identified with conditional probability close to 1, if the 
trajectories that have crossed over the cells effectively transport the emitted contaminant to 
the receptor site. One can draw the conclusion that PSCF model provides a map of source 
potential of geographical areas, but it can not apportion the contribution of the identified 
source area to the measured concentration at the receptor site. Thus, the potential source 
contribution function can be interpreted as a conditional probability describing the spatial 
distribution of probable geographical source locations inferred by using trajectories arriving 
at the sampling site. Cells related to the high values of potential source contribution function 
are the potential source areas. However, the potential source contribution function maps do 
not provide an emission inventory of a pollutant but rather show those source areas whose 
emissions can be transported to the measurement site. To reduce the effect of small values of 
nij, an arbitrary weight function W(nij) is multiplied into the PSCF value to better reflect the 
uncertainty in the values for these cells.  
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in the grid cell (i,j) associated with the lC  sample, and M  is the total number of trajectories. 
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cells with few endpoints. Weighted concentration fields show concentration gradients across 
potential sources. This method helps determine the relative significance of potential sources.  
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45-55% and a temperature of 20 ± 2 C. Quality assurance was provided by simultaneous 
measurements of a set of three ‘‘weigh blank’’ filters that were interspersed within the pre- 
and post- weighing sessions of each set of sample filters and the mean change in “weigh 
blank” filter mass between weighing sessions was used to correct the sample filter mass 
changes. After completion of gravimetric analysis, PM samples were digested in 0.1 N HNO3 
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elements which can become labile depending on the acidity of the environment. This 
procedure gives valid information on the extractability of elements, since the soluble 
components in an aerosol are normally dissolved by contact with water or acidic solution in 
the actual environment. Details on sampling procedures and PM analysis are given in detail 
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The bulk deposition (BD) collection was performed using an open polyethylene cylinder (29 
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3.2 Scanning Electron Microscopy 
Scanning electron microscopy (SEM) coupled with Energy-Dispersive X-ray analysis (EDX) 
was used for the characterization (size, size distribution, morphology and chemistry of 
particles) of suspended atmospheric particulate matter in order to improve source 
identification (US-EPA, 2002).  
Approximately 0.5x0.5 cm2 of the quartz filter was cut off and mounted onto an copper SEM 
stub using carbon conducting tap and then coated with a thin gold film (<10 nm) using JFC 
1100 ion sputterer in order to get a higher quality secondary electron image. The 
measurements were carried out by the JEOL 840A instrument with INCAPentaFETx3 
energy dispersive X-ray microanalyzer at the Faculty of Physics, Belgrade. The electron 
beam energy was 0-20 keV, probe current of the order of 100 A and magnification up to 10 
000. Analyzing SEM images we determined the particle size distribution in relation to 
heating and non-heating period. Further more, shape factor (SF) defined as 

    24 ASF
P

        (9) 

where, A is the particle area and P is the particle perimeter was determined. The perimeter 
refers to the circumference of the projected area and the area refers to the projected area of a 
particle. Both parameters are derived from SEM images. For a perfect circle SF equals one, 
and SF decreases as the circle is more and more distorted (for example SF equal to 0.785 for 
square like and 0.436 for oblong). The SF was determined for all particles analyzed and SF-
size distributions were established based on these data. Shape factor distribution can reveal 
the dominant shape groups of the particles and thus contribute to identification of source 
emission. 

 
3.3 Receptor Models Application 
In the current study, the Unmix model and PMF have been used to analyze a 2-years PM2.5 
data set and 5-years element bulk depositions respectively for source apportionment 
purpose. The analysis generated source profiles and overall percentage source contribution 
estimates for source categories.  
Demonstration of PSCF and CWT usage was presented on five years PM10 data set (2004-
2008) continuously recorded by the Institute of Public Health of Belgrade and Trajstat 
software (Wang et al., 2008). The PSCF value can be interpreted as the conditional 
probability that the PM concentrations greater than the criterion level (in this case PM 
average value for the investigated period) are related to the passage of air parcels through 
the ij-th cell during transport to the receptor site. Cells with high PSCF values are associated 
with the arrival of air parcels at the receptor site that have concentrations of the PM higher 
than the criterion value. These cells are indicative of areas of high potential contributions for 
the PM. Air masses back trajectories were computed by HYSPLIT (HYbrid Single Particle 
Lagrangian Integrated Trajectory) model (Draxler, 2010; Rolph, 2010) throw interactive 
READY system. Backward trajectories started at different heights traverse different 
distances and pathways. For longer range transport (>24h), trajectories that started at 
different heights may vary significantly. If this occurs, PSCF modelling results might also be 
different. Daily back trajectories were evaluated for 2 days and different heights (m) above 
ground level (300, 500, 1000, 1500, 2000, 3000). The grid covers area of interest with cells 
0.50x0.50 latitude and longitude.  
 

 

4. Results and Discussion 

4.1 Unmix Model – PM2.5  
Descriptive statistic for daily mass and trace element concentrations in PM2.5 sampled in 
urban Belgrade, during the period from June 2003 through July 2005, is given in details by 
Rajšić et al (2008). Unmix receptor model was run with 50 observations of 10 input variables 
(Al, V, Cr, Mn, Fe, Ni, Cu, Zn, Cd, and Pb). Three factors were chosen as the optimum 
number for the Unmix model, details of which are discussed as follows. The element 
profiles of the sources for PM 2.5 are given in Table 1. 
The first profile extracted by Unmix is the fossil fuel combustion source having the high 
loadings of Ni and V, which are the fingerprint elements for fuel oil burning. It also includes 
high loadings of Cu and Cr which are also characteristics of emissions by vehicles using 
diesel fuel and local industry. This source most probably reflects urban region where 
residual oils are common fuels for utility and industrial sources and it has average 
contribution of 40%.  
The second Unmix profile has high loadings of Cd that is typical for emission of high 
temperature combustion processes such as metallurgical industry and fossil fuel 
combustion. This factor having also low loadings of Fe accounts for 13% of the total and can 
be indicated as industry source. 
The third Unmix profile is dominated by Al, Zn, Fe, Mn and Cr with average contribution of 
47%. Its bulk matrix is soil, while correlations with other metals indicate some other sources, 
such as tire treat, brake-drum abrasion etc. This factor is interpreted as resuspended road 
dust, which includes soil dust mixed with traffic related particles.  
Scatter-plots of measured and Unmix predicted PM2.5 element (Zn, Mn, Al, Cd) 
concentrations are presented in Fig. 2. The correlation coefficients are in the range of 0.7-
0.94. The results of Unmix modelling on PM2.5 samples indicate that resuspended road dust 
and fossil fuel combustion play the most significant role. 
 

  
Fossil fuel 

combustion 
Metallurgical 

industry 
Resuspended 

road dust 
Pb 5.36 1.53 16.70 
Cu 30.10 0 0 
Zn 60.40 0 1900 
Mn 2.97 0 13.40 
Fe 0 288 852 
Cd 0 0.75 0.02 
Ni 72.60 0 0 
V 69.30 0 0 
Al 0 0 1740 
Cr 3.00 0 2.07 

Table 1. The element profile of the sources for PM2.5 resolved by Unmix  
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diesel fuel and local industry. This source most probably reflects urban region where 
residual oils are common fuels for utility and industrial sources and it has average 
contribution of 40%.  
The second Unmix profile has high loadings of Cd that is typical for emission of high 
temperature combustion processes such as metallurgical industry and fossil fuel 
combustion. This factor having also low loadings of Fe accounts for 13% of the total and can 
be indicated as industry source. 
The third Unmix profile is dominated by Al, Zn, Fe, Mn and Cr with average contribution of 
47%. Its bulk matrix is soil, while correlations with other metals indicate some other sources, 
such as tire treat, brake-drum abrasion etc. This factor is interpreted as resuspended road 
dust, which includes soil dust mixed with traffic related particles.  
Scatter-plots of measured and Unmix predicted PM2.5 element (Zn, Mn, Al, Cd) 
concentrations are presented in Fig. 2. The correlation coefficients are in the range of 0.7-
0.94. The results of Unmix modelling on PM2.5 samples indicate that resuspended road dust 
and fossil fuel combustion play the most significant role. 
 

  
Fossil fuel 

combustion 
Metallurgical 

industry 
Resuspended 

road dust 
Pb 5.36 1.53 16.70 
Cu 30.10 0 0 
Zn 60.40 0 1900 
Mn 2.97 0 13.40 
Fe 0 288 852 
Cd 0 0.75 0.02 
Ni 72.60 0 0 
V 69.30 0 0 
Al 0 0 1740 
Cr 3.00 0 2.07 

Table 1. The element profile of the sources for PM2.5 resolved by Unmix  
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Fig. 2. Unmix resolved source contribution in PM2.5 
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Fig. 3. Scatter-plots of measured and Unmix predicted PM2.5 element concentrations  

 
4.2 PMF - Total Deposition 
A total of 53 atmospheric deposit samples were collected monthly from June 2002 to 
December 2006 at FVM site, and element (Al, V, Cr, Mn, Fe, Ni, Cu, Zn, Cd, and Pb) 
monthly fluxes were calculated. The statistical results of monthly element bulk deposition 
fluxes (BD), annual bulk deposition fluxes and seasonal variation are presented in detail by 
Tasić et al (2009). For source apportionment purpose, the PMF model was applied on 
element BD data set and resulted in six factors which have been identified as possible 
sources. The identified source profiles and time series plots of estimated monthly 
contributions for bulk depositions are presented on Fig 4. 
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Fig. 3. Scatter-plots of measured and Unmix predicted PM2.5 element concentrations  

 
4.2 PMF - Total Deposition 
A total of 53 atmospheric deposit samples were collected monthly from June 2002 to 
December 2006 at FVM site, and element (Al, V, Cr, Mn, Fe, Ni, Cu, Zn, Cd, and Pb) 
monthly fluxes were calculated. The statistical results of monthly element bulk deposition 
fluxes (BD), annual bulk deposition fluxes and seasonal variation are presented in detail by 
Tasić et al (2009). For source apportionment purpose, the PMF model was applied on 
element BD data set and resulted in six factors which have been identified as possible 
sources. The identified source profiles and time series plots of estimated monthly 
contributions for bulk depositions are presented on Fig 4. 
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Fig. 6. Time series plot of observed and PMF predicted element bulk deposition in Belgrade 
  
The first factor dominated by Fe, Zn, Al, V and Cd accounted for 15% of the total variance 
and can be attributed to crustal dust contaminated with traffic related particles. Fe and Al 
are typical crustal elements; Zn is also one of the most common elements in the Earth crust. 
The second factor with high loadings of Al, Zn, Mn, Cu and Pb is related to non ferrous 
metal industry with contribution of 14%. The third factor resolved from the BD data is 
attributed to traffic exhaust source mostly loaded with Pb, V and Cd with overall 
contribution of 12 %. Pb probably comes from exhaust emission, since road vehicles use 
loaded gasoline or diesel fuel while Cd is related to fossil fuel combustion. The fourth factor 

 

characterized by Cr, Cu, Cd, Mn and V. The greatest influence of Cr, can be attributed to the 
emission from fossil fuel combustion, probably mostly coal combustion. Manganese, typically 
dominated by crustal contributions, has been identified in the atmosphere from fossil fuel 
combustion and industrial emission sources as well. Emissions of chromium are mostly 
associated with particles emitted when burning fossil fuels, which includes power stations, 
cars and trucks. The emissions largely depend on the chromium content of the fuel, which 
varies with both the fuel type and source. Specific sources of chromium include metal smelting 
and foundries, cement production, etc. This factor contributes with 19% to the total data set. 
The fifth factor has high loadings of Ni and V, which are the fingerprint elements for fuel oil 
burning and most probably reflects urban region where residual oils are common fuels for 
utility and industrial sources. This factor associated to heavy oil burning has contribution of 
14%. The sixth factor dominated by Fe, Mn, Cu, Zn, Pb, Cd and Cr has contribution of 26%. Fe 
and Mn are typical crustal elements, which may have been present in dust resuspended by 
traffic; Pb, Zn, and Cu are indicator elements of traffic emission; Cu, Fe and Zn are present in 
resuspended brake wear particles; Fe is also related to heavy-duty diesel emissions; the high 
Mn concentrations are related to motor vehicles that burn gasoline with the Mn additive. This 
factor was identified as resuspended road dust.  

 
4.3 PSCF and CWT Results 
Additional insights into the nature of the identified Unmix PM sources are provided 
through a trajectory based evaluation of the upwind locations associated with high 
concentrations of these sources. Five year PM10 data set (2004-2008) has been used in PSCF 
and CWT modelling. PM10 data were separated for summer and winter period, and then 
divided into the two groups, greater and lower of average values for specific period. 
Calculated PSCF values were subdivided into four categories: very weak (0.0–0.20), weak 
(0.20–0.40), intermediate (0.40–0.60) and strong (0.60–1.0). The results of PSCF are presented 
in Fig 7 (left). Based on the analysis of the whole trajectory data set, the most frequently 
arriving directions are west, north-west and south-west thus suggesting the sampling site 
might be under influence of several source regions. It can be seen that the highest PSCF 
values are from the west during summer period as well as during winter period. In 
addition, higher PSCF values are observed from north and south-east during winter period.  
The CWT method evenly distributes concentration along the trajectories similar to PSCF as 
presented on Fig. 7 (right). However, this method has an advantage over PSCF in that CWT 
distinguishes major sources from moderate ones by calculating concentration gradients. 
PSCF shows probabilities of potential sources based on samples with concentrations higher 
than the criterion, which does not distinguish between moderate and major sources. The 
results suggest that the major contribution to atmospheric PM10 concentrations comes from 
local and regional sources. There is evident a long – range transport from western countries 
which is sporadically (mostly in spring and summer) associated with African dust outbreaks 
in levels of both PM10 and PM2.5 (Kubilay et al., 2000; Perez et al., 2008). 
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Fig. 6. Time series plot of observed and PMF predicted element bulk deposition in Belgrade 
  
The first factor dominated by Fe, Zn, Al, V and Cd accounted for 15% of the total variance 
and can be attributed to crustal dust contaminated with traffic related particles. Fe and Al 
are typical crustal elements; Zn is also one of the most common elements in the Earth crust. 
The second factor with high loadings of Al, Zn, Mn, Cu and Pb is related to non ferrous 
metal industry with contribution of 14%. The third factor resolved from the BD data is 
attributed to traffic exhaust source mostly loaded with Pb, V and Cd with overall 
contribution of 12 %. Pb probably comes from exhaust emission, since road vehicles use 
loaded gasoline or diesel fuel while Cd is related to fossil fuel combustion. The fourth factor 

 

characterized by Cr, Cu, Cd, Mn and V. The greatest influence of Cr, can be attributed to the 
emission from fossil fuel combustion, probably mostly coal combustion. Manganese, typically 
dominated by crustal contributions, has been identified in the atmosphere from fossil fuel 
combustion and industrial emission sources as well. Emissions of chromium are mostly 
associated with particles emitted when burning fossil fuels, which includes power stations, 
cars and trucks. The emissions largely depend on the chromium content of the fuel, which 
varies with both the fuel type and source. Specific sources of chromium include metal smelting 
and foundries, cement production, etc. This factor contributes with 19% to the total data set. 
The fifth factor has high loadings of Ni and V, which are the fingerprint elements for fuel oil 
burning and most probably reflects urban region where residual oils are common fuels for 
utility and industrial sources. This factor associated to heavy oil burning has contribution of 
14%. The sixth factor dominated by Fe, Mn, Cu, Zn, Pb, Cd and Cr has contribution of 26%. Fe 
and Mn are typical crustal elements, which may have been present in dust resuspended by 
traffic; Pb, Zn, and Cu are indicator elements of traffic emission; Cu, Fe and Zn are present in 
resuspended brake wear particles; Fe is also related to heavy-duty diesel emissions; the high 
Mn concentrations are related to motor vehicles that burn gasoline with the Mn additive. This 
factor was identified as resuspended road dust.  

 
4.3 PSCF and CWT Results 
Additional insights into the nature of the identified Unmix PM sources are provided 
through a trajectory based evaluation of the upwind locations associated with high 
concentrations of these sources. Five year PM10 data set (2004-2008) has been used in PSCF 
and CWT modelling. PM10 data were separated for summer and winter period, and then 
divided into the two groups, greater and lower of average values for specific period. 
Calculated PSCF values were subdivided into four categories: very weak (0.0–0.20), weak 
(0.20–0.40), intermediate (0.40–0.60) and strong (0.60–1.0). The results of PSCF are presented 
in Fig 7 (left). Based on the analysis of the whole trajectory data set, the most frequently 
arriving directions are west, north-west and south-west thus suggesting the sampling site 
might be under influence of several source regions. It can be seen that the highest PSCF 
values are from the west during summer period as well as during winter period. In 
addition, higher PSCF values are observed from north and south-east during winter period.  
The CWT method evenly distributes concentration along the trajectories similar to PSCF as 
presented on Fig. 7 (right). However, this method has an advantage over PSCF in that CWT 
distinguishes major sources from moderate ones by calculating concentration gradients. 
PSCF shows probabilities of potential sources based on samples with concentrations higher 
than the criterion, which does not distinguish between moderate and major sources. The 
results suggest that the major contribution to atmospheric PM10 concentrations comes from 
local and regional sources. There is evident a long – range transport from western countries 
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         b) 
Fig. 7. Distribution of PSCF (left) and CWT (right) for PM10 during a) summer and b) winter 
period 2004-2008. 
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scanning electron microscopy coupled with energy-dispersive X-ray analysis. Particles were 
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and composition (determined by qualitative EDS analysis). Tens photomicrographs were 
arbitrarily taken under low resolution conditions and about 500 particles per PM sample 
were assessed for morphology and about 30 particles for the X-ray spectral analysis. 
As the result of SEM images analysis particle size and shape distributions were determined 
for non-heating and heating periods and presented on Fig. 8.  
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Fig. 8. Particle size distribution and shape factor of PM2.5 samples in the a) non-heating and 
b) heating period. 
 
The particle size distribution spans wider in the heating period than in the non-heating 
period with more coarse mean size value. Mean size value observed during heating period 
is 1.32 m with standard deviation of 0.52 m, while mean size value observed during non-
heating period is 0.44 m with standard deviation of 0.27 m. Particles shape group with SF 
close to 1 (sphere like shape) obviously increase during the heating period and in the non-
heating period more particles are square like. According to the morphology, two main 
particle categories were observed: particles of natural sources that include materials of 
organic origin (pollen, bacteria, fungal spores etc.) and anthropogenic particles. 
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Fig. 9. SEM images of characteristic aerosol particles shape and corresponding X-ray spectra 
in Belgrade: (a) sphere; (b) soot agglomerate; (c) irregular; d) stick 
 
This category also includes suspended soil dust (mostly minerals) such as the angular-
shaped material. Particles from anthropogenic sources, mostly emitted from high 

d) 

c) 

b) 

a) 

 

temperature combustion processes are characterized by their spherical shapes and smooth 
surfaces. This type of particles occurs as individual particles but also in an aggregate form, 
as agglomerates of similar-sized particles and individual large particles carrying several 
smaller attached particles (Tasić et al., 2006). 
The elemental composition of selected particles in the secondary electron images was 
deduced from an energy dispersive X-ray spectrum in the energy range of 0 – 20 keV, 
collected from the selected particles for a spectrum acquisition time of 100 s. The elements 
observed were: Al, Si, C, S, N, Cl, P, K, Ca, Na, Mg, Cr, Fe, Cu, Zn, Ni, Cd, As, Ti, Te, Sr, F 
and V. The presence of Au lines on all spectra is due to Au coated samples. The SEM 
photomicrographs of some characteristic particles and their X-ray spectra are presented in 
Fig. 9 (a, b, c, d). 
Rounded particles of complex compositions were interpreted as anthropogenic ‘fly ash’ 
particles, formed by high-temperature combustion processes. In most of the samples 
analysed, the spherical particles were mainly composed of Al-silicates and oxides of Fe, Zn, 
Cu, Ni, Pb, Ti. (Fig.9a). 
Carbonaceous particles have been known to make up 50% of the aerosol in urban areas 
(Pandis et al., 1995) and principally consist of soot aggregates with irregular morphology of 
various shapes (Fig. 9b). Soot is present as agglomerates of many fine spherical primary 
particles originating mainly from petrol and diesel exhausts and contain C, O, Na, Si, Al, Cu, 
Zn, Sr, Ba, and Ti.  
The most of silica particles (probably Si oxides) and aluminosilicates (containing Al, Si, K, 
Ca, Fe, F and Na) present in the coarse fractions have irregular forms and come from soil 
(Fig. 9c). 
Sulphates are characterized by a strong S line in the X-ray spectrum and mostly by the 
presence of Ca, or Fe, Pb and K. These particles are formed as a result of the reaction in the 
atmosphere between sulphur compounds and other substances. Sulphate clusters, often 
with sharp edges are mainly composed of Ca sulphates.  
Many particles, which could not be classified into one of these groups, in the coarse particle 
range, were mixed aggregates, irregularly shaped, consisting of soil and road dust: Si, Al 
with minor constituents such as C, Ca, Ba, K, Zn, Cu, Te, F and Sr, (Fig.9d). 

 
5. Conclusion 

In the field of atmospheric sciences receptor models aim to re-construct the impacts of 
emissions from different sources of atmospheric pollutants based on ambient data measured 
at the monitoring sites. The information provided by receptor models is key to the design of 
effective mitigation strategies of the pollutant on the local and meso-scale. In addition, many 
epidemiological and health-related studies used the results obtained by receptor modelling. 
Because of widespread need there is growing information available on receptor modelling 
results from different countries, the type of models applied and the input data utilised. 
Short review of most popular receptor models used in source apportionment studies was 
presented in this paper.  
Several receptor models (Unmix, PMF, PSCF, CWT) were applied to PM data set and bulk 
deposition fluxes in Belgrade urban area for pollution source apportionment. The Unmix 
model identified three sources of particulate matter PM2.5: fossil fuel combustion (40%), 
metallurgical industry (13%) and resuspended road dust (47%). PSCF method indicates that 
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the most frequently arriving directions of PM10 transport are west, north-west and south-
west thus suggesting the sampling site might be under influence of several source regions 
while the results of CWT analysis suggest that the major contribution to atmospheric PM10 
concentrations comes from local and regional sources. The PMF analysis on bulk deposition 
fluxes resolved six sources: crustal dust, non ferrous industry, traffic exhaust, fossil fuel 
combustion and oil combustion. 
Both methods, Unmix and PMF followed by characterization of individual particles by 
SEM/EDX analysis suggested that the road traffic, fossil fuel combustion and industry are 
the major sources of heavy metals in the Belgrade urban atmosphere.  
Receptor models, of both the mathematical (PMF and Unmix) and trajectory (PSCF and 
CWT) types promise to be helpful tools for source attribution for atmospheric pollution 
(PM2.5 and BD). The mathematical techniques objectively identify sources of influence on the 
data, but a good deal of subjective judgment is inevitably required in the interpretation of 
what these identified sources actually represent. The ensemble trajectory techniques 
produce only qualitative indications of predominant transport patterns and can be highly 
sensitive to the subjective metrics calculated from the gridded results. 
The future direction should be related to the investigation of compatibility between receptor 
models and combination of back trajectory modelling with source apportionment analysis in 
order to improve the understanding of source receptor relationships, the confidence in the 
individual model results, and develop a better understanding of the underlying aerosol 
data. Models such as PMF, ME and Unmix are able to provide uncertainty estimates by 
applying a bootstrapping method. Such uncertainty estimations should thus be applied in 
future source apportionment studies. 
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