
Developing an Object-Oriented Framework for Solving Problems Using Ant

Colony Optimization

RAKA JOVANOVIC MILAN TUBA DANA SIMIAN

 Institute of Physics Faculty of Mathematics Department of Computer Science

 Belgrade University of Belgrade Lucian Blaga University of Sibiu

 Pregrevica 118, Zemun Studentski trg 16 5-7 dr. I. Ratiu str.

 SERBIA SERBIA ROMANIA

 rakabog@yahoo.com tubamilan@ptt.rs d_simian@yahoo.com

Abstract: - This paper describes a robust Object-Oriented C# framework for developing Ant colony systems that we

have developed. Our framework is named GRAF-ANT (Graphical Framework for Ant Colony Optimization) and we

present in detail the design guide-lines of developing GRAF-ANT and implemented features. We solved several

important problems: implementation of individual ants, or ant colonies, connection between visualization and problem

space, leaving the opportunity for hybridization of ACO (Ant Colony Optimization), creation of a multithread
application in which multiple ant colonies can communicate, creation of a graphical user interface (GUI) that could be

used for a variety of problems. We also present a concept of escaping ACO stagnation in local optima, named

suspicious path destruction, that is a part of GRAF-ANT. We also analyze the effect of this hybridization on different
variations of Ant colony systems.

Key-Words: - Ant colony system, Evolutionary computing, C# Framework, Optimization

1 Introduction
A large number of problems necessary to be solved by
industry and business are in there source combinatorial.

Problems like truck routing, facility positioning,

production scheduling, fall into this group and in some
cases they are even NP-complete. There are no known

algorithms for finding the optimal solution of NP-

complete problems in polynomial time[1]. When solving
these problems in real life situations, like production

planning, it is not necessary to have the best overall

solution but a near optimum is adequate in many cases.

A large number of different methods for finding near

optima solutions exist, like the use of simple heuristics,

a Monte Carlo approach up to more complex methods

like Genetic algorithms(GA)[2][3][12] and Simulated
annealing(SA)[6]. The observation of ant colony

behavior has inspired a metaheuristic method called the

Ant Colony Optimization (ACO) [4], which has in some
cases given better results than GA and SA [7] especially

in dynamic systems.

 A large number of different problems have been

solved by using ACO, and in most of the cases new

specialized software was created for this. Some software

implementations of this type like ACOTSP, ANTNET,

GUIAnt-Miner with their source are available under a

General Public License (GPL). They can be used as

guide lines for creating new specialized software. They
can even be modified for new problems, but in most

cases it is easier to create completely new software.

ANT-C is framework developed in the C that could be

used as a base for new applications, but has a significant

drawback of not being object oriented. An Object

oriented framework created in Java by Ugo Chirico
(Java Framework for Ant Colony Systems JFACS) is a

better solution but has some major disadvantages. There

is no available graphical user interface (GUI) and the

concept of threading is implemented by attaching

different ants to threads instead of the more efficient

approach of multiple ant colonies systems.

 In this paper we present a new object oriented

framework for ant colony systems (Graphical

Framework for Ant Colony Optimization GRAF-ANT)

that we developed in C#. It solves some of the existing
problems of developing new ACO algorithms. This

paper is organized as follows. In Section 2 we show the

basics behind the AC algorithm. In Section 3 we give
the guidelines for creating abstractions that are needed

for this type of framework. In Section 4 we explain hy-

bridization implemented in GRAF-ANT that is used for

escaping from ACO stagnation. In the final Section 5 we

show results of using the hybridization from section 4.

2 Ant Colony Optimization
The basic idea of ACO is to imitate the behavior of ants

in a colony while gathering food. Each ant starts from
the nest and walks toward food. It moves until an

intersection where it decides which path it will take, in

the beginning it seems as a random choice but after

some time the majority of ants are using the optimal path

(Figure 1). This is because the colony works as a group

and not just as individual ants and this is achieved by

using pheromone. Each ant deposits pheromone while
walking which marks the rout taken. The amount of

pheromone indicates the usage of a certain route.

Pheromone trail evaporates as time passes. Due to this; a
shorter path will have more of it because it will have less

time to evaporate before it is deposited again. The

colony behaves intelligent because each ant chooses

paths that have more pheromone.

Figure 1: Ant colony behavior over time

There are many different ways of converting the

presented behavior into a computational system. We

except the one presented by Marco Dorigo and Luca

Maria Gambardella[5] with small modifications

{ } 0

0

arg m ax ,

,
k

rs r s
u M

q q
s

S q q

βατ η
∉







≤
=

>

 (1)

,

0 ,
k

r s r s
k

k r u r u
r s u M

k

s M

p

s M

βα

βα
τ η
τ η

∉








∉
=

∈

∑

(2)

Equations (1, 2) give us the probalistic decision method

that artificial ant k, currently in node r, after visiting
nodes in Mk uses for choosing the next node s. q is a

random variable chosen uniformly from [0, 1] and q0 is a

predefined parameter that gives us a balance between

exploitation (use of known good paths, q<=q0) and

exploration (search for new paths, q>q0). In the case of

exploitation, the next node is selected by the highest

value of rs rs
α βτ η where rsτ is the value corresponding

to the amount of pheromone deposit on edge connecting

r and s, and rsη is the value of some heuristic for the

same edge. ,α β are predefined parameters that specify

the influence of pheromone and heuristic. In the case of

exploration the next node is chosen at random with a

probability distribution given by equation 2, where p rs is

the probability of choosing edge rs.

 The pheromone trail is created using two types of

updates. Global update is used to reward good paths, or

in other words more pheromone should be deposited on

better paths, this is obtained using the following formula

for

(1) ,k k

ij ije e ij Bτ τ τ= − + ∆ ∀ ∈ (3)

Bk is the set of all edges in the path ant k used,
kτ∆ is

the quality of that solution, and e is a predefined
constant .The local updating is used to avoid creation of

a very strong edge used by all ants, and it emulates

pheromone evaporation. Every time an edge is chosen
by an ant it loses some pheromone by the following

formula where 0τ is a predefined constant.

0(1)ij ije eτ τ τ= − + (4)

3 GRAF-ANT Framework Analysis
ACO can be applied to a large number of different
problems. Do to this, the idea of creating a framework

that can be used for different types of problems appears

naturally, and was exploited a number of times [13].
 When developing this type of system, the aspect of

creating a useful GUI and the possibility of easy

visualization of the problem being solved and the
progress of ACO is usually neglected. ACO algorithms

are very sensitive to input parameters that define the ant

colony behavior [9]. The optimal values are obtained

from a large number of tests. This process is more

efficient when a good visualization and GUI are

accessible. To answer these needs, GRAF-ANT is being

developed in C# because of its powerful GUI

development tools. In our framework we have created a

base abstract class that implements some basic
visualization for graph problems. It is named

RAntVisualiserAbstract and is inherited when different

or more precise visualization is needed for specific
problem. This greatly decreases the time of developing

ACO applications do to avoiding of redundant

programming. A separate abstract class named

RAntGraphAbstract is used as a base class for keeping

information about problem and calculation variables.

The connection between visualization and these
variables is very strong and is not only visualizing the

solution. In some cases it is easier and even necessary to

determinate the problem variables from given
visualization [15], our frame work leaves this direction

of communication open.

 The next important part of the ACO is

implementation of individual ant behavior and this task

is done through the specification of the class

RAntAbstract. This class has some methods that need to

be implemented for each specific problem like

GetNextHeuristicStep(),CalcProbabilityDistribution(). It

also implements some common needs for these types of

classes like, local path update, getting a value from a
probability distribution, keeping track of a path.

 The basic ACO system presented in Section 1 has

large number of improvements and variations that are

used to enhance performance and avoid falling into local

optima. Some of them can be implemented

independently to a certain level of the problem being

solved and in other cases just some parts of the program

code should be edited. In our frame work we have

abstracted variations of the basic ACO in to the base
class RAntColonyAbstract. These variations are

explained in detail in article [9] for the TSP problem.

GRAF-ANT implements the following

• Elitist Ant System in which only the best path is

reinforced in ant colony iterations.

• Elitist Reinforcement Ant System in which the

best path is reinforced with more pheromone.

• Min-Max Ant System (MMAS) in which the

strength of the pheromone trail is confined to the

interval [TMin, TMax]. TMax, TMin are user

defined constants

• Rank Based Ant System in which the amount of

pheromone being deposited by an ant does not

only depend on the quality of the solution. The

idea is when all ants have completed there paths

to sort them by the quality of there path, and
depending on there rank to decide the amount of

pheromone they will leave.

Hybridization of ACO algorithms in many cases results

in significant improvement of their efficiency[14].

RAntColonyAbstract has the possibility of hybridization

in two directions adding local searches to elevate the

quality of paths found, and the possibility of pheromone

trail correction when the algorithm has reached

stagnation. We have implemented, to our knowledge, a

novel concept to pheromone trail correction that we

called suspicious path destruction that will be explained

in detail in the following section.

 When developing ACO the idea of parallelization has

at first been exploited in the direction of using different

processors for calculating the movement of different
ants but this was not the most powerful approach.

Similarly to GA which is more efficient when having N

islands of populations of M members than one with
population of NM members ACO is generally more

efficient when it has more small colonies of ants than

one big colony [10]. Creating an ACO system with a

multiply colonies today is especially powerful when

multiprocessor machines are becoming a standard and

parallel computing is more and more available[8]. Do to

that, multithreaded applications are becoming more

effective which means multiple colonies can be

calculated in separate threads. GRAF-ANT implements

a multi colony approach through the base class
RAntColonyClusterAbstract. When working with

multiple colony system the communication between the

colonies is very important [11]. There is a variety of

different approaches used from what is going to be

exchanged between them, to the topology of the

communication. We have chosen to use the best-so-far

path instead of the whole pheromone trail matrix for

communication between colonies. It should be

understood that GRAF-ANT is not a high performance
application but a system for developing new ACO. ACO

applications are often used in networks for parallel

processing and some analysis of there performance in
this type of systems is needed. For this reason we

decided to emulate the following network topologies

presented in [12].

• Fully connected in which the best over all

solution has been found and is distributed to all

other colonies

• Replace worst in which the best solution is only

distributed to the worst colony

• Ring in which the colony i exchanges its best

solution with colony ((i+1)%k) and colony ((i-

1) % k)

• Parallel Independent runs in which colonies run

independently and the best solutions is the best
one over all colonies.

Ant colonies with different behavior advance towards
the solution of problem in different speeds and some

times even in different directions. The behavior of an

ant colony is defined by the variant of ACO being used

and the calculation parameters, and in different steps of

the search different behavior is more desirable. When

we have a multiple colony system some types of

colonies can act complementary to each other. For

example ones with high and low exploration levels are

complementary. Good combination of separate colony

behavior can greatly increase the efficiency of the whole

system. In GRAF-ANT the search for this optima has

been lighten with good visualization and an easy way to

test different parameter values.

 Because of the significant dependence of ACO
performance from behavior parameters it was important

to create an effective GUI. To achieve this effectiveness

the GUI had to have the following characteristics:

• Easy input and adjustment of parameters in

several different groups. The groups are the

following ant colony decision parameters, ant

colony variation and hybridization parameters,

problem visualization and characteristics

parameters, multi colony system parameters.

• A possibility of having control over random

seeds for better evaluation of the effect of

parameter changes.

• Easy approach to each colony in the multi

colony system for observing current state of

search progress and changing parameters

• Possibility of viewing the state of pheromone

trail

• Real time reaction to parameter changes

• Possibility of comparing visual results of search

for different colonies in the multi colony system

• Adaptability of the GUI for a wide range of

problems possibly solved by ACO

• Adding the possibility of enlarging GRAF-ANT

GUI with new dialogs created by the developers

of ACO Modules.

• Selecting different ACO modules

In GRAF-ANT we have implemented these features as a

part of the GUI. The GUI is connected to a particular
problem through the abstract classes mentioned earlier.

We choose to develop GRAF-ANT in C# because it was

obvious that augmentation of the basic GUI while be

needed for specific problems, and C# makes this easy

through its property grid component and its relationship

properties in classes.

4 Suspicious Path Destruction
In this section we present a concept of ACO
hybridization for escaping local optima or best path

search stagnation. The idea appeared from observing

the progress of ACO on the Traveling Sales Problem
(TSP). When the algorithm got trapped in local optima

in many cases it was obvious from visual observation

which corrections should be made, or more precisely

what should not appear in the shortest path. There

where two simple criteria very long edges and

intersecting edges are very unlikely to be a part of the

best path. The next step was to find a way to without of

major corrections to the ACO algorithm remove them

from the ants search path. The solution was to

significantly lower the amount of pheromone on

randomly selected highly suspicious edges belonging to

the best path and let the colony resume its search. This
was a good approach because in the case a suspicious

edge was a part of the optimal path ants would come

back to it after testing alternative routs. This
hybridization improved the quality and calculation time

of ACO for TSP in most of the tested cases which will

be shown in the following section. A similar concept

could be used in other applications of ACO. More

formally we need to define a heuristic function

Sus(edge,path) that indicates the level of undesirability

of an edge in a path. Using that function we create a

random variable for selection of edges using the

following probability distribution

(,) ()

(,) ()
xy

xy Bp

Sus xy Bp ExSusepect xy
p

Sus xy Bp ExSusepect xy
∈

=
∑ (5)

Bp is the best path. This distribution has a correction

factor ExSuspect that is used to avoid selecting the

same edges constantly. When solving particular
problems there could be a need for adding alterations to

this distribution. Like in the case of TSP a pair of

intersecting edges would be considered as one
suspicious edge. The next step is to select up to N

edges from the best path for the set Suspects and apply

the Equation 6. δ is a predefined parameter.

,xy xy xy Suspectsτ δτ= ∀ ∈ (6)

In the case of TSP the appearance of intersecting edges

could have been avoided by using a local search or some

correction method for newly found paths. This could

mislead to the idea that a good local search could be a

much better solution for this type of problem in the
general case also, when using the logic of ‘Better safe

than sorry’. This is wrong for a couple of reasons.

• Correction of suspicious edges in most cases is a

more complex problem to be solved than just

recognizing them

• When using this approach ants in fact perform a

guided local search with a minimal change to

the original code

• Suspicious edges are some times a part of the

best solution, and totally avoiding them with

local search could lead to local optima

• More information is passed to all the ants by

adding a new heuristic that analyses the
characteristics of the solution independently

from the rest of the problem

5 Tests and Results
We performed an experimental analysis of the effect of

suspicious path destruction (SPD) to different ACO
variations. We have used the following parameters for

defining the ACO algorithm q0 = 0.3, α = 2, β = 0.1, e

= 0.1 and 0τ is calculated as suggested in [5], and the

colony had 10 ants. For the Rank based variation of

ACO the number of significant ants was 5. The criterion

for stagnation was the absence in improvement of the

best path for more than 20 colony iterations, and the

value of δ = 0.01. For each variation with or without

DSP we preformed 10 different tests and recorded the
best path length for all the tests, the iteration on which it

was found, and the average path value. We preformed

tests for TSP with 50, 100 and 150 cities.

Variation Best

Value

Best Value

Iteration

Average

Basic 6.751 631 6.802

Basic SPD 6.155 1302 6.459

Elitist 6.376 402 6.500

Elitist SPD 6.191 1628 6.413

Elitist Reinforce 6.595 1409 6.670

Elitist R SPD 6.448 519 6.544

Rank Based 6.621 279 6.637

RB SPD 6.256 362 6.445

MMAX 6.307 401 6.573

MMAX SPD 6.448 1302 6.532

Table 1. TSP for 50 cities the maximum

possible number of iterations was 2500

Variation Best

Value

Best Value

Iteration

Average

Basic 9.005 2959 9.136

Basic SPD 8.754 984 9.041

Elitist 8.734 1172 8.908

Elitist SPD 8.656 2751 8.813

Elitist Reinforce 8.764 533 9.029

Elitist R SPD 8.869 2963 8.975

Rank Based 9.154 3322 9.202

RB SPD 8.852 843 8.924

MMAX 8.869 2401 8.942

MMAX SPD 8.718 1709 8.951

Table 2. TSP for 100 cities the maximum

possible number of iterations was 3500

We can see from Tables 1, 2 and 3 that independent

from the problem size in the majority of cases the same
variation of ACO would give better results if SDP

hybridization was added. It is important to notice that it

does not only get a better solution but it also falls into

stagnation at a higher number of iterations.

Variation Best

Value

Best Value

Iteration

Average

Basic 10.932 1372 11.181

Basic SPD 10.284 360 10.371

Elitist 9.932 742 10.698

Elitist SPD 9.979 3611 10.068

Elitist Reinforce 10.844 959 10.972

Elitist R SPD 10.077 1503 10.364

Rank Based 10.509 3343 10.625

RB SPD 10.113 1624 10.317

MMAX 10.669 2179 10.902

MMAX SPD 10.017 3101 10.451

Table 3. TSP for 150 cities the maximum

possible number of iterations was 4000

6 Conclusion
It has been shown that C# is a good choice for creating
an ant colony system framework because of good GUI

development tools and the simplicity of creating multi

thread applications. A good GUI is very important when

developing and using ACO algorithms. Result quality

obtained from using ACO is highly dependent on colony

behavior parameters. That is why we have to have an
effective an easy way of testing numerous parameters

for getting their best possible values which can be

achieved by having a good GUI. We have abstracted
different types of ACO variations that are implemented

regardless of the problem being solved. While

developing GRAF-ANT we have anticipated the
possibility of some ACO hybridization and created

classes with which this could be easily done when

creating applications for solving particular problems.

Two types of hybridization are considered adding local

searches and pheromone trail correction in case of

colony search stagnation. It has been presented in a

large number of articles that a multi colony approach for
ACO greatly increases its efficiency that is why we

added this possibility to GRAF-ANT. Multi colony

systems are usually connected with network calculations
sow we decided to emulate several standard network

communication methods for testing purposes. A

pheromone trail correction method based on the concept

of destroying suspicious parts of the best found path is

presented. This method was tested in combination of all

standard variations and gave good results when applied

on the traveling salesman problem. When performing

these tests the convenience of a powerful GUI combined

with a multi colony system that allows a large number
of simultaneous colonies to run, has greatly simplified

the process of retrieving results. A framework that

implements all the previously mentioned qualities can

greatly decries the developing time for new ACO

algorithms both by avoiding programming of redundant

code and by quick parameter testing which was the goal

of GRAF-ANT. At the present stage of development
GRAF-ANT needs full application code to be compiled

when using it as a frame work, but in the future we plan

to turn it into a plug-in system to further simplify the
creation of new ACO algorithms.

References:

[1] Garey, M.R.; Johnson, D.S. Computers and

Intractability: A Guide to the Theory of NP-

Completeness. New York: W.H. Freeman, 1979

[2] Sancho Salcedo-Sanz, Xin Yao, Assignment of cells

to switches in a cellular mobile network using a

hybrid Hopfield network-genetic algorithm

approach, Applied Soft Computing, Vol. 8 , No. 1,
2008, pp 216-224

[3] Der-Horng Lee , Hui Qiu Wang, Lixin Miao, Quay

crane scheduling with non-interference constraints in

port container terminals, Transportation Research

Part E, Vol.44 ,No. 1, 2008, pp.124–135

 [4] Dorigo M, Maniezzo V: Ant Colony system:

Optimization by a colony of coorperating agents.

IEEE Transactions on Systems, Man and Cybernetics

- Part B Vol. 26, No.1, 1996, pp. 29-41.
[5] Dorigo M, Gambardella LM: Ant colonies for the

traveling salesman problem. BioSystems Vol. 43

No.2 ,1997, pp.73-81.
 [6] Kirkpatrick S. and Gelatt C. D. and Vecchi M. P.,

Optimization by Simulated Annealing, Science, Vol

220, No. 4598, 1983, pp. 671-680.
[7] Kwee Lim, Yew-Soon Ong,Meng Lim, Xianshun

Chen, Amit Agarwal,, Hybrid ant colony algorithms

for path planning in sparse graphs, Soft Computing,

Vol. 12, No 10, 2008 , pp. 981-994

[8] Laurentiu Rudeanu, Mitica Craus, Parallel

Implementation of Ant Colony Optimization for

Travelling Salesman Problem, WSEASs Transactions

on Systems, Vol. 3, No. 3, 2004, pp. 1161 -1166

[9]D. Asmar and A. Elshamli and S. Areibi. A
Comparative Assessment of ACO Algorithms Within

a TSP Environment, In 4th International Conference

on Engineering Applications and Computational
Algorithms, Guelph, Ontario,Canada, , July 2005.

[10]R. Michels, M. Middendorf, An island model based

Ant system with look ahead for the Shortest Super

sequence problem, Parallel Problem Solving from

Nature — PPSN V, Springer, 1998

[11] I. Ellabib, O. Basir and P.H. Calamai, `A multiple

Ant Colony System with different communication

strategies', World Scientific and Engineering

Academy & Society (WSEAS) Transactions on

Systems, Vol. 6, 2005, pp. 663-670.

[12] M. Manfrin, M. Birattari, T. St¨utzle, and M.

Dorigo, Parallel ant colony optimization for the

traveling salesman problem, Proceedings of ANTS

2006, ser. LNCS, M. Dorigo et al., Eds., vol.

4150.Springer Verlag, 2006,, pp. 224–234.
[12] Bouktir T. and Slimani L., Optimal power flow of

the Algerian Electrical Network Using Genetic

Algorithms, WSEAS Transactions on Circuit and
Systems, Vol. 3, No. 6, p.1478-1482, 2004.

[13] Blum, C. Dorigo, M., The hyper-cube framework

for ant colony optimization, Transactions on

Systems, Man, and Cybernetics, Part B, Vol. 34,

2004, No. 2, pp. 1161-1172

[14] Feng Y J, Feng Z R, Ant colony system

hybridization with simulated annealing for flow-shop

scheduling problems. WSEAS Transaction on

Business and Economics, Vol. 1, No. 1, 2004, p.

133-138
[15] Liu Nan, Huang Bo and Xiaohong Pan, Using the

Ant Algorithm to Derive Pareto Fronts for

Multiobjective Siting of Emergency Service

Facilities, Journal of the Transportation Research

Board, No. 1935, 2005, pp. 120–129.

