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Abstract: - In this paper we present a new method for analyzing some properties of the Mandelbrot Set. The 

algorithm used for our visual analysis is closely connected to Pickover Stalks and Buddhabrot method. Pickover 

Stalks method created biomorphs, diverse and complicated forms greatly resembling invertebrate organisms. 

Our method extends these previously developed methods that introduce the concept of preserving information 

about calculation steps when calculating the Mandelbrot Set. We create images that visualize statistical 

information for the calculation-paths of points tested for belonging to the Mandelbrot Set. Two variations of this 

method are presented: one that only takes into account the paths taken and one that also uses information about 

their lengths.  We have developed software that enables us to analyze new properties of the Mandelbrot Set that 

can be seen when these new display methods are used. In this paper we also present in detail important features 

of our software.  
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1   Introduction 
Fractals are geometric shapes that have the property 

of self-similarity, or in other words, that the shape 

can be divided into parts that are reduced size copies 

(at least approximately) of the whole. Benoît 

Mandelbrot first used the term in 1975. The 

application and use of fractals has been increasing 

with the increase of computer power. They have 

shown their usability in a wide range of domains 

from biology and medicine [1], image processing 

[2], [3], art etc. 

     Fractal theory gives methods for describing the 

irregularity of natural objects, opposite to the 

idealizations created when using Euclidean 

geometry. The fractal dimension can be seen as a 

measure of complexity, or as an index of the scale-

dependency of a pattern. This measure is defined 

mathematically with Hausdorff dimension [4].  

     Natural objects do not exhibit exact self-

similarity, but to some degree statistical similarities. 

One direction of application of fractals in biology is 

calculating its fractal dimension and using it for a 

comparison between systems [5], [6]. The relevance 

of this parameter has been shown on the example of 

different sized insects living on a tree trunk and the 

distances they travel on it. If the bark has a fractal 

dimension of D = 1.4, an insect an order of 

magnitude smaller than another one perceives a 

length increase of 10
D-1

 = 10
0.4

 = 2.51, or a habitat 

surface area increase of 2.51
2
 = 6.31.     

     The second direction of the application of fractals 

in biology is in artificially creating biological objects 

or systems. An example is the use of iterated 

functions system (IFS) fractals for creating virtual 

trees [7]. C.A. Pickover demonstrated a new concept 

of Mandelbrot Set (M-set) [8] coloring that created 

images closely corresponding to single cellular 

organisms which were named biomorphs [9], some 

of these images can be seen in Fig. 1. This has 

shown the connection of the M-set and living 

organisms and the possible importance of 

researching its properties for biological science.  
 

 
Figure 1. Examples of Biomorphs  created using 

C.A. Pickovers technique 
 

     For the biomorphs creation, an essential step was 

the concept of Pickover Stalks. This was the first 

method that observes the behavior of points during 
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the calculation the M-Set; the coloring was based on 

how closely the orbits of interior points come to the 

x and y axes. A novel approach to displaying the M-

Set is the Buddhabrot method, which uses 

information of the number of visits to points in the 

iterative creation algorithm [10]. We extend this 

method by preserving not only the information of 

which points have been visited, but also the order in 

which they have been visited. We visualize the paths 

points pass in the iterative process. To further 

explore and understand these images we have 

created fractal generator software, and we present its 

features in this paper. 

     The paper is organized as follows. In Section 2 

we give the basic properties of the M-Set and 

corresponding Julia Sets (J-Sets). In Section 3 we 

show the algorithm for creating the M-Set and the 

Buddhabrot method. In Section 4 we present our 

extension of the Buddhabrot technique based on 

calculation paths. In the next section we analyze 

some characteristic images of M-Set created with the 

techniques presented.  In the Section 6 we present 

the features of our fractal generator software.  

 

 

2   M-Set and Basic Properties 
The M-Set is defined as the set of complex values of 

c for which |Zn| under iteration of the complex 

quadratic polynomial Zn+1= Zn
2
+ c remains bounded. 

In other words, a complex number c is in the M-Set 

if, starting with Z0=0 and using the iteration formula 

repeatedly, the absolute value of Zn never becomes 

greater than a certain number however large the 

number of iterations. 

 

  

Figure 2. The Mandelbrot Set for function 

Zn+1 = Zn
2
+ c, maximum iterations 128, 

in the area (-2, 1)*(-i, i) 

 

     It is formally defined with a set of quadric 

polynomials 
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If Pc
n
(z) presents the n-th iteration of Pc(z). The 

Mandelbrot set is the subset M of the complex plane 

defined by Equation 2 (Fig. 2) 
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It has been shown that a complex number c is inside 

the M-Set if and only if Pc
n
(z) ≤ 2 for all n. It is a 

compact set, contained in the closed disk of radius 2 

around the origin. The area of the M-set obtained by 

pixel counting was approximately 1.50659177 [11],  

and later by statistical sampling it has been shown 

that the area is  1.506484 with 95% confidence [12]. 

The area of the M-Set intersects the real axis x only 

in the area [-2, 0.25]. The parameters along this 

interval can be put in one-to-one correspondence 

with those of the real logistic family from equation 

[13], 

 

(1 ), [1,4]z z z     (3) 

 

Where the connection between c and λ  is the 

following  

 
21 (1 )

4
c

 
  (4) 

 

The M-Set is a connected set. The boundary of the 

M-Set is called the Mandelbrot curve. It is 

bifurcation locus of the quadratic family defined in 

Equation 1, which means that the dynamical 

behavior changes drastically under small 

perturbation of the parameter c. The Hausdorff 

dimension of the boundary of the Mandelbrot set 

equals 2 as determined by a result of Mitsuhiro 

Shishikura [14].  

     There is a close correspondence of the 

Mandelbrot Set with Julia sets [15], [16]. A Julia set 

can also be defined with a set of quadric 

polynomials Equations  5, 6. (Fig. 3) 
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Figure 3. The Julia Set for function 

Zn+1 = Zn
2
 -0.7-0.3i, maximum iterations 256, 

in the area (-2, 2)*( -1.5 i, 1.5 i) 

   

     The J-Set is also a fractal except in case a is 

equal to -2 or 0.  It has not been shown that these are 

the only exceptional values.  

     We should notice the difference in the definition 

of these two types of sets. When calculating the M-

Set the initial value of Pc
n 

for each point of the 

complex plain is 0, opposite to this when calculating 

the J-Set the initial value of Z0 is equal to its position 

in the complex plain. The second difference is the 

way the constants c and a are used in the definition 

of the sets of quadric polynomials. For the J-Set a 

has a constant value that is used for the calculation 

of the entire set. In the case of the M-Set the value 

of c, has a different value for each tested point, and 

is equal to the corresponding point of the complex 

plain. 

 

 
 

Figure 4. Map of Julia Sets for function 

Zn+1 = Zn
2
 +c 

     The close relation between these sets is evident 

when we observe the mapping of J-Sets according to 

the constant a to the complex plain in Fig. 4. The 

mapping of J-Sets closely resembles the M-Set. This 

relationship has also inspired the definition of a four 

dimensional M-Set [17], [18]. In this definition z 

and t coordinates are added as the initial value of Z0 

(z = real(Z0), t = imag(Z0)), and the same formula is 

used as for calculating the M-Set with an initial 

value instead of 0.  The M-Set is the intersection of 

the four dimensional set with the plain α( z=0, t=0).     

J-Sets can be defined as intersections with planes  

βa(  x=real(a), y=imag(a) ).  

 

 

3   Buddhabrot Display Algorithm 
The original M-Set is defined with Zn+1= Zn

2
+ c , but 

the concept has been extended to an arbitrary 

function F and a corresponding M-Set generated 

with the iterative method Zn+1 = F(Zn ,c). We display 

the M-Set in a given area A = (xmin, xmax)*(ymin, 

ymax) of the complex plain and a given resolution h 

which defines a grid G(A,h). The standard algorithm 

for displaying the M-Set in G is given in the 

following pseudo code   

 

  foreach (PointG){ 

        Iteration = 0; 

        Z = Point  

          while ( (|Z|
2
<bound) 

                    and  (iteration < MaxIteration)){ 

   Z = F(Z , Point) 

   Iteration++     

            } 

        Color(Point) =ColorIndex(iteration)     

} 

 

This is the simplest algorithm for generating a 

representation of the Mandelbrot set and is known as 

the "escape time" algorithm. With this display 

algorithm we show not only if a point is a member 

of the M-Set but also for non-member points the 

number of iterations they have been bounded (Fig. 

2). The number of iterations gives us the information 

how quickly Pc
n
(z)  grows for point c.   

     In the basic coloring algorithm we only use the 

number of iterations that |Z| was bounded, but we do 

not use the information of which points Z have been 

passed and how many times, during these steps. The 

Buddhabrot method extends basic display algorithm 

by preserving this data.   

     The idea is adding a two-dimensional array 

corresponding to grid G, and counting the number of 

“hits” Z  has made on elements of the grid during its 
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iterations. The Buddhabrot algorithm is shown in the 

following pseudo code. 

 

Counter.SetToZero(); 
 

for (MaxNumberOfPoints){ 
 

        Point  = Random element of area A 

        Iteration = 0 

        Z = Point  

        Steps.Empty()   
 

          while ( (|Z|
2
<bound)   

                  and  (iteration < MaxIteration)){ 
  
   Steps.Add(Z)  

   Z = F(Z , Point) 

   Iteration++     

            } 

         if((iteration=MaxIteration)=OUTSIDE){ 

                foreach(Z  Steps) 

 Counter (Z) += 1 

         } 

} 

 foreach (PointG){ 

     Color(Point) = ColorIndex(Counter(Point)) 

} 

 

We wish to point out some differences compared to 

the basic algorithm. First, instead of using the nodes 

of the grid, we use a fixed number of random points 

inside area A. This is important because if we took 

just nodes of a square grid, a possibility exists that 

they shall have some common properties and our 

“statistical” image will not be correct in that case. 

For each tested point we save the iteration steps in 

an array Steps. This is done because we create two 

separate images: one for points inside (Fig. 5), and 

one for points outside (Fig. 6) the M-Set. 

 

 
 

Figure 5. The Buddhabrot coloring, outside points, 

maximum iterations 25600, points rendered 24*10
4
 

 

Counter is a two-dimensional array that corresponds 

to blocks of grid G, it is used as the counter of 

“hits”.  After finishing the calculations loop for a 

point, depending on whether it is a member of the 

M-Set, we update the Counter with the points that 

have been crossed. After MaxNumberOfPoints has 

been reached we use the Counter for coloring the 

screen. The image acquired with this algorithm for 

points out of the M-Set is named Buddhabrot. 

 

 
 

Figure 6. The Buddhabrot coloring, inside points, 

maximum iterations 25600, points rendered 6*10
4
 

 

 

4 Calculation-Path Display Algorithms 
In this section, we show our novel concept for 

displaying the M-Set. We extend the idea of 

preserving information from the calculations of the 

fractal image. We count not only which points have 

been visited during iterations steps, but we also track 

the “calculation path”. The path from Zn to Zn+1 is 

seen as a line connecting these two points. The 

calculation path of point Z is an array of lines 

connecting successive Zi appearing in the iterative 

method for checking if the point belongs to the M-

Set. We named this display method Calculation-

Path. It is shown in the following pseudo code.  

 

Counter.SetToZero(); 
 

  foreach (PointInputGrid){ 
 

        Iteration = 0; 

        Z = Point  

        CalculationPath .Empty()   
   

          while ( (|Z|
2 
< bound)   

                    and  (iteration < MaxIteration)){ 
 

   CalculationPath.Add(Z)  

   Z = F(Z , Point) 

   Iteration++     

            } 

         if((iteration = MaxIteration) = OUTSIDE){ 

                for (i=0; i<CalculationPath.length-1; i++){ 

               foreach(P 1i iZ Z G  ) 

      Counter (P) += 1 
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   } 

         }      

} 
 

foreach (PointG){ 

     Color(Point) = ColorIndex(Counter(Point)) 

} 

 

In this algorithm we also use Counter for counting 

“hits”, and different images are created for images 

outside (Fig. 7)  and inside (Fig. 8) of the M-Set.  

 

 
 

Figure 7. The Calculation-Path coloring, outside 

points, max iterations 256000, input grid 300*200, 

output grid 1200*800 

 

 

 
 

Figure 8. The Calculation-Path coloring, inside 

points, max iterations 256, input grid 300*200, 

output grid 3000*2000 

 

The main difference is in the way the iteration step 

points are handled, instead of just incrementing 

Counter elements corresponding to these points we 

increment all the grid elements belonging on the line 

ZiZi+1 , excluding the point Zi. We wish to point out 

that when implementing this algorithm, the speed of 

the line incrementing is of great influence to the 

overall calculation time. Due to the fact that line 

incrementing is the same as drawing lines on 

Counter we used the Bresenham’s line algorithm 

[19] and Fast-Clipping algorithm [20] to optimize 

this process. The second big difference is the use of 

two grids, one for the input points, and a second one 

for the finalized image. Different combination of 

these grids gives different effects to the final image. 

     We also propose a variation of the Calculation-

Path image algorithm, in which we also take into 

account the length of ZiZi+1. We use the following 

method of incrementing  
 

     foreach(P 1i iZ Z G  ) 

            Counter (P) += Const / Length( 1i iZ Z  ) 
 

This is a natural extension; it could be understood as 

the time spent at each point, but other functions can 

also be used instead of Const/Length( 1i iZ Z  ). In our 

images we used Const/Length( 1i iZ Z  )
2 
to even more 

emphasize the shorter paths. We call images created 

with this variation Time-Spent (Fig. 9, 10).  

 

 
 

Figure 9. The Time-Spent coloring, outside points, 

max iterations 256000,  input grid 300*200, output 

grid 1200*800 

 

 

 
 

Figure 10. The Time-Spent coloring, inside points, 

max iterations 256,  input grid 300*200, output grid 

3000*2000 
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5   Calculation-Path Fractal Images 
Due to the similarity of algorithms for generating the 

BUD, CP and TS images we shall compare some of 

their properties. We first notice that for CP and TS 

images we need a lower number of points for 

creating images due to the fact that we are drawing 

lines instead of points. When generating images with 

a large number of points, images can even lose 

details due to intensive overlapping of paths. In this 

case, more statistical information is presented, but 

individual paths are less visible. When creating the 

new type images, instead of using random points we 

used points of a grid.  This approach gave a more 

representative sampling of the space when a small 

number of points were tested. Images acquired when 

sampling the space with a very sparse grid are very 

interesting because they visualize the movement of 

individual points and different behavior in different 

regions (Fig. 11, 12). 

 

  
 

Figure 11. The Calculation-Path coloring, inside 

points, max iterations 25600, input grid 60*50, 

output grid 3000*2000 

 

In the case of tests with a  large number of points,  a 

random selection is better for the same reasons as for 

the Buddhabrot method.  

    Alex Boswell’s method for vastly increasing the 

speed of rendering of highly zoomed regions [21]  

using the Metropolis–Hastings algorithm [22] is less 

productive in our case because distribution of paths 

is more complicated than the distribution of visited 

points.  Opposite to the Buddhabrot images where 

zooming into them without this optimization 

resulted in an extremely big increase in calculation 

time, for images created with these technique it can 

be done in approximately the same time due to the 

use of lines instead of points. The zoomed image  

sometimes slightly differ in color from the reign 

selected in the start image because in the new output 

grid line pairs that have intersected at the same point 

now might intersect at points besides each other. 

Using this possibility we can create large scale 

images without a large increase in calculation time 

because it depends mostly on the size of the input 

grid.  

 

 
 

Figure 12. The Time-Spent coloring, inside points, 

max iterations 25600, input grid 60*50, output grid 

3000*2000 

 

     When using this method of displaying the M-Set 

we can observe some new properties like 

connections between different parts of the set. This 

display method can be used on Julia sets also.  

 

 

6   Fractal Generator Program 
We created fractal generator software for creating 

Buddhabrot(BUD), Calculation-Path(CP) and Time-

Spent(TS) fractal images. It also has the possibility 

of  creating  standard Mandelbrot and Julia type 

images. An alpha version of this software and source 

code can be downloaded from 

http://mail.phy.bg.ac.yu/~rakaj/home/.  The software 

has been developed in C# using Microsoft Visual 

Studio 2005. The software is designed as a plug-in 

system. It consists of the main program and plug-ins 

for new formulas.  

    To manipulate these type of images we  

developed a graphical user interface (GUI) that 

consists of parts that control different properties of 

image creation.  In Fig. 13 on the left side we can 

see an image created with our software. This part of 

the GUI is also used for selecting areas that shall be 

rendered. This selection is done in two directions. 

First, we can select a part of a M-Set from which we 

wish to create BUD, CP or TS images for points 

inside or outside of the set.  Second, we can also 

select the area of the BUD, CP or TS images that we 

wish to be calculated.  Using this feature, we can 

also zoom in to images.        
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Figure 13. Screenshot of developed fractal generator 

Software 

 

     The second part of the GUI gives us further 

control over more properties of the calculation 

algorithm. These properties are divided into several 

tabs. In the first tab, named “Calculations”, we set 

which types of display methods will be calculated in 

the iterative algorithm for creating images. This 

gives great decries in calculation time when more 

than one image is created, because the M-Set and the 

calculation path is calculated only once, and this 

information can be used for several images. In this 

section we also have control if the Mandelbrot or 

Julia type fractal will be used.  

    The second tab gives us the control over the 

formula properties (Fig. 14). As previously 

mentioned, different types of formulas are held in 

different plug-ins so this part of the GUI also 

controls there selection and activation of them.   

 

 
 

Figure 14. Screenshot of GUI tab for formula 

manipulation. 

     This part of the GUI gives us basic information 

about the plug-in (top part of Fig. 14) and the control 

over its parameters. It gives us the method for 

calculating the initial value of z, and the formula that 

will be used in the iteration loop.  All possible plug-

ins have the option of setting the maximal number of 

iterations and bound for |Zn| in the parameter control 

section. Depending on the type of plug-in, we have 

other parameters that could be integer, real or 

function type. Function type parameters are 

parameters that can have the value of basic functions 

like: identity, sinus, cosine, exponential... Using 

these parameters gives a wide range of different 

formulas that could be calculated by the same plug-

in. 

     The next tab “Grids” is used in combination with 

the left side of the GUI. As said before, the selection 

is defined with an input area, or in other words the 

section of the complex plain in which we shall be 

searching for point inside the M-Set. The output area 

is equivalent to the part of the complex plain in 

which we shall be counting the hits for new images. 

In this tab we can enter more precisely the area 

directly setting numerical values. The second 

function of this tab is to fully define these grids by 

setting the number of grid points on the x and y axis. 

By defining the grid, we also define the dimensions 

of the output images.  

     Buddhabrot, Calculation-path and Time-Spent 

display method all need a large amount of 

computation time for creating images. In addition, 

often the acquired images do not have the correct 

coloring for us to observe the properties of the M-

Set. To avoid calculating the images again through 

the iterative method for the M-Set, we added to our 

fractal generator a possibility of preserving the 

intermediate numerical image. The numerical image 

is a real value of each point in the grid. For  the 

manipulation of this type of data we added an extra 

tab “Images”.  Using this feature multiple properties 

of calculated M-Sets could be observed with 

minimal extra execution time.  

     In our software, we added a technique that 

greatly reduces the calculation time for calculating 

these images. In most of the cases, we need only the 

inside or outside images for some M-Set. A great 

part of our calculation time is used to calculate 

points that in the end will not be used for generating 

the final image because they are outside/inside of the 

M-Set if we are calculating the inside/outside image.  

The overall calculation could be greatly decreased if 

these point could be quickly recognized or even 

excluded from calculation. One of the properties of 

the  Pc
n
(z)  is that it is value can change significantly 

for very small changes of c, but this is only true near 
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the border of the M-Set.  In areas not near the border 

the behavior is stable. We used this property of the 

M-Set to greatly optimize the calculation of BUD, 

CP and TS large images, by developing an algorithm 

that needs some assistance from the user.  

     The optimization has several steps. First, the user 

calculates the image in some low resolution. Using 

this image the user can select areas of the M-Set that 

will be inside or outside of it depending on which 

type of images while be calculated. The selection 

consists of an array of rectangles  with an 

extra property that specifies if a point should be 

inside or outside of it; an example of this selection 

can be seen in Fig. 15.  

 

 
 

Figure 15. An example of selection of areas that 

will not be used for calculation of outside BUD, CP 

and TS images for M-Set corresponding to Zn+1= 

Zn
3
+c. White points are points inside the set. Blue 

rectangles with yellow border are the selection. 

 

The creation of this selection is done using our GUI. 

We use the “Optimization” tab in which we 

manipulate the array of selected rectangles. 

Individual rectangles are adjusted directly setting 

numerical values for top left point and the height and 

width of the rectangle in this tab. These values can 

also be set by using the right side of the GUI 

selecting areas from the image. The algorithm than 

optimizes the calculation of these images is given by 

the following pseudo code.  

 

Pos.Real = Start.Real 

for (j = 0; j < Grid.Height; j++){ 

       Pos.Compex = StartComplex; 

       for (i = 0; i < Grid.width; i++){ 

             if ((Pos   Selection){ 

                    Pos   rect  

Calculate number of steps(grid points)   

from Pos to right end of rectangle(rect) 

                        i +=   steps-1; 

                        mPos.Real+=Step.Real*steps; 

                    }else{ 

      Z = mPos; 

      Init(Z); 

      Loop(Z); 

                             mChangeImages(i, j); 

     mPos.Real+= Step.Real;  

                    } 

                     

    }  

             mPos.Complex += Step.Complex; 

  } 

 

The change to the basic algorithm is in adding extra 

criteria for selecting which points will be used from 

the grid. This criteria is combined with an improved 

method for moving through the grid. As in the basic 

algorithm we have a nested loops for moving 

through X and Y  axis for testing all the points in the 

grid, but we also have a test to see if a grid point 

belongs to any of the selected rectangles. If point 

A(x,y) belongs to rectangle R with left point at 

position p and width w, the testing point will be 

advanced to position (p+w,y). In the future, we plan 

to implement similar fully automated algorithm. 

These selections rectangles can, besides for optimi-

zation, be used  for creating  images with parts of the 

M-Set excluded from the calculation.   

      To improve the analyses of different properties 

of CP and TS images we have implemented 

significant coloring control to our GUI. This is done 

in two directions, first with easy control of palette 

creation in a similar fashion to other image editing 

and fractal generator software like Adobe Photo-

shop, Ultra Fractal and Apophysis. The second 

control is adding methods for the conversion of the 

values inside the numeric image into palette indexes. 

We have implemented the use of following functions 

x, sqrt(x), pow(x,base), log(x), tan(x). We have 

created this control extending  an open source 

component available at the code project web-site 

[23]. 

      In our software we also implement features that 

can be used to better understand the 4-dimensional 

M-Set. We do this by making it possible to create 

mappings, or in other words a visual representation 

of intersections of  2-dimensional planes with the 4-

dimensional M-Set. A mapping shows us the change 

that occurs when these planes are chosen parallel to 

two of the axis x, y, z and t, or in other words, that 

WSEAS TRANSACTIONS on COMPUTERS Raka Jovanovic, Milan Tuba

ISSN: 1109-2750 1212 Issue 7, Volume 8, July 2009



they can be defined with the following way α(  

axis1=a, axis2=b). When creating a mapping 

parameters  a and b  are selected on some uniform 

grid for areas (A1, A2) and (B1, B2)   This is better 

understood if we observe Fig. 16, 17. In both of 

these figures the center of the image corresponds to 

the intersection with the plain that holds coordinate 

center (0 + 0*i ) of the complex plane.  

 

 
 

Figure 16. Mapping of intersecting planes 

corresponding to J-Sets, β ( x=a, y=b),  where -2 < a 

< 1 and -1 < b < 1. Using the Time-Spent display 

method 

 

The most interesting images are acquired when we 

use planes parallel to x and y axis which corresponds 

to different J-Sets or to z and t which corresponds to 

M-Sets with different initial values. In our software, 

it is possible to create mappings for any other 

combination of axis. It is possible to create 

mappings for all the previously mentioned methods 

for displaying M and J sets. 

 

 
 

Figure 17. Mapping of intersecting planes 

corresponding to M-Sets with different initial value, 

α ( z=a, t=b),  where -1.75 < a < 1.75 and -1 < b < 1. 

Using the Time-Spent display method 

  

 

7   Conclusion 
In this paper we have presented an algorithm for 

creating images that make it possible to observe new 

aspects of the M-Set. These images display different 

information about the M-Set than previously 

developed display methods like Buddhabrot and 

Pickover Stalks did.  The Calculation-Path images 

show as the connection between different areas of 

the M-Set, and give us statistical information about 

the iterative process for calculating the members of 

the M-Set. This is done by preserving previously 

ignored information of the order of points appearing 

in the steps of iterative algorithm. We created two 

variations of images. The first one only uses the 

directions and frequency of calculation paths. The 

second variation also takes into account the length of 

these paths. This display method can also be used on 

Julia type fractals. 

     We have developed a fractal generator program 

that enables the creation and thorough analysis of 

images created using Buddhabrot, Calculation-Path 

and Time-Spent display techniques. Our software is 

a plug-in system for which we have created several 

modules which explore a wide range of different 

types of formulas. The execution time needed for 

creating these images is great due to the nature of 

the algorithms. In our software we have 

implemented several optimizations that make 

creation of large scale images possible.  We have 

also incorporated features that make possible to 

analyze the 4 dimensional concept for the M-Set.   

     In the future we wish to adopt previously 

developed algorithms for the Buddhabrot method 

like Alex Boswell optimization method and  the 4D 

Buddhabrot Hologram to the Calculation-Path 

concept. We also wish to analyze the connections of 

images created with these new techniques for pairs 

of M-Set and corresponding J-Sets. Due to the 

similarity of the algorithm to Pickover Stalks which 

proved its value in biology throw biomorphs, we 

believe research in this direction is justified. 
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