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Abstract: - The aim of this paper is compare the effect of using different topologies or connections between 

separate colonies in island based parallel implementations of the Ant Colony Optimization applied to the 

Minimum Weight Vertex Cover Problem. We investigated the sequential Ant Colony Optimization algorithms 

applied to the Minimum Weight Vertex Cover Problem before. Parallelization of population based algorithms 

using the island model is of great importance because it often gives super linear increase in performance. We 

observe the behavior of different parallel algorithms corresponding to several topologies and communication 

rules like fully connected, replace worst, ring and independent parallel runs. We also propose a variation of the 

algorithm corresponding to the ring topology that maintains the diversity of the search, but still moves to areas 

with better solutions and gives slightly better results even on a single processor with threads. 
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1   Introduction 
Most processors today have multiple cores and even 

for a single core multiple treads can be 

implemented. In general, a system of n parallel 

processors, each of speed k, is less efficient than one 

processor of speed n*k. However, such parallel 

system is usually much cheaper to build and because 

of that research in parallelization is of great 

importance. Parallelization of algorithms has proven 

to be very powerful method in the case of population 

based algorithms like Ant Colony Optimization 

(ACO) and Genetic algorithms [1]. 

     The basic idea of ACO is to imitate the behavior 

of ants in a colony while gathering food. Each ant 

starts from the nest and walks toward food. It moves 

until an intersection where it decides which path it 

will take. In the beginning it looks like a random 

choice but after some time the majority of ants are 

using the optimal path. This is because the colony 

works as a group and not just as individual ants and 

this is achieved by using pheromone. Each ant 

deposits pheromone while walking which marks the 

route taken. The amount of pheromone indicates the 

usage of a certain route. Pheromone trail evaporates 

as time passes. Due to this a shorter path will have 

more of pheromone because it will have less time to 

evaporate before it is deposited again. The colony 

behaves intelligently because each ant chooses path 

that has more pheromone. There are many different 

ways of converting the presented behavior into a 

computational system, the most widespread is the 

one presented by Marco Dorigo and Luca Maria 

Gambardella [2]. 

    Different parallelization approaches have been 

applied to ACO algorithms.  It has been shown that 

the multi-colony model is more effective than the 

parallelization applied by assigning separate 

processes to ants belonging to a single colony. This 

is similar to the situation with genetic algorithms 

where the best application of parallelization is to 

create separate islands of populations and to 

implement some kind of communication between 

them. This approach gives even super-linear 

improvement to population based algorithms applied 

to certain problems [3]. Due to this fact 

parallelization of ACO has been successfully applied 

to a wide set of different problems like TSP [4], 

Quadratic Assignment Problems [5], Routing in 

MANETs (Mobile Ad Hoc Networks) [6], Task 

Scheduling [7], DNA Sequencing [8]. 

     When working with multi-colony systems, the 

communication data is of great importance. 

Solutions, pheromone matrices, and parameters have 

all been tested as the type of information that will be 

exchanged between colonies [9], [10], [11]. The 

exchange of the best-so-far solution has been shown 
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to be a good choice, which we use in our 

comparisons of different topologies. 

     The last step in application of parallel ACO is to 

define the methods of communication and 

interaction between colonies, and the corresponding 

algorithms. These algorithms are named by their 

corresponding topologies and the standard ones are: 
 

 fully connected 

 replace worst 

 ring 

 independent parallel runs 
 

     We compare the quality of the results acquired by 

these parallel algorithms with the results of the 

sequential implementation and our variation of the 

ring topology algorithm. 

     To illustrate these parallel implementations we 

use one of the classical problems of graph theory: 

the Minimum Vertex Cover Problem. The problem 

is defined for an undirected graph G = (V, E). V is 

the set of vertexes and E is a set of edges. A vertex 

cover of a graph is set of vertexes V’V that has the 

property that for every edge e(v1,v2)E at least  one 

of v1,v2   is an element of V’. A minimal vertex cover 

is a vertex cover that has the minimum number of 

vertexes. In this paper we devote our attention to an 

extension of this problem named the Minimum 

Weight Vertex Cover Problem (MWVCP) in which 

weights are added to the vertexes. The solution is 

not the vertex cover with the minimum number of 

vertexes, but one with the minimum sum of weights. 

     It has been shown that this problem is NP-

complete even when it is restricted to a unit-

weighted planar graph with the maximum vertex 

degree of three [12].  In the same way as for many 

other NP-complete problems, finding the optimal 

solution is very time consuming and in larger 

problem cases even impossible in realistic time. 

Variety of different methods have been investigated 

for calculating near optimal solutions. The first is a 

greedy heuristic approach of collecting the vertex 

with the smallest ratio between its weight and degree 

[13], [14]. Genetic algorithms have also been used 

[15]. 

     The use of ant colony optimization gives very 

good results  when used for the MWVCP, better that 

results acquired by genetic algorithms and local 

search methods like tabu search, and simulated 

annealing [16].    

   This paper is organized as follows. In Section 2 we 

present the implementation of ACO for the 

MWVCP. In Section 3 we discuss parallelization of 

the Ant Algorithms. In Section 4 different parallel 

topologies for ACO are presented. In the Section 5 

we present our implementation of parallelization and 

in Section 6 conducted experiments and comparison 

of the effectiveness of these algorithms to the 

sequential one.   

 

 

2   ACO for the MWVCP 
The use of ACO has been proven to be effective on 

various types of problems from Economic Load 

Dispatch [17], Scheduling problems [18], Image 

processing [19], and also the MWVCP [16]. 

     The MWVCP is in two main aspects different 

from most of the problems solved by using ACO. 

The solution of the problem is a subset of the graph 

vertexes set, instead of a permutation. The heuristic 

function is dynamic, while in most of other 

applications it is static. These two differences affect 

the basic algorithm in two directions.  First, ants 

leave the pheromone on vertexes instead of on edges 

and second, we dynamically update the graph, and 

with it, the heuristic function. The first step in 

solving these problems is representing the problem 

in a way that makes dynamic calculation of the 

heuristic function simple. 

     Since ants in their search can move from a vertex 

to any other vertex, it is natural to use a fully 

connected graph Gc(V,Ec)  derived from G. In the 

article [16] it is proposed to add weights to edges in 

the new graph Gc. If an edge exists in G, it is given 

the weight 1, or 0 if it does not exist in the original 

graph. We have adopted this approach, 

 
Fig. 1  Original graph 

 
Fig. 2  Fully connected graph 
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which is illustrated by Fig.1, the original graph and 

Fig 2, the derived graph. Lines colored in black 

represent edges with value 1, the red ones have the 

value 0. 

     As we mentioned before, we also have to update 

this graph as we add new vertexes to the result set. 

This is done using the following rule: when we add 

vertex a weights of all edges in Gc  that are connec-

ted to a, are set to 0. This is illustrated by Fig. 3.  

 

 
Fig. 3  Adding a vertex to the solution set 

 

Let us define Gk (V,Eck,) as the state of the graph 

after k vertexes have been added to the solution set, 

and a corresponding function:  

 

( , ) ( ( , ))k cki j Value E i j   (1) 

 

This update rule has two roles. First, we can 

dynamically evaluate the preference of vertexes with 

function ψκ and second, it gives us the information 

when all edges have been covered, or more 

precisely, if the total sum of edge weights in Gk  is 0, 

then all edges are covered. Now we can define a 

dynamic heuristic 

 

( , )
( , )

( )

c
ki j E

jk

i j

w j








 (2) 

 

In Equation 2 w(j) is the weight of a vertex. Using 

the heuristic defined with ηjk  in Equation 2 we can 

setup the state transition rule for ants: 
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In Equation 3 q0 is the standard parameter that 

specifies the exploitation/exploration rate, and q is a 

random variable that decides the type of selection on 

each step. Ak is a list of available vertexes. We point 

out that opposite to the TSP transition rule, it does 

not depend on the last selected vertex and that is 

why we have τi instead of τij. 

      To fully specify an Ant Colony System we still 

have to define the global (when an ant finishes its 

path) and a local (when an ant chooses a new vertex) 

update rules. The role of the global update rule is to 

make paths creating better solutions to become more 

desirable, or in other words, it intensifies 

exploitation.  
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Equation 4 defines the global update rule. In it Δτι  is 

a quality measure of  solution subset V’ that contains 

vertex i, and with it we define a global update rule in 

Equation 5. This measure is inverse proportional to 

the weight of a solution. Parameter p is used to set 

the influence of newly found solution on the 

pheromone trail.  

     The local update rule purpose is to shuffle 

solutions and to prevent all ants from using very 

strong vertexes. The idea is to make vertexes less 

desirable as more ants visit it. In this way, 

exploration is supported. The formula for the local 

update rule has the standard form  
 

0(1 )i i       (6) 

 

For the value of t0 we take the quality measure of the 

solution acquired with the greedy algorithm when 

we select the vertex with the best ratio of vertex 

degree and weight.  Parameter φ is used to specify 

the strength of the local update rule. This 

implementation with other different variations of 

ACO are compared in [20, 21]. 

 

  

3   Parallel ACO  
Due to the properties of ant based algorithms it is 

natural to use parallelization in its application. There 

are several different approaches to parallel 

implementations of ant algorithms that have been 

described in the literature. The most natural way 

extending ACO to parallel algorithms is connecting 

ants with processes. A very fine-grained paralleliza-

tion, where every processor holds an individual ant 

was presented by Bolondi and Bondaza [22]. 
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Characteristic of fine-grained approaches is that very 

few, often only one, individuals are assigned to one 

processors and these individuals are connected by a 

population structure. One of the main problems of 

this approach is the large overhead in 

communication that appears with the increase of the 

number of processors. Because of that this 

implementation does not scale very well with the 

growth of the number of processors. In the same 

thesis it is shown that when a coarser grid is used, 

better results are achieved. 

     Bullnheimer et al. discusses in their article [23] 

two approaches to this type of parallelization: one 

that is synchronous and a second one partially 

asynchronous. In the synchronous application they 

propose a straightforward strategy for the Ant 

System for computing the TSP tours in parallel.   An 

initial process "master” starts a set of processes 

“workers” one for each ant.  After distributing 

starting information about the problem, the distance 

matrix and the initial trail intensities to all the ants, 

every “worker” can start to draw up the path and 

compute the tour ant. When ants finish their path 

calculations the resulting path is sent from each 

worker back to the master.  Afterwards the master 

updates the trail levels, and the global best solutions 

and new worker processes are started. In the 

asynchronous approach each worker holds a certain 

number of processes (ants) and performs 

independently of other workers a certain number of 

iterations of the sequential algorithm on them 

consecutively. After these local iterations are 

finished a global synchronization among all workers 

will be performed. The master will then globally 

update all the colony data. This approach reduced 

the communication overhead considerably and gave 

good and promising values. An interesting approach 

for multi-agent methods in a decentralized, 

asynchronous and parallel environment is given in 

article [24] which is more closely connected with its 

ant colony natural counterpart. In this approach the 

pheromone infrastructure, used for storing the 

pheromone matrix, for all the processes is divided 

into parts and control over each of them  is given to 

separate processes. 

    The Bullnheimer asynchronous approach comes 

close to the, in majority of the cases, more efficient 

island model which was first used for genetic 

algorithms. The island models for genetic algorithms 

(GAs) have been intensively studied in [25].  Stutzle 

in his article [26] compared the solution quality of 

one long and several independent short runs of an 

ant algorithm. He has shown that when the running 

time of the sum of short ones is equal to the long 

run, under some conditions the short runs proved to 

give better results. In the island model application of 

parallel ACO each colony has a single processor 

dedicated to it. When applying this model of 

parallelization of great importance is the data that is 

going to be exchanged between processes. One of 

the possibilities is communicating the pheromone 

matrix between colonies, but this approach has the 

significant drawback of a large amount of data 

traveling between them. A better way, both in the 

sense of final result quality and data transfer 

quantity is exchanging the best-so-far solutions of 

colonies. The exchange between solutions is usually 

done either when colonies finish some fixed number 

of iterations or periodically every t time units.  

 

 

4 Different Topologies for Parallel 

ACO Algorithms  
Parallel algorithms are very important for population 

based optimization heuristics because they can give 

super-linear increase in efficiency. This level of 

improvement is accomplished with the use of 

multiple colonies. In our parallel implementation of 

ACO for the MWVCP we have adopted the island 

approach in which each colony has been given a 

separate process. The method of communication 

between colonies that we implemented is the 

exchange of the best-so-far solution found by each 

colony. We focus our analysis to the possible 

systems of communication and their effectiveness in 

the case of MWVCP. In the following we describe 

these communication methods which are slight 

variation of the topologies presented in article [4] 

and the principles of the communication on each of 

them: 
 

 
 

Fig. 4  Communication in a fully connected 

topology. Red represents sent, blue returned 

(overwritten) best solution 

 

WSEAS TRANSACTIONS on COMPUTERS Raka Jovanovic, Milan Tuba, Dana Simian

ISSN: 1109-2750 86 Issue 1, Volume 9, January 2010



     Fully connected. In this case, n colonies with 

different random seeds are simulated and they 

communicate with each other with the goal of 

finding the good solutions. The interaction between 

colonies is done in the following fashion. The best-

so-far solutions are collected from all the colonies.  

The best overall solution, or in a variation the best 

colony index, is found and it is sent to all n colonies 

which set their own best-so-far solution to it. 

 

 
 

Fig. 5  Communication in a replace worst topology. 

Red represents sent, blue returned (overwritten) best 

solution  

 

    Replace worst. In this case, we again search for 

the best overall solution for all n colonies, but we 

also find the colony with the worst solution. Instead 

of sending the best solution to all the colonies, it is 

only sent to the worst colony which sets a new best 

solution. This approach has an advantage compared 

to a fully connected topology of lower amount of 

communication between the colonies. 

 

 
 

Fig. 6  Communication in a ring topology. Red 

represents sent, blue returned (overwritten) best 

solution  

 

     Ring. This method of communication is inspired 

by the ring topology in which a colony only 

communicates with neighboring colonies. In a 

colony cluster with n colonies the k  indexed colony 

will only give its best-so-far solution to the           

[(k-1) mod n]  indexed colony, and receives it from 

[(k+1) mod n] indexed colony. This approach has 

greatly smaller level of communication then the two 

previously mentioned methods. 

 

 
 

Fig. 7  Communication in a ring switch topology. 

Red blue arrows represent the exchange of best 

solution between colonies  

 

     Ring switch. Is very similar to the ring method in 

the sense that each colony communicates only with 

its neighbors. A big difference to the three already 

mentioned methods is that colonies with low quality 

solutions do not overwrite them with a better 

solution but instead an exchange is done. In this 

way, the lower quality solutions are not lost, but are 

used in combination with pheromone matrixes from 

other colonies. In practice  colony with index k only 

exchanges its solution with colony [(k-1) mod n]. 

     Independent parallel runs. This implementation 

has no communication at all between colonies. It 

runs the same sequential ACO algorithm with 

different random seeds in n different processes. The 

solution it takes is the best solution of all the 

independent runs. This method has the advantage 

that no extra code is needed for the parallelization. 

     A very interesting adaptive approach to 

communication connections between colonies is 

given by Ling Chen and Chunfang Zhang [27] for 

parallel implementation of ACO. The connections 

are not fixed like in previously mentioned topologies 

but depend on the currently found best solutions for 

all colonies. They propose two methods for 

establishing connections between colonies that 

exchange data. In the first, the solutions found by 

colonies are sorted and ranked. The next step is 

exchanging solutions between colonies with the best 

and the worst rank, then the second best and the 
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second worst, and so on. In the second model 

colonies with the most different solution exchange 

their solutions. In their implementation the time 

interval of data exchange is also adaptive to improve 

performance. In our tests we did not implement this 

adaptive algorithm due to the relative complexity 

but we believe that it is necessary to mention it in 

the context of topologies. 

 

 

5 Implementation of Parallel ACO 

Algorithms 
In this section, we analyze methods of 

communication for parallel algorithms presented in 

the previous section and their effectiveness in ACO 

for MWVCP. All of the topologies have been 

implemented using our framework from article [28, 

29]. This framework is dot net based and is designed 

for creating windows applications. It is implemented 

as a plug-in system so similar research on 

parallelization can be conducted on other problems 

that could be solved by ACO just by creating a 

sequential version of the algorithm. We have created 

a plug-in for this system and used existing features 

to conduct our tests. The executable alpha version of 

this software (Figure 8) and accompanying 

Microsoft Visual Studio project can be downloaded 

from http://mail.phy.bg.ac.yu/~rakaj/home/.   All of 

our test have been performed on an Intel(R) 

CoreTM(2) CPU 6400 @ 2.13 GHz with 4GB of 

RAM with Microsoft Windows XP Professional x64 

Edition Version 2003 Service Pack 2.  

 

 
 

Figure 8. Graf-Ant software with the plug-in for 

Minimal Weighted Vertex Covering Problem 

 

     Parallelization has been implemented by creating 

different threads for each colony and one thread that 

is used as a colony cluster, a master class that 

executes the communication between different 

colony threads. This implementation is not a perfect 

representation of a true parallel execution of 

different topologies on multiprocessor machine or 

machines in a network. The main drawbacks are that 

communication between colonies is done without 

delay, there cannot be loss of data in communication 

between colonies or unexpected termination of 

execution of some colonies. Because of this, we 

focus our attention to the quality of the results these 

topologies give, rather than the speed.  

     Our software implementation was done in C#.  

The parallelization code was controlled by two main 

classes RAntMWVCPColonyCluster, and 

RAntMWVCPColony. RAntMWVCPColony is 

dedicated to a single colony and the execution of 

sequential ACO.   RAntMWVCPColonyCluster is 

used for regulating the parallel runs of several 

colonies, in the sense of starting threads, collecting 

results, communicating data amongst colonies. We 

observe the pseudo-code of the method that 

initializes the all colonies. 
 

void StartColonies(){ 
 
   ResetBestPath ();   
     for (int i = 0; i < NumberOfColonies; i++) 
{  
  Colonies[i].InitializeProblem(P); 
  StartThread(Colony[i].SimulateColony)
     } 
    InitializeTimer(time, InformationExchange); 
} 

             
It first resets colony cluster data using the 

ResetBestPath method. Next, it initializes colony 

properties for the tested problem and starts a thread 

for each colony. When all the threads are running a 

periodic timer is created that initializes information 

exchange, executing the function given by the 

following pseudo-code 

  
void InformationExchange(){  
 
      GetBestPath(); 
       ActiveExchangeMethod();   

   BestPath = Colonies[BestColony].Path; 
      BestValue = Colonies[BestColony].Value; 
       SaveClusterStatus(); 
} 

 
This method calculates the best found solution and 

the colony to which it belongs, executes data 

exchange for the active topology, stores the new best 

solution, and leaves any needed log information. 
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6 Experimental Results for Parallel 

ACO Algorithms 
We tested different sized problem instances with 50, 

100 and 150 nodes.  We also tested the effect of 

different sized colony clusters with 5 or 10 colonies 

working together. In all the cases each colony uses 

the Elitist Ant variation of ACO as presented in 

articles [16], [11]. In Tables 1, 2, 3, 4, 5, 6, all 

topologies have been given the same calculation 

time and the information exchange has been done 

periodically every n time periods. Tables 1 and 2 are 

for 50 node problems, Tables 3 and 4 for 100 node 

problems and Tables 5 and 6 for 150 nodes 

problems. Tables 1, 3 and 5 present results for 5 

colony tests and Tables 2, 4 and 6 for 10 colony 

cases. 

    When comparing the sequential algorithm to the 

parallel versions, we used the standard approach of 

giving them the same time of execution. We 

compare the best solution and solution average of 

Ft
k
(c) running k times with communication 

presented in the previous section,  to Ftk(c) running 

once for time t*k. c is a problem instance.  This puts 

the sequential algorithm in a partially disadvantaged 

position compared to the parallel algorithms because 

of the relatively long execution time. As it is 

mentioned in articles [4, 14], sequential algorithms 

perform better compared to parallel ones if 

calculation time is shorter. We can see the result for 

the sequential algorithm in the Tables 1, 3, 5 and 

compare them to results of clusters of 5 colonies. In 

all of our tests we simulated 5 separate runs for each 

parallel topology and the sequential algorithm. We 

compared the average and best found solution.  
 

Table 1. Number of nodes 50, Number of edges 

209, Number of Colonies 5, greedy algorithm 

solution value 2038, Calculation Time 1 minutes, 

and communication every 6 sec 
 

Topology Best 

Value 

Average 

Fully Connected 1712 1738.8 

Replace Worst 1701 1725.0 

Ring. 1660 1729.2 

Ring Switch 1667 1704.6 

Ind. Parallel Runs 1695 1719.2 

Sequential 1730 1749.2 

 

We first observe the solution quality for the smaller 

case with 50 nodes, Table 1. We wish to point out 

that all the parallel implementation gave better 

quality solutions then the sequential algorithm. The 

main reason for this is that the sequential algorithm 

started stagnating relatively early in the solution 

search process. If we used shorter execution time, 

the difference between the sequential and the 

parallel algorithms would have been smaller. 

 

Table 2. Number of nodes 50, Number of edges 

209, Number of Colonies 10, greedy algorithm 

solution value 2038, Calculation Time 1 minutes, 

and communication every 6 sec 
 

Topology Best 

Value 

Average 

Fully Connected 1735 1747.0 

Replace Worst 1701 1730.6 

Ring. 1672 1722.6 

Ring Switch 1673 1712.4 

Ind. Parallel Runs 1699 1719.8 

 

     In the small problem case, the fully connected 

approach gave poor results compared to other 

topologies. This can be explained by the fact that the 

search started focusing on some bad initial solution, 

in some runs.  On the other hand, focusing all the 

colonies on one good solution was not needed 

because of the relatively small solution space. We 

can notice that keeping the diversity of the search in 

the small problem case was of great importance as 

the results indicate that the bigger the diversity of 

the search, the better the final solution was. 

 

Table 3. Number of nodes 100, Number of edges 

450, Number of Colonies 5, greedy algorithm 

solution value 4548, Calculation Time 2 minutes, 

and communication every 10 sec 
 

Topology Best 

Value 

Average 

Fully Connected 3470 3521.6 

Replace Worst 3493 3519.0 

Ring. 3464 3516.8 

Ring Switch 3464 3503.6 

Ind. Parallel Runs 3503 3540.0 

Sequential 3542 3583.4 

 

WSEAS TRANSACTIONS on COMPUTERS Raka Jovanovic, Milan Tuba, Dana Simian

ISSN: 1109-2750 89 Issue 1, Volume 9, January 2010



     In the case of the bigger problem, the focusing of 

the search gave better results because the focused 

area was big enough for different colonies not to 

search over the same regions. All the topologies that 

used intensified searches near good solutions gave 

similar results. Due to the larger solution space, the 

parallel independent runs lost its advantage to these 

methods but still gave good results.  

 

Table 4. Number of nodes 100, Number of edges 

450, Number of Colonies 10, greedy algorithm 

solution value 4548, Calculation Time 2 minutes, 

and communication every 20 sec 
 

Topology Best 

Value 

Average 

Fully Connected 3462 3502.8 

Replace Worst 3499 3524.8 

Ring. 3499 3507.8 

Ring Switch 3460 3491.0 

Ind. Parallel Runs 3493 3505.8 

 

     Our second set of tests where on testing the effect 

of increasing the number of colonies from 5 to 10 

and using the same calculation time. In the small 

problem case (Tables 1, 2) the increase was a bad 

step and did not improve the quality of results. This 

can be explained by the relatively small solution 

space and because of the fact that colonies would be 

exploring the same areas. In the case of medium 

sized problems (Tables 3, 4) results where similar, 

but slightly better with a higher number of colonies.  

 

Table 5. Number of nodes 150, Number of edges 

450, Number of Colonies 5, greedy algorithm 

solution value 6782, Calculation Time 4 minutes, 

and communication every 30 sec 
 

Topology Best 

Value 

Average 

Fully Connected 5672 5763.2 

Replace Worst 5634 5735.6 

Ring. 5601 5726.0 

Ring Switch 5643 5738.8 

Ind. Parallel Runs 5746 5735.6 

Sequential 5788 5852.6 

 

Finally, in large problem cases (Tables 5, 6) the 

increase of the number of cooperating colonies 

significantly worsened the solution quality even 

getting it near to the sequential algorithm. In this 

case, we believe that the problem was that none of 

the colonies had sufficient time for improving 

solutions with intensive search near good solutions. 

Instead, just a wide range of areas was poorly tested. 

This indicates that depending of the problem in 

question, there is an optimal proportion between the 

number of colonies and the time or equivalent 

number of iterations dedicated to each colony.   

 

Table 6. Number of nodes 150, Number of edges 

450, Number of Colonies 10, greedy algorithm 

solution value 6782, Calculation Time 4 minutes, 

and communication every 30 sec 
 

Topology Best 

Value 

Average 

Fully Connected 5779 5823.0 

Replace Worst 5800 5836.6 

Ring. 5786 5821.4 

Ring Switch 5765 5804.0 

Ind. Parallel Runs 5754 5788.2 

 

     In our tests, the ring switch algorithm we 

proposed has calculated, on average, the best results. 

The ring switch algorithm has performed somewhat 

worse in the case from Table 5. We expect that this 

is a consequence of a relatively small number of 

tests conducted and consider it a statistical error. 

The good performing of ring switch can be 

explained by qualities of this algorithm. First, 

diversity of the search is not quickly lost because no 

solutions found so far are overwritten and 

disregarded. This is its advantage to algorithms that 

focus the search near good solutions like fully 

connected, replace worst and ring. The effect of the 

exchange still moves the search of the colony cluster 

in a good direction and is not kept in the same areas 

as in parallel independent runs. We can observe 

what happens in each of the two colonies A and B 

affected by the exchange. Let us say that the colony 

A has had a better best-so-far solution  than colony 

B. After the exchange, B will have a solution better 

than before and in the worst case, in later iterations 

after enough pheromone has been  deposited, search 

the same area as colony A had before the exchange. 

In the case of colony A that has gotten a solution 

worse than the one it head before, it is possible for it 

to end up searching the same space as colony B 
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before the exchange, after a high enough number of 

iterations. This is, however, not a very likely 

consequence of the exchange for this colony. The 

individual ants search paths do not directly depend 

on best-so-far solution but from the pheromone trail.  

This trail will slowly change from the good solution 

trail (from colony A) to a worse trail (colony B) and 

in this period it is highly likely for some ant to find a 

solution that has better quality than colony B had at 

the beginning. 

 

 

7   Conclusion 
We used our previously developed framework [26, 

27] to create software for conducting tests. We 

compared the effect of different parallel algorithms 

for the MWVCP. We have confirmed that, similar to 

the case of the TSP, the simple use of parallel 

independent runs is a good approach. In small 

problem cases it was even better that other, more 

complicated topologies like fully connected, replace 

worst and the ring. In larger problem cases, this 

advantage has been lost, but the results were still of 

good quality. We also introduced a variation of the 

algorithm corresponding to the ring topology. In this 

variation instead of overwriting lower quality 

solutions an exchange was conducted between 

neighboring colonies. This proved to be a good 

choice because the diversity did not quickly 

disappear and the search of the colony cluster was 

moving towards areas with better solutions. In our 

tests, ring and ring switch algorithms gave the best 

results with ring switch being slightly better.  

     We implemented the parallelization through the 

use of threads on a Windows platform. Even in the 

case of parallelization simulated by Windows on a 

single processor the results were better than when 

using a sequential algorithm.  

     In further research, we wish to adopt and 

implement the suspicion path removal hybridization 

used on the TSP to this problem. We will also 

extend our ant colony framework with the Adaptive 

Parallel Ant Colony Algorithm, and compare with 

our previous results.   

 

References: 

[1] R.Tanese, Parallel genetic algorithms for a 

hypercube. Proceedings of the second 

international conference on Genetic Algorithms 

and their Applications, Hillsdale, NJ, Lawrence 

Erlbaum Associates, Inc, 1987, pp. 177–183 

[2] Dorigo M, Gambardella LM: Ant colonies for 

the traveling salesman problem. BioSystems Vol. 

43 No.2 ,1997, pp.73-81. 

[3] Thomas Stützle, Parallelization strategies for 

Ant Colony Optimization, Parallel Problem 

Solving from Nature - PPSN V, Springer Berlin / 

Heidelberg, 1998,  pp. 722-731   

[4] Max Manfrin, Mauro Birattari, Thomas Stützle 

and Marco Dorigo, Parallel Ant Colony 

Optimization for the Traveling Salesman 

Problem, Ant Colony Optimization and Swarm 

Intelligence, Springer Berlin/Heidelberg (2006),  

pp. 224-234   

[5] Shigeyoshi Tsutsui, Parallel Ant Colony 

Optimization for the Quadratic Assignment 

Problems with Symmetric Multi Processing, 

Proceedings of the 6th international conference 

on Ant Colony Optimization and Swarm 

Intelligence, Springer-Verlag  Berlin, 

Heidelberg,  pp. 363 - 370, 2008 

[6] Mohammad Towhidul Islam, Parimala 

Thulasiraman, Ruppa K. Thulasiram, A Parallel 

Ant Colony Optimization Algorithm for All-Pair 

Routing in MANETs, Parallel and Distributed 

Processing Symposium, International, pp.259a, 

2003 

[7] T. Vetri Selvan, P. Chitra, P. Venkatesh, Parallel 

Implementation of Task Scheduling using Ant 

Colony Optimization, International Journal of 

Recent Trends in Engineering, Vol. 1, No. 1, pp. 

339-343, 2009 

[8] Xie Hongwei, Luo Yanhua, "Parallel ACO for 

DNA Sequencing by Hybridization," csie, vol. 4, 

pp.602-606, 2009 WRI World Congress on 

Computer Science and Information Engineering, 

2009 

[9] Bullnheimer, B., Kotsis, G., Strauß, C, Paralle-

lization strategies for the Ant System. High 

Performance Algorithms and Software in 

Nonlinear Optimization. Kluwer Academic 

Publishers, Norwell, MA (1998) pp. 87–100 

[10] Middendorf, M., Reischle, F., Schmeck, H.: 

Multi colony ant algorithms. Journal of 

Heuristics Vol. No.3, 2002, pp, 305–320 

[11] Benkner, S., Doerner, K.F., Hartl, R.F., 

Kiechle, G., Lucka, M.: Communication 

strategies for parallel cooperative ant colony 

optimization on clusters and grids. 

Complimentary Proceedings of PARA’04 

Workshop on State-of-the-Art in Scientific 

Computing, June 20-23, 2004, Lyngby, Denmark 

2005,  pp. 3 - 12  

[12] Karp, R.M.. Reducibility Among 

Combinatorial Problems. In R.E. Miller and J.W. 

Theater, Complexity of Computer Computations, 

New York: Plenum Press, 1972 

WSEAS TRANSACTIONS on COMPUTERS Raka Jovanovic, Milan Tuba, Dana Simian

ISSN: 1109-2750 91 Issue 1, Volume 9, January 2010



[13]  Chvatal, V.. A Greedy-Heuristic for the Set 

Cover Problem. Mathematics of Operations 

Research, Vol.4, 1979, pp. 233–235. 

[14]  Clarkson, K.L. A Modification of the Greedy 

Algorithm for Vertex Cover. Information 

Processing Letters, Vol. 16, 1983, pp. 23–25. 

[15] Ashok Kumar Gupta, Alok Singh, A Hybrid 

Heuristic for the Minimum Weight Vertex Cover 

Problem, Asia-Pacific Journal of Operational 

Research, 2006, vol. 23, No 2, pp 273-285 

[16]  Shyong Jian Shyu, Peng-Yeng Yin,  Bertrand 

M.T. Lin, An Ant Colony Optimization 

Algorithm for the Minimum Weight Vertex 

Cover Problem, Annals of Operations Research,  

Vol. 131, 2004, pp. 283–304, 

 [17] Vlachos Aristidis, An Ant Colony 

Optimization (ACO) algorithm solution to 

Economic Load Dispatch (ELD) problem. 

WSEAS Transactions On Systems,  Vol 5, No 8, 

pp. 1763 – 1771, 2006 

[18] Kolahan, F., Abachizadeh, M., Soheili, S, A 

comparison between Ant colony and Tabu search 

algorithms for job shop scheduling with 

sequence-dependent setups, WSEAS Transac-

tions on Systems, Vol. 12, pp. 2819- 2824, 2006  

[19] Mastorakis, N.E., Zhuang, X, Image processing 

with the artificial swarm intelligence, WSEAS 

Transactions on Computers, Vol 4, No. 4, pp. 

333-341, 2005 

[20] Raka Jovanovic, Milan Tuba:  A Comparative 

Assesment of Ant Colony Optimization 

Algorithms for the Minimum Weight Vertex 

Cover Problem, in Recent Advances in Artificial 

Intelligence, Knowledge Engineering and Data 

Bases, A Series of Reference Books and 

Textbooks, Artificial Intelligence Series, 

WSEAS Press, Cambridge, United Kingdom, 

2009, pp. 490-494 

[21] Milan Tuba, Raka Jovanovic: An Analysis of 

Different Variations of Ant Colony Optimization 

to the Minimum Weight Vertex Cover Problem, 

WSEAS Transactions on Information Science 

and Applications, Issue 6, Volume 6, June 2009, 

pp. 936-945 

[22] M. Bolondi, M. Bondaza: Parallelizzazione di 

un algoritmo per la risoluzione del problema del 

comesso viaggiatore; Master's thesis, Politecnico 

di Milano, 1993 

 

 

 

 

 

 

 

[23] B. Bullnheimer, G. Kotsis, C.  Strauß, 

Parallelization strategies for the ant system. 

Report Series SFB "Adaptive Information 

Systems and Modeling in Economics and 

Management Science", Nr. 8, 1997 

[24]  E. Ridge, D. Kudenko, D. Kazakov, E. Curry, 

Moving Nature-Inspired Algorithms to Parallel, 

Asynchronous and Decentralized Environments, 

     Proceeding of the 2005 conference on Self-

Organization and Autonomic Informatics, IOS 

Press, Amsterdam, The Netherlands, pp. 35--49, 

2005 

[25]  E. Cantu-Paz, Efficient and Accurate Parallel 

Genetic Algorithm. Kluwer Academic     

Publishers, Boston,  2000 

[26] T. Stutzle: Parallelization strategies for ant 

colony optimization; in: A. E. Eiben, T. Back, 

M. Schonauer, H.-P. Schwefel (Eds.), Parallel 

Problem Solving from Nature - PPSN V, 

Springer-Verlag, LNCS 1498, 722-731, 1998. 

[27] Ling Chen, Chunfang Zhang , Adaptive 

Parallel Ant Colony Algorithm, Advances in 

Natural Computation, Springer Berlin / 

Heidelberg, pp. 1239-1249, 2005 

[28] Raka Jovanovic, Milan Tuba, Dana Simian:  

Developing an Object-Oriented Framework for 

Solving Problems Using Ant Colony 

Optimization, in Computers and Simulation in 

Modern Science, Volume II, A Series of 

Reference Books and Textbooks, Mathematics 

and Computers in Science and Engineering, 

WSEAS Press, Bucharest, 2008, pp. 94-99 

[29] Raka Jovanovic, Milan Tuba, Dana Simian, An 

Object-Oriented Framework with Corresponding 

Graphical User Interface for Developing Ant 

Colony Optimization Based Algorithms, WSEAS 

Transactions on Computers, Vol. 7, No. 12, 

2008, pp. 1948 - 1957  

 

 

 

 

 

 

 

Acknowledgment: This research is supported by 

Projects 144007 and 141031, Ministry of 

Science, Republic of Serbia. 

WSEAS TRANSACTIONS on COMPUTERS Raka Jovanovic, Milan Tuba, Dana Simian

ISSN: 1109-2750 92 Issue 1, Volume 9, January 2010




