
Comparison of Different Topologies for Island-Based Multi-Colony

Ant Algorithms for the Minimum Weight Vertex Cover Problem

 RAKA JOVANOVIC MILAN TUBA DANA SIMIAN

 Institute of Physics Faculty of Computer Science Department of Computer Science

 Belgrade Megatrend University Belgrade Lucian Blaga University of Sibiu

Pregrevica 118, Zemun Bulevar umetnosti 29 5-7 dr. I. Ratiu str.

 SERBIA SERBIA ROMANIA

 rakabog@yahoo.com tubamilan@ptt.rs d_simian@yahoo.com

Abstract: - The aim of this paper is compare the effect of using different topologies or connections between

separate colonies in island based parallel implementations of the Ant Colony Optimization applied to the

Minimum Weight Vertex Cover Problem. We investigated the sequential Ant Colony Optimization algorithms

applied to the Minimum Weight Vertex Cover Problem before. Parallelization of population based algorithms

using the island model is of great importance because it often gives super linear increase in performance. We

observe the behavior of different parallel algorithms corresponding to several topologies and communication

rules like fully connected, replace worst, ring and independent parallel runs. We also propose a variation of the

algorithm corresponding to the ring topology that maintains the diversity of the search, but still moves to areas

with better solutions and gives slightly better results even on a single processor with threads.

Key-Words: - Ant colony optimization, Minimum weight vertex cover problem, Parallel computing,

Combinatorial optimization, Evolutionary computing

1 Introduction
Most processors today have multiple cores and even

for a single core multiple treads can be

implemented. In general, a system of n parallel

processors, each of speed k, is less efficient than one

processor of speed n*k. However, such parallel

system is usually much cheaper to build and because

of that research in parallelization is of great

importance. Parallelization of algorithms has proven

to be very powerful method in the case of population

based algorithms like Ant Colony Optimization

(ACO) and Genetic algorithms [1].

 The basic idea of ACO is to imitate the behavior

of ants in a colony while gathering food. Each ant

starts from the nest and walks toward food. It moves

until an intersection where it decides which path it

will take. In the beginning it looks like a random

choice but after some time the majority of ants are

using the optimal path. This is because the colony

works as a group and not just as individual ants and

this is achieved by using pheromone. Each ant

deposits pheromone while walking which marks the

route taken. The amount of pheromone indicates the

usage of a certain route. Pheromone trail evaporates

as time passes. Due to this a shorter path will have

more of pheromone because it will have less time to

evaporate before it is deposited again. The colony

behaves intelligently because each ant chooses path

that has more pheromone. There are many different

ways of converting the presented behavior into a

computational system, the most widespread is the

one presented by Marco Dorigo and Luca Maria

Gambardella [2].

 Different parallelization approaches have been

applied to ACO algorithms. It has been shown that

the multi-colony model is more effective than the

parallelization applied by assigning separate

processes to ants belonging to a single colony. This

is similar to the situation with genetic algorithms

where the best application of parallelization is to

create separate islands of populations and to

implement some kind of communication between

them. This approach gives even super-linear

improvement to population based algorithms applied

to certain problems [3]. Due to this fact

parallelization of ACO has been successfully applied

to a wide set of different problems like TSP [4],

Quadratic Assignment Problems [5], Routing in

MANETs (Mobile Ad Hoc Networks) [6], Task

Scheduling [7], DNA Sequencing [8].

 When working with multi-colony systems, the

communication data is of great importance.

Solutions, pheromone matrices, and parameters have

all been tested as the type of information that will be

exchanged between colonies [9], [10], [11]. The

exchange of the best-so-far solution has been shown

WSEAS TRANSACTIONS on COMPUTERS Raka Jovanovic, Milan Tuba, Dana Simian

ISSN: 1109-2750 83 Issue 1, Volume 9, January 2010

to be a good choice, which we use in our

comparisons of different topologies.

 The last step in application of parallel ACO is to

define the methods of communication and

interaction between colonies, and the corresponding

algorithms. These algorithms are named by their

corresponding topologies and the standard ones are:

 fully connected

 replace worst

 ring

 independent parallel runs

 We compare the quality of the results acquired by

these parallel algorithms with the results of the

sequential implementation and our variation of the

ring topology algorithm.

 To illustrate these parallel implementations we

use one of the classical problems of graph theory:

the Minimum Vertex Cover Problem. The problem

is defined for an undirected graph G = (V, E). V is

the set of vertexes and E is a set of edges. A vertex

cover of a graph is set of vertexes V’V that has the

property that for every edge e(v1,v2)E at least one

of v1,v2 is an element of V’. A minimal vertex cover

is a vertex cover that has the minimum number of

vertexes. In this paper we devote our attention to an

extension of this problem named the Minimum

Weight Vertex Cover Problem (MWVCP) in which

weights are added to the vertexes. The solution is

not the vertex cover with the minimum number of

vertexes, but one with the minimum sum of weights.

 It has been shown that this problem is NP-

complete even when it is restricted to a unit-

weighted planar graph with the maximum vertex

degree of three [12]. In the same way as for many

other NP-complete problems, finding the optimal

solution is very time consuming and in larger

problem cases even impossible in realistic time.

Variety of different methods have been investigated

for calculating near optimal solutions. The first is a

greedy heuristic approach of collecting the vertex

with the smallest ratio between its weight and degree

[13], [14]. Genetic algorithms have also been used

[15].

 The use of ant colony optimization gives very

good results when used for the MWVCP, better that

results acquired by genetic algorithms and local

search methods like tabu search, and simulated

annealing [16].

 This paper is organized as follows. In Section 2 we

present the implementation of ACO for the

MWVCP. In Section 3 we discuss parallelization of

the Ant Algorithms. In Section 4 different parallel

topologies for ACO are presented. In the Section 5

we present our implementation of parallelization and

in Section 6 conducted experiments and comparison

of the effectiveness of these algorithms to the

sequential one.

2 ACO for the MWVCP
The use of ACO has been proven to be effective on

various types of problems from Economic Load

Dispatch [17], Scheduling problems [18], Image

processing [19], and also the MWVCP [16].

 The MWVCP is in two main aspects different

from most of the problems solved by using ACO.

The solution of the problem is a subset of the graph

vertexes set, instead of a permutation. The heuristic

function is dynamic, while in most of other

applications it is static. These two differences affect

the basic algorithm in two directions. First, ants

leave the pheromone on vertexes instead of on edges

and second, we dynamically update the graph, and

with it, the heuristic function. The first step in

solving these problems is representing the problem

in a way that makes dynamic calculation of the

heuristic function simple.

 Since ants in their search can move from a vertex

to any other vertex, it is natural to use a fully

connected graph Gc(V,Ec) derived from G. In the

article [16] it is proposed to add weights to edges in

the new graph Gc. If an edge exists in G, it is given

the weight 1, or 0 if it does not exist in the original

graph. We have adopted this approach,

Fig. 1 Original graph

Fig. 2 Fully connected graph

WSEAS TRANSACTIONS on COMPUTERS Raka Jovanovic, Milan Tuba, Dana Simian

ISSN: 1109-2750 84 Issue 1, Volume 9, January 2010

which is illustrated by Fig.1, the original graph and

Fig 2, the derived graph. Lines colored in black

represent edges with value 1, the red ones have the

value 0.

 As we mentioned before, we also have to update

this graph as we add new vertexes to the result set.

This is done using the following rule: when we add

vertex a weights of all edges in Gc that are connec-

ted to a, are set to 0. This is illustrated by Fig. 3.

Fig. 3 Adding a vertex to the solution set

Let us define Gk (V,Eck,) as the state of the graph

after k vertexes have been added to the solution set,

and a corresponding function:

(,) ((,))k cki j Value E i j (1)

This update rule has two roles. First, we can

dynamically evaluate the preference of vertexes with

function ψκ and second, it gives us the information

when all edges have been covered, or more

precisely, if the total sum of edge weights in Gk is 0,

then all edges are covered. Now we can define a

dynamic heuristic

(,)
(,)

()

c
ki j E

jk

i j

w j

 (2)

In Equation 2 w(j) is the weight of a vertex. Using

the heuristic defined with ηjk in Equation 2 we can

setup the state transition rule for ants:

0

0

0

1 , & arg max

0 , & arg max

,

k

k

k

i ik
i A

k

j i ik
i A

j jk

j iki A

q q j

p q q j

q q

(3)

In Equation 3 q0 is the standard parameter that

specifies the exploitation/exploration rate, and q is a

random variable that decides the type of selection on

each step. Ak is a list of available vertexes. We point

out that opposite to the TSP transition rule, it does

not depend on the last selected vertex and that is

why we have τi instead of τij.

 To fully specify an Ant Colony System we still

have to define the global (when an ant finishes its

path) and a local (when an ant chooses a new vertex)

update rules. The role of the global update rule is to

make paths creating better solutions to become more

desirable, or in other words, it intensifies

exploitation.

1
,

()
i

j V

i V
w j

(4)

(1)i i ip (5)

Equation 4 defines the global update rule. In it Δτι is

a quality measure of solution subset V’ that contains

vertex i, and with it we define a global update rule in

Equation 5. This measure is inverse proportional to

the weight of a solution. Parameter p is used to set

the influence of newly found solution on the

pheromone trail.

 The local update rule purpose is to shuffle

solutions and to prevent all ants from using very

strong vertexes. The idea is to make vertexes less

desirable as more ants visit it. In this way,

exploration is supported. The formula for the local

update rule has the standard form

0(1)i i (6)

For the value of t0 we take the quality measure of the

solution acquired with the greedy algorithm when

we select the vertex with the best ratio of vertex

degree and weight. Parameter φ is used to specify

the strength of the local update rule. This

implementation with other different variations of

ACO are compared in [20, 21].

3 Parallel ACO
Due to the properties of ant based algorithms it is

natural to use parallelization in its application. There

are several different approaches to parallel

implementations of ant algorithms that have been

described in the literature. The most natural way

extending ACO to parallel algorithms is connecting

ants with processes. A very fine-grained paralleliza-

tion, where every processor holds an individual ant

was presented by Bolondi and Bondaza [22].

WSEAS TRANSACTIONS on COMPUTERS Raka Jovanovic, Milan Tuba, Dana Simian

ISSN: 1109-2750 85 Issue 1, Volume 9, January 2010

Characteristic of fine-grained approaches is that very

few, often only one, individuals are assigned to one

processors and these individuals are connected by a

population structure. One of the main problems of

this approach is the large overhead in

communication that appears with the increase of the

number of processors. Because of that this

implementation does not scale very well with the

growth of the number of processors. In the same

thesis it is shown that when a coarser grid is used,

better results are achieved.

 Bullnheimer et al. discusses in their article [23]

two approaches to this type of parallelization: one

that is synchronous and a second one partially

asynchronous. In the synchronous application they

propose a straightforward strategy for the Ant

System for computing the TSP tours in parallel. An

initial process "master” starts a set of processes

“workers” one for each ant. After distributing

starting information about the problem, the distance

matrix and the initial trail intensities to all the ants,

every “worker” can start to draw up the path and

compute the tour ant. When ants finish their path

calculations the resulting path is sent from each

worker back to the master. Afterwards the master

updates the trail levels, and the global best solutions

and new worker processes are started. In the

asynchronous approach each worker holds a certain

number of processes (ants) and performs

independently of other workers a certain number of

iterations of the sequential algorithm on them

consecutively. After these local iterations are

finished a global synchronization among all workers

will be performed. The master will then globally

update all the colony data. This approach reduced

the communication overhead considerably and gave

good and promising values. An interesting approach

for multi-agent methods in a decentralized,

asynchronous and parallel environment is given in

article [24] which is more closely connected with its

ant colony natural counterpart. In this approach the

pheromone infrastructure, used for storing the

pheromone matrix, for all the processes is divided

into parts and control over each of them is given to

separate processes.

 The Bullnheimer asynchronous approach comes

close to the, in majority of the cases, more efficient

island model which was first used for genetic

algorithms. The island models for genetic algorithms

(GAs) have been intensively studied in [25]. Stutzle

in his article [26] compared the solution quality of

one long and several independent short runs of an

ant algorithm. He has shown that when the running

time of the sum of short ones is equal to the long

run, under some conditions the short runs proved to

give better results. In the island model application of

parallel ACO each colony has a single processor

dedicated to it. When applying this model of

parallelization of great importance is the data that is

going to be exchanged between processes. One of

the possibilities is communicating the pheromone

matrix between colonies, but this approach has the

significant drawback of a large amount of data

traveling between them. A better way, both in the

sense of final result quality and data transfer

quantity is exchanging the best-so-far solutions of

colonies. The exchange between solutions is usually

done either when colonies finish some fixed number

of iterations or periodically every t time units.

4 Different Topologies for Parallel

ACO Algorithms
Parallel algorithms are very important for population

based optimization heuristics because they can give

super-linear increase in efficiency. This level of

improvement is accomplished with the use of

multiple colonies. In our parallel implementation of

ACO for the MWVCP we have adopted the island

approach in which each colony has been given a

separate process. The method of communication

between colonies that we implemented is the

exchange of the best-so-far solution found by each

colony. We focus our analysis to the possible

systems of communication and their effectiveness in

the case of MWVCP. In the following we describe

these communication methods which are slight

variation of the topologies presented in article [4]

and the principles of the communication on each of

them:

Fig. 4 Communication in a fully connected

topology. Red represents sent, blue returned

(overwritten) best solution

WSEAS TRANSACTIONS on COMPUTERS Raka Jovanovic, Milan Tuba, Dana Simian

ISSN: 1109-2750 86 Issue 1, Volume 9, January 2010

 Fully connected. In this case, n colonies with

different random seeds are simulated and they

communicate with each other with the goal of

finding the good solutions. The interaction between

colonies is done in the following fashion. The best-

so-far solutions are collected from all the colonies.

The best overall solution, or in a variation the best

colony index, is found and it is sent to all n colonies

which set their own best-so-far solution to it.

Fig. 5 Communication in a replace worst topology.

Red represents sent, blue returned (overwritten) best

solution

 Replace worst. In this case, we again search for

the best overall solution for all n colonies, but we

also find the colony with the worst solution. Instead

of sending the best solution to all the colonies, it is

only sent to the worst colony which sets a new best

solution. This approach has an advantage compared

to a fully connected topology of lower amount of

communication between the colonies.

Fig. 6 Communication in a ring topology. Red

represents sent, blue returned (overwritten) best

solution

 Ring. This method of communication is inspired

by the ring topology in which a colony only

communicates with neighboring colonies. In a

colony cluster with n colonies the k indexed colony

will only give its best-so-far solution to the

[(k-1) mod n] indexed colony, and receives it from

[(k+1) mod n] indexed colony. This approach has

greatly smaller level of communication then the two

previously mentioned methods.

Fig. 7 Communication in a ring switch topology.

Red blue arrows represent the exchange of best

solution between colonies

 Ring switch. Is very similar to the ring method in

the sense that each colony communicates only with

its neighbors. A big difference to the three already

mentioned methods is that colonies with low quality

solutions do not overwrite them with a better

solution but instead an exchange is done. In this

way, the lower quality solutions are not lost, but are

used in combination with pheromone matrixes from

other colonies. In practice colony with index k only

exchanges its solution with colony [(k-1) mod n].

 Independent parallel runs. This implementation

has no communication at all between colonies. It

runs the same sequential ACO algorithm with

different random seeds in n different processes. The

solution it takes is the best solution of all the

independent runs. This method has the advantage

that no extra code is needed for the parallelization.

 A very interesting adaptive approach to

communication connections between colonies is

given by Ling Chen and Chunfang Zhang [27] for

parallel implementation of ACO. The connections

are not fixed like in previously mentioned topologies

but depend on the currently found best solutions for

all colonies. They propose two methods for

establishing connections between colonies that

exchange data. In the first, the solutions found by

colonies are sorted and ranked. The next step is

exchanging solutions between colonies with the best

and the worst rank, then the second best and the

WSEAS TRANSACTIONS on COMPUTERS Raka Jovanovic, Milan Tuba, Dana Simian

ISSN: 1109-2750 87 Issue 1, Volume 9, January 2010

second worst, and so on. In the second model

colonies with the most different solution exchange

their solutions. In their implementation the time

interval of data exchange is also adaptive to improve

performance. In our tests we did not implement this

adaptive algorithm due to the relative complexity

but we believe that it is necessary to mention it in

the context of topologies.

5 Implementation of Parallel ACO

Algorithms
In this section, we analyze methods of

communication for parallel algorithms presented in

the previous section and their effectiveness in ACO

for MWVCP. All of the topologies have been

implemented using our framework from article [28,

29]. This framework is dot net based and is designed

for creating windows applications. It is implemented

as a plug-in system so similar research on

parallelization can be conducted on other problems

that could be solved by ACO just by creating a

sequential version of the algorithm. We have created

a plug-in for this system and used existing features

to conduct our tests. The executable alpha version of

this software (Figure 8) and accompanying

Microsoft Visual Studio project can be downloaded

from http://mail.phy.bg.ac.yu/~rakaj/home/. All of

our test have been performed on an Intel(R)

CoreTM(2) CPU 6400 @ 2.13 GHz with 4GB of

RAM with Microsoft Windows XP Professional x64

Edition Version 2003 Service Pack 2.

Figure 8. Graf-Ant software with the plug-in for

Minimal Weighted Vertex Covering Problem

 Parallelization has been implemented by creating

different threads for each colony and one thread that

is used as a colony cluster, a master class that

executes the communication between different

colony threads. This implementation is not a perfect

representation of a true parallel execution of

different topologies on multiprocessor machine or

machines in a network. The main drawbacks are that

communication between colonies is done without

delay, there cannot be loss of data in communication

between colonies or unexpected termination of

execution of some colonies. Because of this, we

focus our attention to the quality of the results these

topologies give, rather than the speed.

 Our software implementation was done in C#.

The parallelization code was controlled by two main

classes RAntMWVCPColonyCluster, and

RAntMWVCPColony. RAntMWVCPColony is

dedicated to a single colony and the execution of

sequential ACO. RAntMWVCPColonyCluster is

used for regulating the parallel runs of several

colonies, in the sense of starting threads, collecting

results, communicating data amongst colonies. We

observe the pseudo-code of the method that

initializes the all colonies.

void StartColonies(){

 ResetBestPath ();
 for (int i = 0; i < NumberOfColonies; i++)
{
 Colonies[i].InitializeProblem(P);
 StartThread(Colony[i].SimulateColony)
 }
 InitializeTimer(time, InformationExchange);
}

It first resets colony cluster data using the

ResetBestPath method. Next, it initializes colony

properties for the tested problem and starts a thread

for each colony. When all the threads are running a

periodic timer is created that initializes information

exchange, executing the function given by the

following pseudo-code

void InformationExchange(){

 GetBestPath();
 ActiveExchangeMethod();

 BestPath = Colonies[BestColony].Path;
 BestValue = Colonies[BestColony].Value;
 SaveClusterStatus();
}

This method calculates the best found solution and

the colony to which it belongs, executes data

exchange for the active topology, stores the new best

solution, and leaves any needed log information.

WSEAS TRANSACTIONS on COMPUTERS Raka Jovanovic, Milan Tuba, Dana Simian

ISSN: 1109-2750 88 Issue 1, Volume 9, January 2010

http://mail.phy.bg.ac.yu/~rakaj/home/

6 Experimental Results for Parallel

ACO Algorithms
We tested different sized problem instances with 50,

100 and 150 nodes. We also tested the effect of

different sized colony clusters with 5 or 10 colonies

working together. In all the cases each colony uses

the Elitist Ant variation of ACO as presented in

articles [16], [11]. In Tables 1, 2, 3, 4, 5, 6, all

topologies have been given the same calculation

time and the information exchange has been done

periodically every n time periods. Tables 1 and 2 are

for 50 node problems, Tables 3 and 4 for 100 node

problems and Tables 5 and 6 for 150 nodes

problems. Tables 1, 3 and 5 present results for 5

colony tests and Tables 2, 4 and 6 for 10 colony

cases.

 When comparing the sequential algorithm to the

parallel versions, we used the standard approach of

giving them the same time of execution. We

compare the best solution and solution average of

Ft
k
(c) running k times with communication

presented in the previous section, to Ftk(c) running

once for time t*k. c is a problem instance. This puts

the sequential algorithm in a partially disadvantaged

position compared to the parallel algorithms because

of the relatively long execution time. As it is

mentioned in articles [4, 14], sequential algorithms

perform better compared to parallel ones if

calculation time is shorter. We can see the result for

the sequential algorithm in the Tables 1, 3, 5 and

compare them to results of clusters of 5 colonies. In

all of our tests we simulated 5 separate runs for each

parallel topology and the sequential algorithm. We

compared the average and best found solution.

Table 1. Number of nodes 50, Number of edges

209, Number of Colonies 5, greedy algorithm

solution value 2038, Calculation Time 1 minutes,

and communication every 6 sec

Topology Best

Value

Average

Fully Connected 1712 1738.8

Replace Worst 1701 1725.0

Ring. 1660 1729.2

Ring Switch 1667 1704.6

Ind. Parallel Runs 1695 1719.2

Sequential 1730 1749.2

We first observe the solution quality for the smaller

case with 50 nodes, Table 1. We wish to point out

that all the parallel implementation gave better

quality solutions then the sequential algorithm. The

main reason for this is that the sequential algorithm

started stagnating relatively early in the solution

search process. If we used shorter execution time,

the difference between the sequential and the

parallel algorithms would have been smaller.

Table 2. Number of nodes 50, Number of edges

209, Number of Colonies 10, greedy algorithm

solution value 2038, Calculation Time 1 minutes,

and communication every 6 sec

Topology Best

Value

Average

Fully Connected 1735 1747.0

Replace Worst 1701 1730.6

Ring. 1672 1722.6

Ring Switch 1673 1712.4

Ind. Parallel Runs 1699 1719.8

 In the small problem case, the fully connected

approach gave poor results compared to other

topologies. This can be explained by the fact that the

search started focusing on some bad initial solution,

in some runs. On the other hand, focusing all the

colonies on one good solution was not needed

because of the relatively small solution space. We

can notice that keeping the diversity of the search in

the small problem case was of great importance as

the results indicate that the bigger the diversity of

the search, the better the final solution was.

Table 3. Number of nodes 100, Number of edges

450, Number of Colonies 5, greedy algorithm

solution value 4548, Calculation Time 2 minutes,

and communication every 10 sec

Topology Best

Value

Average

Fully Connected 3470 3521.6

Replace Worst 3493 3519.0

Ring. 3464 3516.8

Ring Switch 3464 3503.6

Ind. Parallel Runs 3503 3540.0

Sequential 3542 3583.4

WSEAS TRANSACTIONS on COMPUTERS Raka Jovanovic, Milan Tuba, Dana Simian

ISSN: 1109-2750 89 Issue 1, Volume 9, January 2010

 In the case of the bigger problem, the focusing of

the search gave better results because the focused

area was big enough for different colonies not to

search over the same regions. All the topologies that

used intensified searches near good solutions gave

similar results. Due to the larger solution space, the

parallel independent runs lost its advantage to these

methods but still gave good results.

Table 4. Number of nodes 100, Number of edges

450, Number of Colonies 10, greedy algorithm

solution value 4548, Calculation Time 2 minutes,

and communication every 20 sec

Topology Best

Value

Average

Fully Connected 3462 3502.8

Replace Worst 3499 3524.8

Ring. 3499 3507.8

Ring Switch 3460 3491.0

Ind. Parallel Runs 3493 3505.8

 Our second set of tests where on testing the effect

of increasing the number of colonies from 5 to 10

and using the same calculation time. In the small

problem case (Tables 1, 2) the increase was a bad

step and did not improve the quality of results. This

can be explained by the relatively small solution

space and because of the fact that colonies would be

exploring the same areas. In the case of medium

sized problems (Tables 3, 4) results where similar,

but slightly better with a higher number of colonies.

Table 5. Number of nodes 150, Number of edges

450, Number of Colonies 5, greedy algorithm

solution value 6782, Calculation Time 4 minutes,

and communication every 30 sec

Topology Best

Value

Average

Fully Connected 5672 5763.2

Replace Worst 5634 5735.6

Ring. 5601 5726.0

Ring Switch 5643 5738.8

Ind. Parallel Runs 5746 5735.6

Sequential 5788 5852.6

Finally, in large problem cases (Tables 5, 6) the

increase of the number of cooperating colonies

significantly worsened the solution quality even

getting it near to the sequential algorithm. In this

case, we believe that the problem was that none of

the colonies had sufficient time for improving

solutions with intensive search near good solutions.

Instead, just a wide range of areas was poorly tested.

This indicates that depending of the problem in

question, there is an optimal proportion between the

number of colonies and the time or equivalent

number of iterations dedicated to each colony.

Table 6. Number of nodes 150, Number of edges

450, Number of Colonies 10, greedy algorithm

solution value 6782, Calculation Time 4 minutes,

and communication every 30 sec

Topology Best

Value

Average

Fully Connected 5779 5823.0

Replace Worst 5800 5836.6

Ring. 5786 5821.4

Ring Switch 5765 5804.0

Ind. Parallel Runs 5754 5788.2

 In our tests, the ring switch algorithm we

proposed has calculated, on average, the best results.

The ring switch algorithm has performed somewhat

worse in the case from Table 5. We expect that this

is a consequence of a relatively small number of

tests conducted and consider it a statistical error.

The good performing of ring switch can be

explained by qualities of this algorithm. First,

diversity of the search is not quickly lost because no

solutions found so far are overwritten and

disregarded. This is its advantage to algorithms that

focus the search near good solutions like fully

connected, replace worst and ring. The effect of the

exchange still moves the search of the colony cluster

in a good direction and is not kept in the same areas

as in parallel independent runs. We can observe

what happens in each of the two colonies A and B

affected by the exchange. Let us say that the colony

A has had a better best-so-far solution than colony

B. After the exchange, B will have a solution better

than before and in the worst case, in later iterations

after enough pheromone has been deposited, search

the same area as colony A had before the exchange.

In the case of colony A that has gotten a solution

worse than the one it head before, it is possible for it

to end up searching the same space as colony B

WSEAS TRANSACTIONS on COMPUTERS Raka Jovanovic, Milan Tuba, Dana Simian

ISSN: 1109-2750 90 Issue 1, Volume 9, January 2010

before the exchange, after a high enough number of

iterations. This is, however, not a very likely

consequence of the exchange for this colony. The

individual ants search paths do not directly depend

on best-so-far solution but from the pheromone trail.

This trail will slowly change from the good solution

trail (from colony A) to a worse trail (colony B) and

in this period it is highly likely for some ant to find a

solution that has better quality than colony B had at

the beginning.

7 Conclusion
We used our previously developed framework [26,

27] to create software for conducting tests. We

compared the effect of different parallel algorithms

for the MWVCP. We have confirmed that, similar to

the case of the TSP, the simple use of parallel

independent runs is a good approach. In small

problem cases it was even better that other, more

complicated topologies like fully connected, replace

worst and the ring. In larger problem cases, this

advantage has been lost, but the results were still of

good quality. We also introduced a variation of the

algorithm corresponding to the ring topology. In this

variation instead of overwriting lower quality

solutions an exchange was conducted between

neighboring colonies. This proved to be a good

choice because the diversity did not quickly

disappear and the search of the colony cluster was

moving towards areas with better solutions. In our

tests, ring and ring switch algorithms gave the best

results with ring switch being slightly better.

 We implemented the parallelization through the

use of threads on a Windows platform. Even in the

case of parallelization simulated by Windows on a

single processor the results were better than when

using a sequential algorithm.

 In further research, we wish to adopt and

implement the suspicion path removal hybridization

used on the TSP to this problem. We will also

extend our ant colony framework with the Adaptive

Parallel Ant Colony Algorithm, and compare with

our previous results.

References:

[1] R.Tanese, Parallel genetic algorithms for a

hypercube. Proceedings of the second

international conference on Genetic Algorithms

and their Applications, Hillsdale, NJ, Lawrence

Erlbaum Associates, Inc, 1987, pp. 177–183

[2] Dorigo M, Gambardella LM: Ant colonies for

the traveling salesman problem. BioSystems Vol.

43 No.2 ,1997, pp.73-81.

[3] Thomas Stützle, Parallelization strategies for

Ant Colony Optimization, Parallel Problem

Solving from Nature - PPSN V, Springer Berlin /

Heidelberg, 1998, pp. 722-731

[4] Max Manfrin, Mauro Birattari, Thomas Stützle

and Marco Dorigo, Parallel Ant Colony

Optimization for the Traveling Salesman

Problem, Ant Colony Optimization and Swarm

Intelligence, Springer Berlin/Heidelberg (2006),

pp. 224-234

[5] Shigeyoshi Tsutsui, Parallel Ant Colony

Optimization for the Quadratic Assignment

Problems with Symmetric Multi Processing,

Proceedings of the 6th international conference

on Ant Colony Optimization and Swarm

Intelligence, Springer-Verlag Berlin,

Heidelberg, pp. 363 - 370, 2008

[6] Mohammad Towhidul Islam, Parimala

Thulasiraman, Ruppa K. Thulasiram, A Parallel

Ant Colony Optimization Algorithm for All-Pair

Routing in MANETs, Parallel and Distributed

Processing Symposium, International, pp.259a,

2003

[7] T. Vetri Selvan, P. Chitra, P. Venkatesh, Parallel

Implementation of Task Scheduling using Ant

Colony Optimization, International Journal of

Recent Trends in Engineering, Vol. 1, No. 1, pp.

339-343, 2009

[8] Xie Hongwei, Luo Yanhua, "Parallel ACO for

DNA Sequencing by Hybridization," csie, vol. 4,

pp.602-606, 2009 WRI World Congress on

Computer Science and Information Engineering,

2009

[9] Bullnheimer, B., Kotsis, G., Strauß, C, Paralle-

lization strategies for the Ant System. High

Performance Algorithms and Software in

Nonlinear Optimization. Kluwer Academic

Publishers, Norwell, MA (1998) pp. 87–100

[10] Middendorf, M., Reischle, F., Schmeck, H.:

Multi colony ant algorithms. Journal of

Heuristics Vol. No.3, 2002, pp, 305–320

[11] Benkner, S., Doerner, K.F., Hartl, R.F.,

Kiechle, G., Lucka, M.: Communication

strategies for parallel cooperative ant colony

optimization on clusters and grids.

Complimentary Proceedings of PARA’04

Workshop on State-of-the-Art in Scientific

Computing, June 20-23, 2004, Lyngby, Denmark

2005, pp. 3 - 12

[12] Karp, R.M.. Reducibility Among

Combinatorial Problems. In R.E. Miller and J.W.

Theater, Complexity of Computer Computations,

New York: Plenum Press, 1972

WSEAS TRANSACTIONS on COMPUTERS Raka Jovanovic, Milan Tuba, Dana Simian

ISSN: 1109-2750 91 Issue 1, Volume 9, January 2010

[13] Chvatal, V.. A Greedy-Heuristic for the Set

Cover Problem. Mathematics of Operations

Research, Vol.4, 1979, pp. 233–235.

[14] Clarkson, K.L. A Modification of the Greedy

Algorithm for Vertex Cover. Information

Processing Letters, Vol. 16, 1983, pp. 23–25.

[15] Ashok Kumar Gupta, Alok Singh, A Hybrid

Heuristic for the Minimum Weight Vertex Cover

Problem, Asia-Pacific Journal of Operational

Research, 2006, vol. 23, No 2, pp 273-285

[16] Shyong Jian Shyu, Peng-Yeng Yin, Bertrand

M.T. Lin, An Ant Colony Optimization

Algorithm for the Minimum Weight Vertex

Cover Problem, Annals of Operations Research,

Vol. 131, 2004, pp. 283–304,

 [17] Vlachos Aristidis, An Ant Colony

Optimization (ACO) algorithm solution to

Economic Load Dispatch (ELD) problem.

WSEAS Transactions On Systems, Vol 5, No 8,

pp. 1763 – 1771, 2006

[18] Kolahan, F., Abachizadeh, M., Soheili, S, A

comparison between Ant colony and Tabu search

algorithms for job shop scheduling with

sequence-dependent setups, WSEAS Transac-

tions on Systems, Vol. 12, pp. 2819- 2824, 2006

[19] Mastorakis, N.E., Zhuang, X, Image processing

with the artificial swarm intelligence, WSEAS

Transactions on Computers, Vol 4, No. 4, pp.

333-341, 2005

[20] Raka Jovanovic, Milan Tuba: A Comparative

Assesment of Ant Colony Optimization

Algorithms for the Minimum Weight Vertex

Cover Problem, in Recent Advances in Artificial

Intelligence, Knowledge Engineering and Data

Bases, A Series of Reference Books and

Textbooks, Artificial Intelligence Series,

WSEAS Press, Cambridge, United Kingdom,

2009, pp. 490-494

[21] Milan Tuba, Raka Jovanovic: An Analysis of

Different Variations of Ant Colony Optimization

to the Minimum Weight Vertex Cover Problem,

WSEAS Transactions on Information Science

and Applications, Issue 6, Volume 6, June 2009,

pp. 936-945

[22] M. Bolondi, M. Bondaza: Parallelizzazione di

un algoritmo per la risoluzione del problema del

comesso viaggiatore; Master's thesis, Politecnico

di Milano, 1993

[23] B. Bullnheimer, G. Kotsis, C. Strauß,

Parallelization strategies for the ant system.

Report Series SFB "Adaptive Information

Systems and Modeling in Economics and

Management Science", Nr. 8, 1997

[24] E. Ridge, D. Kudenko, D. Kazakov, E. Curry,

Moving Nature-Inspired Algorithms to Parallel,

Asynchronous and Decentralized Environments,

 Proceeding of the 2005 conference on Self-

Organization and Autonomic Informatics, IOS

Press, Amsterdam, The Netherlands, pp. 35--49,

2005

[25] E. Cantu-Paz, Efficient and Accurate Parallel

Genetic Algorithm. Kluwer Academic

Publishers, Boston, 2000

[26] T. Stutzle: Parallelization strategies for ant

colony optimization; in: A. E. Eiben, T. Back,

M. Schonauer, H.-P. Schwefel (Eds.), Parallel

Problem Solving from Nature - PPSN V,

Springer-Verlag, LNCS 1498, 722-731, 1998.

[27] Ling Chen, Chunfang Zhang , Adaptive

Parallel Ant Colony Algorithm, Advances in

Natural Computation, Springer Berlin /

Heidelberg, pp. 1239-1249, 2005

[28] Raka Jovanovic, Milan Tuba, Dana Simian:

Developing an Object-Oriented Framework for

Solving Problems Using Ant Colony

Optimization, in Computers and Simulation in

Modern Science, Volume II, A Series of

Reference Books and Textbooks, Mathematics

and Computers in Science and Engineering,

WSEAS Press, Bucharest, 2008, pp. 94-99

[29] Raka Jovanovic, Milan Tuba, Dana Simian, An

Object-Oriented Framework with Corresponding

Graphical User Interface for Developing Ant

Colony Optimization Based Algorithms, WSEAS

Transactions on Computers, Vol. 7, No. 12,

2008, pp. 1948 - 1957

Acknowledgment: This research is supported by

Projects 144007 and 141031, Ministry of

Science, Republic of Serbia.

WSEAS TRANSACTIONS on COMPUTERS Raka Jovanovic, Milan Tuba, Dana Simian

ISSN: 1109-2750 92 Issue 1, Volume 9, January 2010

