
Noname manuscript No.
(will be inserted by the editor)

Partitioning of Supply/Demand Graphs with
Capacity Limitations - An Ant Colony Approach

Raka Jovanovic · Abdelkader
Bousselham · Stefan Voß

Received: date / Accepted: date

Abstract In recent years there has been a growing interest for the problem
of the minimal partitioning of graphs with supply and demand, due to its
close connection to electrical distribution systems, especially in the context of
smartgrids. In this paper we present a new version of the problem which is more
suitable for practical applications in modeling such systems. More precisely,
the constraint of having a unique supply node in a subgraph (partition) is
substituted with a limit on the number of subgraphs and the capacity for each
of them. The problem is initially solved by a two stage greedy method. With
the goal of further improving the quality of found solutions, a corresponding
GRASP and an ant colony optimization algorithm are developed. Due to the
novelty of the problem, we include a description of a method for generating test
instances with known optimal solutions. In our computational experiments we
evaluate the performance of the proposed algorithms on both trees and general
graphs. The tests show that the proposed ant colony approach manages to
frequently find optimal solutions. It has an average relative error of less than
2% when compared to known optimal solutions. Moreover, it outperform the
GRASP.

Raka Jovanovic
Qatar Environment and Energy Research Institute, Hamad bin Khalifa University, PO Box
5825, Doha, Qatar
Tel.: +974-665-13631
E-mail: rjovanovic@qf.org.qa

Abdelkader Bousselham
Qatar Environment and Energy Research Institute, Hamad bin Khalifa University, PO Box
5825, Doha, Qatar
E-mail: abousselham@qf.org.qa

Stefan Voß Institute of Information Systems, University of Hamburg, Von-Melle-Park 5,
20146 Hamburg, Germany , and
Escuela de Ingeniera Industrial, Pontificia Universidad Católica de Valparáıso, Chile
E-mail: stefan.voss@uni-hamburg.de

2 Raka Jovanovic et al.

Keywords Ant Colony Optimization · Microgrid · Graph Partitioning ·
Demand Vertex · Supply Vertex · Combinatorial Optimization · GRASP

1 Introduction

Recently, the concept of interconnected microgrids has had an increased in-
fluence on the development of smartgrids (Hatziargyriou et al, 2007). In case
of such systems the electrical grid is partitioned into highly independent sub-
sections (microgrids). The new topology has brought the necessity of solving
many new optimization problems related to practical applications. Some ex-
amples are the maximizing of self-adequacy (Arefifar et al, 2012), reliability,
supply-security (Arefifar et al, 2013b) and the potential for self-healing (Are-
fifar et al, 2013a) of such systems. The mutual independence of individual
microgrids, inside of an interconnected system, has resulted in a wide range
of positive characteristics. For instance, the lower complexity of the entire
grid and enhanced reliability of each of the microgrids due to the increased
resistance to failures in other parts of the system. The term independence
corresponds to the level of power exchange between the connected microgrids.
More precisely, if there is a low level of power exchange there is a high level of
independence. This characteristic is formally defined as the maximization of
self-adequacy.

Certain global properties of the electrical grids can be efficiently modeled
and optimized using simplified graph models. Such models frequently corre-
spond to different types of graph partitioning problems. Some examples are
the use of a balanced partitioning (Andreev and Räcke, 2004), minimizing the
number or weight of cuts (Reinelt et al, 2008; Barnes et al, 1988), or by lim-
iting the number of cuts (Reinelt and Wenger, 2010). The problem of finding
the maximal partitioning of graphs with supply and demand (MPGSD) has
shown to be closely related to the maximization of self-adequacy of intercon-
nected microgrids (Jovanovic and Bousselham, 2014; Jovanovic et al, 2015).
Focus of the research for MPGSD, to a large extent, has been dedicated to
the theoretical aspects of this problem (Ito et al, 2008; Narayanaswamy and
Ramakrishna, 2012; Ito et al, 2005; Kawabata and Nishizeki, 2013). A method
for finding solutions with a guarantee of a 2k-approximation for general graphs
has been presented in Popa (2013).

The published research for this problem has significant drawbacks that hin-
der its wider application in the field of microgrids. One reason is that a large
part of previous research has focused on solving the MPGSD for specific types
of graphs like trees (Narayanaswamy and Ramakrishna, 2012; Ito et al, 2005;
Kawabata and Nishizeki, 2013) and series-parallel graphs (Ito et al, 2008).
However, the main obstacle for the application of MPGSD within the field of
microgrids is in the problem definition itself. More precisely, the constraint of
having a unique supply for each demand node does not correlate to electri-
cal grids with multiple power sources. The existing variations of the original
problem, like the parametric version (Morishita and Nishizeki, 2013) and the

Partitioning of Supply/Demand Graphs with Capacity Limitations 3

one with the inclusion of additional capacity constraints (Ito et al, 2012) are
designed to address different properties of the system.

In this paper we present a new version of the MPGSD without the con-
straint of having a unique supply node for each demand node. Instead a limit
is given for the maximal allowed supply in a partition (subgraph) and the total
number of allowed partitions. For the newly defined problem a two stage greedy
algorithm is developed. In the initial stage the MPGSD is solved, and in the
second one suitable partitions are merged. As it is a well known fact, although
greedy algorithms are generally computationally inexpensive the quality of ac-
quired results is often relatively low. There is a wide range of approaches for
enhancing the performance of such algorithms like the use of the GRASP (Feo
and Resende, 1995; Hart and Shogan, 1987) or pilot (Voß et al, 2005) methods.
The ant colony optimization (ACO) (Dorigo and Blum, 2005) metaheuristic
has shown to be very suitable for such a task in case of graph problems. In the
context of the problem of interest, ACO has formerly proven to be an effective
approach for solving various graph partitioning problems like the multiway
(Tashkova et al, 2011) and balanced (Comellas and Sapena, 2006) ones, and
also for the closely related graph cutting (Hinne and Marchiori, 2011) and cov-
ering (Jovanovic and Tuba, 2011, 2013) problems. In our previous work, the
ACO method has been successfully applied to the MPGSD (Jovanovic et al,
2014). This gave us inspiration to develop an ACO algorithm for the problem
of interest. The developed ACO method, like the greedy algorithm, consists of
two stages but both of them use the same pheromone matrix. To evaluate the
proposed algorithm, tests have been performed on general graphs and trees,
with various sizes. The computational experiments show that the proposed
ACO approach frequently manages to find optimal solutions and has a small
average error when compared to known optimal solutions. Moreover, we pro-
pose a GRASP to have a proper comparison with the ACO. Numerical results
show that, while the ACO approach outperforms the GRASP, it can benefit
from being hybridized with the local search incorporated in the GRASP.

The paper is organized as follows. In the second section we give the defini-
tion for the problem of Maximal Partitioning of Supply/Demand Graphs with
Capacity Limitations (MPGSD-CL). In the following section the two stage
greedy algorithm is presented. In addition, we describe a GRASP based on the
proposed greedy method. In Section 4, we provide details of the correspond-
ing ACO algorithm. In the subsequent sections we propose a data generation
mechanism to provide problem instances with known optimal solutions. More-
over, we discuss results of our computational experiments and provide some
conclusions.

2 Maximal Partitioning of Supply/Demand Graphs with Capacity
Limitations

The MPGSD-CL is defined for an undirected graph G = (V,E) with a set of
nodes V and a set of edges E. The set of nodes V is split into two disjunct

4 Raka Jovanovic et al.

subsets Vs and Vd. Each node u ∈ Vs will be called a supply vertex and will
have a corresponding positive integer value sup(u). Elements of the second
subset v ∈ Vd will be called demand vertices and will have a corresponding
positive integer value dem(v). The goal is to find a set of disjoint subgraphs
Π = {S1, S2, .., SN} of the graph G for a fixed value N that satisfies the
following constraints. All the subgraphs in Π must be connected subgraphs.
Each subgraph Si consists of supply and demand nodes and they must have
a total supply greater or equal to its total demand. The total supply in each
of the subgraphs Si must be no more than a fixed limit Ms. The goal is
to maximize the fulfillment of demands, or more precisely to maximize the
following sum.

D(Π) =
∑
S∈Π

∑
v∈S∩Vd

dem(v) (1)

while the following constraints are satisfied for all Si ∈ Π

∑
v∈Si∩Vd

dem(v) ≤
∑

v∈Si∩Vs

sup(v) (2)

∑
v∈Si∩Vs

sup(v) ≤Ms (3)

Si ∩ Sj = ∅ , i 6= j (4)

Si is connected (5)

|Π| = N (6)

Eq. 3 is used to define the constraint of the capacity limit. It states that the
sum of all sup(v) for supply nodes v in Si is less than or equal to the limit Ms.
In the problem definition only a single integer limit value Ms is used for all the
partitions. An illustration of the MPGSD-LC is given in Figure 1. Although
we do not include any proof for NP-hardness of MPGSD-LC, it is important
to mention that such a proof has been given for MPGSD. This is true even for
graphs containing only one supply node and having a star structure (Ito et al,
2008).

3 Greedy Algorithm

In this section we present the proposed two stage greedy algorithm. As previ-
ously stated the first stage consists of solving the MPGSD, and in the second
one different subgraphs are merged. This merger is done in a way that the
newly created subgraphs satisfy the maximal supply constraint given in Eq. 3.
As it will be seen, in practice, these two stages are performed in a loop since
the application of one can influence the other.

Partitioning of Supply/Demand Graphs with Capacity Limitations 5

Fig. 1 Examples of problem instances for the MPGSD-LC. On the left the square nodes
represent supply nodes and circles demand nodes. Numbers within the nodes correspond
to supply and demand values, respectively. The right hand side shows the solutions, where
the same color (or connected shaded set) of nodes indicates they are a part of the same
partitioning.

3.1 Outline of Greedy Algorithm for MPGSD

For the sake of completeness in this subsection we give an outline of the greedy
algorithm for MPGSD, for which details can be found in (Jovanovic and Bous-
selham, 2014). As previously stated, the solution of the MPGSD consists of
|Π| = n subgraphs where n = |Vs| is the number of supply nodes. We wish
to mention once more, that for MPGSD-LC this need not be the case. At the
initialization step of the algorithm we start with n seeds for the n disjunct
subgraphs Si. Each of the seeds, the starting state of a partition, is one dis-
tinct supply node Si = {si}. At each of the following steps (iterations) of
the algorithm a subgraph Si is selected, and it is expanded with some vertex
v ∈ Vd. The selection of both v and Si is performed in a way that the expanded
subgraph satisfies the constraints of being connected, disjunct and fulfills Eq.
2.

Let us define NV as the set of adjacent vertices to v in G using the following
equation

NV (v) = {u | u ∈ V ∧ (u, v) ∈ E} (7)

6 Raka Jovanovic et al.

The idea of the proposed algorithm is to gradually expand the subgraphs
in Π by the addition of different demand nodes v. Let us say that at some
step k, where we are expanding subgraph Si, the set of potential candidates for
this task consists of vertices adjacent to Si. This set can be defined using the
extension of NV to subgraphs. It is important to note that as the subgraph Si
will be changed in subsequent iterations, the notation Ski will be used to specify
the state of subgraph Si at iteration k. The extension of NV for subgraphs is
given in the following equation.

N̂k
i = NV (Ski) = {u | (u ∈ V \ Ski) ∧ (∃v ∈ Ski : (u, v) ∈ E)} (8)

If the expansion of subgraph Ski is done using some v ∈ N̂k
i the newly cre-

ated subgraph Sk+1
i will be connected. But the selection of the expanding node

from the set N̂k
i does not guarantee the satisfaction of the other constraints.

More precisely, the new subgraph Sk+1
i need not satisfy Eq. 2, or there may

exist such an Sk+1
j that Sk+1

j ∩ Sk+1
i = v. To avoid this, we use a restricted

set of candidates Nk
i ⊂ N̂k

i which insures the satisfaction of these constraints.
We shall first define Supki as the available supply for subgraph Si at iteration
k in the following way.

Supki =
∑

v∈Sk
i ∩Vs

sup(v)−
∑

v∈Sk
i ∩Vd

dem(v) (9)

Now Nk
i is defined using the following equation.

N̄k
i = {u | u ∈ N̂k

i ∧ sup(u) ≤ Supki }

Nk
i = N̄k

i \
n⋃
j=1

Skj (10)

The greedy algorithm for MPGSD uses two separate heuristic functions in
combination with the sets Nk

i . At each step of the algorithm, first a heuristic
hs is used to select the subgraph Ski most suitable for expansion. Using a
second heuristic hn the best v ∈ Nk

i is selected and added to Ski . An in-depth
analysis of potential heuristics is given in our previous work (Jovanovic and
Bousselham, 2014; Jovanovic et al, 2015). This procedure will be repeated
until it is not possible to expand any of the subgraphs.

3.2 Merging procedure

The second stage of the greedy algorithm for solving the MPGSD-LC consists
in merging suitable subgraphs. To be exact, we say that the merger of sub-
graphs Si and Sj results in a subgraph Sm with a set of nodes Sm = {u |
(u ∈ Si) ∨ (u ∈ Sj)}. The reason for the merger stage is that the number of
subgraphs in a solution of MPGSD, |Vs| = n, is generally greater than the one
for MPGSD-LC since N ≤ n. The partition created by a merger should satisfy

Partitioning of Supply/Demand Graphs with Capacity Limitations 7

connectivity and capacity limit constraints given in Eq. 3. Similar as in the
case of the greedy algorithm for MPGSD, we need to define NSki as the set of
neighboring subgraphs to Ski . This can be done in the following way

TSupki =
∑

v∈Sk
i ∩Vs

sup(v) (11)

NSki = NS(Ski) = {Skj | (∃u ∈ Skj : u ∈ N̂k
i)∧ (TSupki +TSupkj ≤Ms)} (12)

In Eq. 11 TSupki represents the total supply in subgraph Ski . Eq. 12 gives us
the set of subgraphs NSki that can be merged with subgraph Ski , where the
resulting subgraph will satisfy the necessary constraints. To be more precise,
NSki consists of neighboring subgraphs with a small enough total supply.

The merger procedure consists in consecutive merger steps. Although the
merger operation is symmetric, for clarity of presentation we will say that
at each step we are expanding subgraph Ski with subgraph Skj . There is a

wide range of potential heuristics hse and he for selecting the subgraph Ski
that is to be expanded, and the subgraph Skj that will be merged with Ski .
Such heuristics would follow a similar logic to the ones presented in articles
by Jovanovic and Bousselham (2014) and Jovanovic et al (2015). Due to the
fact that we are using these heuristics only as a basis for an ACO algorithm
we will use two basic ones based on the total supply of subgraphs.

hse(S
k
i) = TSupki (13)

he(S
k
i) = TSupki (14)

At each step of the merging procedure the subgraph with a maximal value of
hse(S

k
i) and NSki 6= ∅ is selected for expansion. The reason for this is twofold.

As there is a limited numberN of allowed subgraphs, we wish to avoid the early
creation of several partitions that have a large value of TSup. The rationale
for this is that such partitions have a limited potential for merger, and as a
consequence there can be a large waste of supply. The second reason is that a
subgraph with a high value of TSup, has the smallest set of potential expansion
candidates. As a consequence, it is easy for them to be cut off from the rest
of the graph, or in other words loose all potential candidates for merger, by
expansion of other subgraphs.

The heuristic function he given in Eq. 14 states that subgraphs with high
value of total supply are considered more desirable. The logic behind this is
that it gets harder to merge subgraphs with a high value TSup as the algorithm
progresses since the available supply for merger decreases as more mergers are
performed. Because of this it is better to resolve high total supplies earlier.

3.3 Complete greedy algorithm

As previously stated, the greedy algorithm for MPGSD-LC combines the use
of the two stages presented in the preceding subsections. With the goal of

8 Raka Jovanovic et al.

having a clearer presentation of the proposed method, the greedy algorithm is
also given in Algorithm 1 in the form of a pseudo code.

Algorithm 1 Greedy algorithm
Initialize All Si with supply nodes
Π = {S1, S2, .., Sn}

repeat
while (Sum(|Ni|) > 0) do

Select Si using hs(Si)
Select u ∈ Ni using hn(u, Si)
Add u to Si

Update auxiliary structures
end while
while (Sum(|NSi|) > 0) do

Select Si using hse(Si)
Select Sj ∈ NSi using he(Sj)
Si = Si ∪ Sj

Π = Π \ {Sj}
Update auxiliary structures

end while
until (NoChange)
Set Π to N subgraphs with maximal values of supi

From the pseudocode we can see that the algorithm starts with a set Π
consisting of n subgraphs only having a single supply node si. Following is
the main loop that first performs all the possible subgraph expansions using
demand nodes. Afterwards all the possible mergers are done. The use of the
loop comes from the fact that these two stages are interconnected, or in other
words expansion steps can create the possibility of new mergers and vice versa.
For instance, an expansion step for Ski can increase the number of neighboring
subgraphs NSki . Similarly, when two subgraphs are merged it is possible that
the newly created one can be expanded.

The main loop is exited after an iteration in which no change has occurred
to the partitioning. The final step is just selecting the N subgraphs that cover
the most demand. It is important to point out that for the proposed algorithm
to be computationally effective it is necessary to use some auxiliary structures
similar to the ones used in (Jovanovic and Bousselham, 2014; Jovanovic et al,
2015). An illustration of the algorithm is given in Figure 2.

Note that the performance of the proposed greedy algorithm can be im-
proved by having a more complex strategy for the order of expansion and
merger operations. As previously stated, the greedy method has been devel-
oped as a basis for an ACO algorithm. We did not consider such details since
it is expected that the use of ACO will give a significantly higher level of
improvement.

Partitioning of Supply/Demand Graphs with Capacity Limitations 9

Fig. 2 Illustration of the greedy algorithm for MPGSD-LC. In all the steps squares/circles
represent supply/demand vertices. Grey color is used for unassigned vertices. Other colors
are used to indicate which vertices belong to the same partitions. The first step represents
the problem setup, the second one shows the solution of the MPGSD. The next step shows a
merger step, and the last step shows an additional expansion made possible by the merger.

3.4 Greedy Randomized Adaptive Search Procedure (GRASP)

One common method for improving the performance of a greedy algorithm is
its extension to the GRASP (Feo and Resende, 1995) metaheuristic. The ba-
sic idea of this approach is to generate multiple solutions using a randomized
greedy algorithm and further improving them by applying a local search proce-
dure. For the problem of interest, the previously presented greedy algorithm is
used as a basis for the GRASP. The randomization of the greedy algorithm has
been done for both stages of the algorithm. To be more specific, the probability
of selecting an element for expanding a partial solution, is proportional to its
rank among the top n candidates. The GRASP implementation corresponds
to the pseudo-code in Algorithm 2.

As it can be seen from the pseudocode, the first loop is used to generate
multiple solutions until the stopping criteria is reached. The stopping criteria

10 Raka Jovanovic et al.

Algorithm 2 GRASP

while (Not Stopping Criteria) do
Initialize All Si with supply nodes
Π = {S1, S2, .., Sn}
repeat

while (Sum(|Ni|) > 0) do
Randomly Select Si based on rank using hs(Si)
Randomly Select u ∈ Ni based on rank using hn(u, Si)
Add u to Si

Update auxiliary structures
end while
while (Sum(|NSi|) > 0) do

Randomly Select Si based on rank using hse(Si)
Randomly Select Sj ∈ NSi based on rank using he(Sj)
Si = Si ∪ Sj

Π = Π \ {Sj}
Update auxiliary structures

end while
until (NoChange)
Set Π to N subgraphs with maximal values of supi
Apply local search to Π
Check if Π is the best found solution

end while

used was that a maximal number of solutions has been generated. The inner
loop corresponds to a randomized version of the previously presented greedy
method. In practice, four selections (two in the expansion stage and two in the
merger stage) that have been performed using a heuristic function in the greedy
algorithm, are now done using a probabilistic method. Each such solution is
further improved by applying the local search. The local search is the same
as the one previously developed for the MPGSD (Jovanovic et al, 2015). The
final step is simply a comparison if the newly generated solution is the best
found.

4 Application of Ant Colony Optimization

In this section we present an ACO approach for solving the MPGSD-LC, based
on the previously presented greedy algorithm. The basic concept of an ACO
algorithm is to perform an “intelligent” randomization of the corresponding
greedy algorithm. Due to the extensive application of ACO several variations
of the algorithm have been developed, out of which the Ant Colony System
(Dorigo and Gambardella, 1997) is most commonly used. The “intelligent”
behavior of ACO comes from experience gained by previously generated solu-
tions, which is stored in a pheromone matrix. ACO algorithms use a colony of
n artificial ants which generate solutions. Each of the artificial ants generates
a solution by expanding a partial one through some steps. Contrary to the
greedy method, a probabilistic transition rule is used to decide how to expand
the partial solution instead of a heuristic function.

Partitioning of Supply/Demand Graphs with Capacity Limitations 11

The essential part of an ACO algorithm is the pheromone matrix, which
has the purpose of storing the experience gathered by the artificial ants. To be
exact, the pheromone matrix holds the information on which parts of potential
solutions usually belong to high quality ones. This is done by applying the
global and local update rules to the pheromone matrix. The purpose of the
global update rule is to intensify the selection of elements inside of the best
found solution or in some variations of good solutions. In other words, the
global update rule strengthens the search in the neighborhood of the global
best. This rule is applied after all n ants in the colony have generated their
solutions. The goal of the local update rule is to diversify the search of the
solution space. This is done by avoiding the repeated selection of the same
solution elements by all of the ants. This rule is generally performed after
an ant has applied the transition rule or generated a complete solution. To
fully specify the ACO for the MPGSD-LC we need to define the pheromone
matrix; transition, global and local update rules. Unlike the typical application
of ACO, separate transition rules are used in the expansion and merger stages
of the algorithm.

4.1 Pheromone Matrix

To be able to define the ACO algorithm for MPGSD-LC we first need to define
what an element (part) of the solution represents. A solution Π of the MPGSD
can also be observed as a set of pairs (s, v), which states that a demand node v
is inside subgraph Ss with a supply node s. The same concept can be extended
to the case of MPGSD-LC. The solution Π can be seen as a set of pairs (s, v),
where a supply or demand node v is in a subgraph containing supply node s.
The solution of a MPGSD-LC Π can formally be written as follows.

Π =

N⋃
j=1

[
(Sj ∩ Vs)× Sj

]
(15)

To make this type of notation complete we include the pairs having the
form (−1, v) for the case where v is not a member of any subgraph.

As previously stated the solution Π of the MPGSD can be viewed as a
set of pairs (s, v) where s is a supply vertex and v is a demand vertex. In
the appropriate greedy algorithm the partial solution Π will be expanded
with some pair (s, v) at each iteration. As a consequence the elements of the
pheromone matrix, in an ACO algorithm, can naturally be defined as τvs
which corresponds to the pair (s, v) (Jovanovic et al, 2014). The problem
with observing the solution of MPGSD-LC in the same way is that at each
step of the previously described greedy method, the partial solution will not
necessarily be expanded by only one such pair but frequently with many. For
instance, if a demand node d is added to a subgraph with supply nodes s1, s2
the partial solution will be expanded with pairs (s1, d) and (s2, d). In case of

12 Raka Jovanovic et al.

the merger procedure the partial solution will be expanded with a much higher
number of such elements.

From another point of view, at each step of the greedy algorithm the partial
solution is expanded either with one demand node in case of an expansion;
or by a subgraph in case of a merger. As a consequence, in case of an ACO
algorithm, the pheromone matrix only needs to provide information on how to
make such a selection. To achieve this we can use the same pheromone matrix
as in the case of MPGSD, but with a specific method for retrieving values
from it. This will be done differently for the expansion and merger stages.

We shall first analyze how the pheromone matrix should be used in the
expansion stage. Let us assume that subgraph Ss is being expanded and we
wish to retrieve the information from the pheromone matrix on how desirable
node v is. In case of MPGSD this can be directly done by taking the value
τvs from the pheromone matrix (Jovanovic et al, 2014). It is not possible to
directly extend this approach to MPGSD-LC, since subgraph Ss may have
several supply nodes, but we need to use the following formula.

τ̂vs = max
v∈Ss∩Vs

τvi (16)

In Eq. 16 τ̂vs represents the extracted pheromone value, and τvi is the
value from the pheromone matrix. τ̂vs is equal to the maximal element of the
pheromone matrix that has a demand node v and a supply node inside of Ss.
We can understand that the element of pheromone matrix τij gives us the
desirability of having node i in the same subgraph as supply node j. Eq. 16
states that only the strongest “connection” between the supply nodes in Ss
and v is considered. The main reason for such a choice is that a supply node j
will be attracting the same group of demand nodes independently from which
subgraph it belongs to.

We use the same logic for defining the procedure for extracting the pheromone
value for a merger step using the following equation.

τes = max
v∈Ss∩Vs
u∈Se∩Vs

τuv (17)

In Eq. 17 τ is represents the extracted pheromone value for a merger be-
tween subgraphs Se and Ss. This value will be equal to the maximal element
of the pheromone matrix that has a supply inside Se and a supply node inside
of Ss.

4.2 Transition Rules

Before giving details of the transition rule for the expansion stage, we will
first give a note on some observations on the structure of the solution of the
MPGSD. Such observation can be extended to the case of the problem with
limited capacity. If the solution is represented as a set of pairs (s, v) we can

Partitioning of Supply/Demand Graphs with Capacity Limitations 13

recognize that in the corresponding greedy algorithm (Jovanovic and Bous-
selham, 2014; Jovanovic et al, 2015) only the second stage, the selection of node
v using heuristic function hn, fully determines the elements of the solution.
To clarify, the heuristic for subgraph selection is used to make it possible to
perform a good expansion of the partial solution. For a deterministic algorithm,
when only one solution is generated, this is of essential importance but in
case of an ACO one this is less crucial. This is due to the fact that many
solutions are generated and the “steering” in the direction of good ones is,
to a large extent, done by the pheromone matrix. In the view of this fact, in
the proposed ACO algorithm, the heuristic function hs is substituted with a
random selection from the set of subgraphs that can be expanded. As a result,
the ACO mechanism is only used for the selection of expansion nodes.

Let us assume that we have randomly selected subgraph Ss with an index
s for expansion. The transition rule of an ACO algorithm is dependent on a
heuristic function and the pheromone matrix. In our previous work (Jovanovic
et al, 2015), an extensive analysis of potential heuristics has been presented.
In the proposed ACO algorithm we will use the same one as Jovanovic and
Bousselham (2014), defined in the following equation.

ηv = hn(v) = dem(v) (18)

The heuristic function ηv given in Eq. 18 states that vertices with high
demand are considered more desirable. The reason for this is that it becomes
harder to satisfy high demands as the algorithm progresses since the avail-
able supply decreases as new vertices are added to the subgraphs. Using the
heuristic function given in Eq. 18 we can define the transition rule for indi-
vidual ants. The selection of nodes is done from the set Nk

i to make certain
that all the necessary constraints are satisfied. Formally we can write this as
follows

pkv =

{
0 , v 6∈ Nk

s

probki , v ∈ Nk
s

(19)

In Eq. 19, pkv gives the probability of selecting node v at step k. Since it
is only allowed to select a node v ∈ Nk

s where Ss is the selected subgraph,
the probability of selecting v /∈ Nk

s is 0. The selection of a node v ∈ Nk
s is

performed based on the following formula.

probkv =

1 , q > q0 & v = arg max

i∈Nk
s

τ̂isηi

0 , q > q0 & v 6= arg max
i∈Nk

s

τ̂isηi

τ̂vsηv∑
i∈Nk

s
τ̂isηi

, q ≤ q0

(20)

Eq. 20 gives the probability probkv of selecting node v at step k. The q0 is the
standard ACO parameter that specifies the balance between the exploitation/
exploration rate. Coupled to it, q ∈ (0, 1) is a random variable which deter-
mines whether the selection is done in a deterministic or non-deterministic
way. In the case of the former q > q0, we simply select the node v with the

14 Raka Jovanovic et al.

maximal value of τ̂isηi, which results in a probability 1. If the selection is non-
deterministic (q < q0), the probability distribution for node selection is given
in the last row of Eq. 20.

The transition rule for the merger stage will be defined in a similar way.
First, we will consider that subgraph Ss has been selected for expansion using
the heuristic function hse. The chosen heuristic function used in the merger
transition rule is ηe = he(Se). Using ηs we can define the transition rule for
individual ants. The selection of a subgraph for a merger must be done from
the set NSks to make certain that all the necessary constraints are satisfied.
Formally we can write this as follows

pke =

{
0 , Se 6∈ NSks
probke , Se ∈ NSks

(21)

In Eq. 21, pke gives the probability of selecting subgraph Se at step k. Since
it is only allowed to select a subgraph Se ∈ NSks , where Ss is the subgraph
selected for expansion, the probability of selecting Se /∈ NSks is 0. The selection
of a subgraph Se ∈ NSks is performed based on the following formula.

probke =

1 , q > q0 & v = arg max

Si∈NSk
s

τ isηi

0 , q > q0 & v 6= arg max
Si∈NSk

s

τ isηi
τvsηv∑

Si∈NSk
s
τ isηi

, q ≤ q0

(22)

Eq. 22 gives the probability probke of selecting subgraph Se at step k to
merge with subgraph Ss. The parameters q0, q are used in the same way as
in the expansion transition rule. In the case q > q0, we simply select the
subgraph Se with the maximal value of τ isηi, which results in a probability 1.
If the selection is non-deterministic (q < q0), the probability distribution for
node selection is given in the last row of Eq. 22.

4.3 Local and Global Update Rules

The final step in defining the ACO method is specifying the global and local
update rules. The proposed ACO algorithm corresponds to the ant colony
system, in which only the best found solution deposits pheromone after each
iteration of the colony. The global update rule can formally be defined using
the following equations

∆τ = V al(Π ′) (23)

τi = (1− p)τvs + p∆τ ,∀(v, s) ∈ Π ′ (24)

In Eq. 23 Π ′ is used to note the currently best found solution. ∆τ is used
to specify the quality of the solution Π ′ using function V al, which is defined
in the implementation subsection. In Eq. 24, the parameter p ∈ (0, 1) is used
to specify the impact of the global update rule. It is important to point out

Partitioning of Supply/Demand Graphs with Capacity Limitations 15

that Eq. 24 only effects the values of pheromone τvs for (v, s) ∈ Π ′ as in Eq.
15.

Next we define the local update rule, which is used to diversify the search
of the solution space. In general this is done by decreasing values in the
pheromone matrix, after an ant has performed the transition rule. Due to
the way the elements of a solution are defined, in the application of ACO for
MPGSD-LC, this rule can only be applied after an ant has generated a com-
plete solution. In case ant i has generated a solution Πi, the corresponding
local update rule is defined using the following formula

τvs = ϕτvs ,∀(v, s) ∈ Πi (25)

In Eq. 25 ϕ ∈ (0, 1) is used to specify the influence of the local update rule.

4.4 Implementation

In this section we give details of the implementation of the proposed ACO
algorithm. The first necessary step is to define a suitable quality function V al
for the generated solutions. This function is necessary for both the initialization
of the pheromone matrix and for the global update rule. It is defined as follows

T =
∑
v∈Vs

sup(v) (26)

V al(Π) =
1

T −D(Π) + 1
(27)

As given in Eq. 27, the quality of a solution V al(Π) is inversely propor-
tional to the difference of T , the total initially available supply in G, and the
satisfied demand D(Π). With the goal of avoiding division by zero, one is
added since there is a possibility of T = D(Π). The pheromone matrix is ini-
tialized by setting the value of each of its elements τvs to V al(Πg), where Πg is
the solution acquired using the presented greedy algorithm. To be exact, in the
expansion stage the node selection heuristic is the maximal demand and the
subgraph selection heuristic is the maximal available supply, as in (Jovanovic
and Bousselham, 2014). In the merger stage, the heuristic functions are given
in Eqs. 13, 14. With the intention of having a comprehensive presentation, we
detail the proposed ACO algorithm in the form of the pseudo code shown in
Algorithm 3.

As it can be observed from the pseudo code, the algorithm starts by gener-
ating a solution using the greedy algorithm. Next, we initialize the pheromone
matrix τ using this solution. The main loop corresponds to one iteration of
the colony in which each of the n artificial ants generates a solution. The next
loop is used to generate a solution for a single ant. In this loop, first an initial
partitioning Π is created. As in the case of the greedy algorithm the complete
solution is generated by consecutive expansion and merger stages which are
given in two separate loops. In practice the method for generating an indi-
vidual solution in the ACO is the same as in the case of the greedy method

16 Raka Jovanovic et al.

Algorithm 3 ACO

Generate solution Πg using the greedy algorithm
Initialize the pheromone matrix τ with V al(Πg)

while (Maximal number of iterations not reached) do
for all n ants do

Initialize Π = {S1, .., Sn} , Si = {si}

repeat
while (Sum(|Ni|) > 0) do

Randomly select Si, where |NV (Si)| > 0
Select v for Si using transition rule
Si = Si ∪ v
Update auxiliary structures

end while

while (Sum(|NSi|) > 0) do
Select Si using hse(Si)
Select Sj ∈ NSi using transition rule
Si = Si ∪ Sj

Π = Π \ {Sj}
Update auxiliary structures

end while
until (NoChange)

Set Π to N subgraphs with maximal values of supi
Apply local update rule for Π

end for
Apply global update rule for Πbest

end while

with some important differences. First in the case of the expansion stage, the
subgraph that is being expanded is selected randomly from the set of avail-
able ones. For both, the expansion and the merger stage the transition rule is
used instead of the heuristic function. For the algorithm to be computation-
ally efficient it is recommended to include some auxiliary structures similar
to the ones presented in (Jovanovic and Bousselham, 2014). Such structures,
generally, need to be updated after each change in the partial solution. The
local update rule is applied after an ant has acquired a complete solution using
Eq. 25. After all of the ants in the colony have generated their solutions we
apply the global update rule given in Eq. 24 for the best solution Πbest found
by the algorithm for all the previous iterations.

5 Results

In this section we present the results of our computational experiments used to
evaluate the performance of the proposed ACO method. To be able to observe
the effect of the use of the ACO meta-heuristic we give a comparison with the
presented greedy algorithm (Gr). Both algorithms have been implemented in
C# using Microsoft Visual Studio 2012. The source code and the executive

Partitioning of Supply/Demand Graphs with Capacity Limitations 17

files have been made available at Jovanovic (2015). The calculations have been
done on a machine with Intel(R) Core(TM) i7-2630 QM CPU 2.00 Ghz, 4GB
of DDR3-1333 RAM, running on Microsoft Windows 7 Home Premium 64-bit.

5.1 Benchmark Data

Due to the fact that the problem of MPGSD-LC has not previously been
explored, before presenting the results of our computational experiments we
first give a detailed description of the method for generating test instances. We
have generated separate sets of problem instances for general graphs and trees.
With the goal of having an extensive set of test problems a wide range of graph
sizes has been considered. The generated test instances have 10-100 supply
nodes and 30-1000 demand nodes. For each pair (ns, nd), number of supply
and demand nodes, problem instances having a maximal number of subgraphs
nsub = 3, 5, 10 have been generated with the constraint that ns/nsub > 1. For
each triplet (ns, nd, nsub), 40 different problem instances have been created
using different seeds for the random generator using the following algorithm.

The first step was generating ns + nd random positive integer numbers,
corresponding to node weights, with a uniform distribution within the interval
[−10,−39]. General graphs had a total of (n+m) ∗ 2 random edges, with the
constraint that the graph had to be connected. In case of the second type of
graphs, i.e. trees, we would simply generate a random tree for ns+ nd nodes.

For both types of graphs, for a problem with a maximal number of sub-
graphs nsub, the next step was to select nsub random nodes as seeds for the
subgraphs (partitions). The subgraphs are grown using an iterative method
until all the nodes of the original graph are contained in one of the subgraphs.
The growth of subgraph Si has been performed by expanding it to a random
neighboring node that does not belong to any of the other subgraphs.

The number of supply nodes nsi in each of the subgraph Si was generated
using the following iterative procedure. Initially all nsi = 1. At each iteration
a random graph Si is selected and for it nsi is incremented by one if nsi <
|Si|/2−1. The next step was randomly selecting nsi nodes inside Si which will
be supply nodes. The total supply wi in such partition would be calculated
using the following formula

wi =
∑
a∈Si

sup(a)−
∑
v∈Seli

sup(v) (28)

Eq. 28 states that the total supply inside of partition Si is equal to the sum
of the weights of all nodes inside Si minus the sum of the weights of all the
nodes Seli selected to be supply nodes. The following step was distributing the
total supply among the nodes that have been selected to be supply nodes. In
practice this means that we randomly generate nsi numbers having the sum
wi. This has been done by generating nsi−1 distinct random integer numbers
between 0 and wi− 1. These numbers are put in an array A with the addition
of 0 and wi, and sorted. The supply corresponding to the i-th node was equal

18 Raka Jovanovic et al.

to A[i+ 1]−A[i]. The final step was setting the maximal allowed supply in a
subgraph MS to the maximal value of wi.

For problem instances generated using the proposed method the optimal
solution is known and is equal to the sum of supplies of all the supply nodes.
It is important to mention that by using the proposed method for generating
problem instances it is possible to have partitionings that do not have nsub
subgraphs with demand nodes. This is due to the possibility that some seed
nodes may be cut off from the rest of the graph. Such partitionings have been
excluded from the test data sets. The generated test instances are available
for download at
http://mail.ipb.ac.rs/~rakaj/home/graphsdlc.htm.

5.2 Computational Experiments

The goal of the computational experiments was to evaluate the performance
of both the proposed greedy and ACO algorithms. The tests have been done
on 33 different problem sets defined using triplets (ns, nd, nsub) for each type
of graphs (general and trees). Each such problem set had 40 different prob-
lem instances. The ACO method was defined using the following parameters.
The colony had 10 artificial ants and 150 iterations of the algorithm were
performed. In practice this means that 1500 solutions have been generated
for each test instance. The parameters for defining global and the local up-
date rules had the following values p = 0.1 and ϕ = 0.9. The value q0 = 0.1
was used for defining the exploitation/exploration rate. The chosen values for
p, ϕ, q0, n correspond to the ones commonly used in ACO implementations.
In our initial tests we have observed that they produce the best performance.
For each problem instance only a single run of the ACO algorithm has been
performed.

The results of the conducted computational experiments are given in Tables
1 and 2 for general graphs and trees, respectively. The values in these tables
are given in relation to each set of 40 different problem instances. To be exact,
we present the average normalized error of the found solutions compared to
the known optimal ones. The normalized error is calculated as (Optimal −
found)/Optimal∗100, and we show the average values for the 40 test instances.
To be able to observe the robustness of the approach, Tables 1 and 2 also
include the standard deviation and maximal normalized errors. For both graph
types, the number of found optimal solutions (hits) for each problem set are
also presented. Finally, to evaluate the scaling of the approach we give the
average calculation time of the method. Average computational time is equal
to the total calculation for all the problem instances in one problem set divided
by 40.

From the results in Tables 1, 2, we first notice that the performance of the
greedy algorithm has been highly dependent on individual problem instances.
While the average error was 6-12.5%, and 11-18.5% for general graphs and
trees, respectively, the maximal error was significant in both cases. To be more

http://mail.ipb.ac.rs/~rakaj/home/graphsdlc.htm

Partitioning of Supply/Demand Graphs with Capacity Limitations 19

Table 1 Comparison of the proposed algorithms for general graphs when 1500 solutions
have been generated for ACO.

Sup X Dem X Sub Avg(Stdev) Max Hits Time(s)
Gr ACO Gr ACO Gr ACO ACO

3 Subgraphs

10 X 30 7.87(5.54) 1.58(1.70) 22.22 10.80 0 8 7.25e-3
10 X 50 7.67(4.68) 0.62(0.41) 18.50 1.24 0 12 3.77e-2
10 X 100 5.96(4.75) 0.32(0.17) 16.33 0.44 0 9 1.34e-1

25 X 75 9.37(4.98) 0.37(0.29) 21.01 0.77 0 15 1.59e0
25 X 125 10.17(5.13) 0.23(0.17) 19.42 0.51 0 14 3.08e0
25 X 250 11.15(4.50) 0.12(0.08) 21.05 0.19 0 11 5.24e0

50 X 150 9.94(5.91) 0.27(0.15) 26.12 0.68 0 7 7.63e0
50 X 250 9.76(5.22) 0.21(0.13) 21.00 0.79 0 2 1.11e1
50 X 500 11.31(4.65) 0.14(0.08) 20.46 0.40 0 0 2.11e1

100 X 300 10.61(5.24) 0.33(0.22) 24.17 0.88 0 0 3.12e1
100 X 500 13.80(5.34) 0.33(0.32) 23.99 1.33 0 0 4.58e1
100 X 1000 12.49(5.75) 0.47(0.47) 24.24 1.80 0 0 8.41e1

5 Subgraphs

10 X 30 9.53(4.70) 2.10(0.80) 20.51 4.82 0 1 1.25e-3
10 X 50 7.74(3.69) 1.03(0.36) 19.42 1.86 0 2 3.16e-2
10 X 100 5.41(3.28) 0.48(0.17) 15.38 1.25 0 0 1.08e-1

25 X 75 9.44(4.33) 0.70(0.29) 16.53 1.57 0 2 1.60e0
25 X 125 8.13(3.87) 0.41(0.19) 18.13 1.22 0 2 3.04e0
25 X 250 6.94(3.95) 0.26(0.11) 16.87 0.55 0 0 5.04e0

50 X 150 9.09(5.16) 0.51(0.35) 20.60 1.91 0 0 7.39e0
50 X 250 9.06(4.22) 0.36(0.17) 25.49 0.88 0 0 1.10e1
50 X 500 8.30(3.91) 0.34(0.19) 19.10 0.95 0 0 2.05e1

100 X 300 8.74(3.68) 0.71(0.49) 15.77 2.48 0 0 2.95e1
100 X 500 10.14(4.22) 0.65(0.35) 22.21 1.51 0 0 4.36e1
100 X 1000 10.09(4.28) 0.71(0.54) 19.01 2.61 0 0 7.95e1

10 Subgraphs

25 X 75 8.32(2.63) 1.48(0.63) 13.36 2.83 0 0 1.58e0
25 X 125 7.25(2.46) 0.92(0.27) 13.01 1.50 0 0 2.90e0
25 X 250 6.06(3.01) 0.74(0.23) 15.10 1.16 0 0 4.98e0

50 X 150 7.37(2.54) 1.10(0.42) 13.56 2.52 0 0 7.06e0
50 X 250 8.33(3.75) 1.00(0.39) 21.23 2.07 0 0 1.09e1
50 X 500 7.25(2.11) 0.72(0.26) 11.44 1.54 0 0 2.04e1

100 X 300 7.29(2.73) 1.15(0.44) 13.55 2.63 0 0 2.85e1
100 X 500 8.23(2.86) 1.16(0.44) 17.13 2.76 0 0 4.24e1
100 X 1000 8.40(2.94) 0.96(0.43) 14.60 2.06 0 0 7.76e1

specific, the maximal error was generally around 15-25% for general graphs and
30-40% for trees. The proposed ACO algorithm gave a significant improvement
in the quality of found solutions, with an average error of 0.3-1.5% in case of
general graphs and 1-2.5% for trees. It is interesting that the performance of
the ACO method was much more consistent in the case of general graphs,

20 Raka Jovanovic et al.

Table 2 Comparison of the proposed algorithms for trees when 1500 solutions have been
generated for ACO.

Sup X Dem X Sub Avg(Stdev) Max Hits Time(s)
Gr ACO Gr ACO Gr ACO ACO

3 Subgraphs

10 X 30 13.69(10.65) 2.51(4.08) 37.79 21.44 4 21 3.25e-3
10 X 50 12.35(11.00) 0.93(2.27) 40.78 12.50 6 29 1.20e-2
10 X 100 13.60(10.28) 0.62(1.29) 36.81 6.22 3 27 5.32e-2

25 X 75 15.61(11.51) 1.68(2.18) 37.83 10.07 2 16 1.40e0
25 X 125 14.93(11.02) 0.94(2.52) 41.84 13.46 1 25 1.71e0
25 X 250 13.73(9.67) 1.22(3.22) 41.73 13.99 0 27 3.67e0

50 X 150 11.77(8.35) 2.07(3.89) 32.81 14.82 0 17 5.62e0
50 X 250 15.36(10.77) 0.73(1.39) 38.15 7.11 1 18 8.86e0
50 X 500 16.70(10.69) 1.36(2.54) 39.27 10.96 0 19 1.61e1

100 X 300 18.27(10.12) 1.62(2.16) 39.68 9.80 0 11 2.33e1
100 X 500 16.94(9.57) 1.19(2.18) 36.24 10.07 0 13 3.48e1
100 X 1000 15.65(10.51) 1.42(2.53) 37.34 12.35 1 16 6.83e1

5 Subgraphs

10 X 30 14.23(9.31) 2.71(3.85) 51.20 19.21 4 19 4.50e-3
10 X 50 12.60(7.76) 1.70(3.40) 32.40 12.57 1 28 1.75e-3
10 X 100 14.25(9.13) 0.78(1.97) 35.27 10.35 0 29 5.12e-2

25 X 75 13.53(9.49) 1.64(2.28) 40.10 10.37 3 15 1.20e0
25 X 125 16.51(7.99) 1.20(1.76) 37.88 5.93 0 16 1.62e0
25 X 250 15.17(10.45) 0.61(1.03) 39.53 4.86 0 24 3.40e0

50 X 150 15.60(9.42) 1.90(2.55) 42.96 10.48 1 11 5.11e0
50 X 250 13.60(8.97) 1.08(1.55) 36.42 5.30 0 17 8.03e0
50 X 500 17.29(9.54) 1.14(2.17) 40.37 11.13 0 14 1.46e1

100 X 300 20.27(9.24) 2.54(2.88) 37.68 13.13 0 8 2.25e1
100 X 500 15.67(8.34) 1.42(1.63) 30.24 5.62 0 10 3.28e1
100 X 1000 17.69(9.67) 2.48(2.87) 41.84 11.50 0 4 5.89e1

10 Subgraphs

25 X 75 13.88(8.53) 1.89(1.69) 34.67 6.60 0 8 7.28e-1
25 X 125 11.96(6.47) 1.60(1.77) 25.69 7.58 2 6 1.61e0
25 X 250 17.50(8.30) 0.89(1.12) 40.43 4.06 0 16 3.21e0

50 X 150 12.26(5.40) 1.95(1.75) 27.24 7.64 0 5 4.81e0
50 X 250 12.32(6.65) 1.32(1.45) 28.36 6.37 0 8 7.70e0
50 X 500 13.09(5.76) 1.05(1.32) 24.41 4.47 0 10 1.38e1

100 X 300 12.82(5.86) 2.23(1.72) 25.96 7.39 0 1 2.11e1
100 X 500 11.07(4.87) 1.38(1.49) 21.01 5.02 0 6 3.02e1
100 X 1000 14.01(6.67) 1.09(1.02) 29.46 4.22 0 5 5.47e1

where the standard deviation was small and the maximal error was generally
around 0.5-3%. For trees, the maximal error was generally around 5-15%, while
having higher values for smaller graphs. On the other hand, the ACO algorithm
managed to find optimal solutions in more than 30% of the problem instances
for trees, and only in around 7% of general graphs. The ACO method generally

Partitioning of Supply/Demand Graphs with Capacity Limitations 21

performed worst when ns/nsub was smallest. The computational time of the
algorithm was more dependent on the number of supply than demand nodes.
The calculation time was not significantly effected by the maximal number of
allowed subgraphs in a partitioning.

With the goal of having a better evaluation of the proposed ACO method,
it has been compared to the GRASP (Feo and Resende, 1995) presented above.
We have also explored the effect of adding the local search to the ACO algo-
rithm (ACO-C). To be more specific, in the ACO algorithm the local search
has been applied to every solution that has been generated by the artificial
ants. The chosen local search was the same as the one previously developed
for the MPGSD (Jovanovic et al, 2015), which is also used for the GRASP. In
case of GRASP and ACO-C we have generated 1500 different solutions. The
results of these tests can be seen in Tables 3 and 4 for general graphs and
trees, respectively. As in the case of the comparison of ACO and the greedy
method, we compare the average error, maximal error and number of found
optimal solutions. The computational times are not included in Tables 3 and
4, since there are very similar, with ACO being some 20-30% faster than the
other two methods due to the fact that no local search is used.

From the results in Tables 3 and 4 we can first notice that the GRASP gives
a very significant improvement when compared to the basic greedy algorithm,
generally having an average error 0.5-2.5% for general graphs and 2.5-6.0% in
case of trees. On the other hand, GRASP manages to achieve better results
than the ACO method only for a few of the smallest graph sizes. Overall the
ACO significantly outperforms GRASP, which indicates the effectiveness of
using the pheromone trail for guiding the exploration of the solution space.
The addition of the local search to ACO significantly improves the quality of
the found solutions. The ACO-C had generally an average error between 0.01-
1% and 0.3-2% for general graphs and trees, respectively. The most notable
improvement of ACO-C compared to ACO is in the number of found optimal
solutions which has risen to 28% and 50% for general graphs and trees, respec-
tively. It is important to note that although ACO-C significantly outperforms
ACO, for a few graphs sizes it produced worse average errors than the basic
algorithm.

6 Conclusion

In this paper a new version of the MPGSD was presented which is more
suitable for potential applications in the field of interconnected microgrids.
Approximate solutions for the newly defined problem, MPGSD-LC, are found
using a two stage greedy algorithm. The presented greedy method is used as
a basis for an ACO algorithm. The proposed ACO method introduces a novel
approach of using the pheromone trail by separating the pheromone matrix
and the method for extracting values from it. In this way it was possible to
use the same pheromone matrix for both stages of the proposed ACO method.

22 Raka Jovanovic et al.

Our computational experiments have shown that the proposed approach
is very suitable for the problem of interest. It was a significant improvement
compared to the basic greedy algorithm, and managed to find optimal solutions
for many of the test problem instances. The average relative error was never
greater than 3%, and in nearly half the cases it was less than 1%. The tests have
been performed on trees and general graphs. When we speak about optimality,
this is based on the properties of the data generation routine that we have
proposed, guaranteeing knowledge about the optimal objective function values.

In the future we plan to extend this research in two main directions. First,
we plan to adapt the method to a stochastic version of the problem. The
other direction is the development of a method that would be suitable for
solving very large problem instances. This type of research can prove to be very
beneficial for problems appearing in the field of electrical distribution systems
especially for the optimization of self-adequacy of interconnected microgrids
and other related problems.

Acknowledgements The comments of two anonymous referees are greatly appreciated.

References

Andreev K, Räcke H (2004) Balanced graph partitioning. In: Proceedings of
the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and
Architectures, ACM, New York, SPAA ’04, pp 120–124

Arefifar S, Mohamed Y, EL-Fouly THM (2012) Supply-adequacy-based opti-
mal construction of microgrids in smart distribution systems. IEEE Trans-
actions on Smart Grid 3(3):1491–1502

Arefifar S, Mohamed YR, EL-Fouly T (2013a) Comprehensive operational
planning framework for self-healing control actions in smart distribution
grids. IEEE Transactions on Power Systems 28(4):4192–4200

Arefifar S, Mohamed YR, EL-Fouly T (2013b) Optimum microgrid design for
enhancing reliability and supply-security. IEEE Transactions on Smart Grid
4(3):1567–1575

Barnes E, Vannelli A, Walker J (1988) A new heuristic for partitioning the
nodes of a graph. SIAM Journal on Discrete Mathematics 1(3):299–305

Comellas F, Sapena E (2006) A multiagent algorithm for graph partitioning.
In: Rothlauf F, Branke J, Cagnoni S, Costa E, Cotta C, Drechsler R, Lut-
ton E, Machado P, Moore J, Romero J, Smith G, Squillero G, Takagi H
(eds) Applications of Evolutionary Computing, Lecture Notes in Computer
Science, vol 3907, Springer, Berlin, pp 279–285

Dorigo M, Blum C (2005) Ant colony optimization theory: A survey. Theoret-
ical Computer Science 344(2):243–278

Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolu-
tionary Computation 1(1):53–66

Partitioning of Supply/Demand Graphs with Capacity Limitations 23

Feo TA, Resende MG (1995) Greedy randomized adaptive search procedures.
Journal of Global Optimization 6(2):109–133

Hart JP, Shogan AW (1987) Semi-greedy heuristics: An empirical study. Op-
erations Research Letters 6:107–114

Hatziargyriou N, Asano H, Iravani R, Marnay C (2007) Microgrids. IEEE
Power and Energy Magazine 5(4):78–94

Hinne M, Marchiori E (2011) Cutting graphs using competing ant colonies
and an edge clustering heuristic. In: Merz P, Hao JK (eds) Evolutionary
Computation in Combinatorial Optimization, Lecture Notes in Computer
Science, vol 6622, Springer, Berlin, pp 60–71

Ito T, Zhou X, Nishizeki T (2005) Partitioning trees of supply and demand.
International Journal of Foundations of Computer Science 16(4):803–827

Ito T, Demaine ED, Zhou X, Nishizeki T (2008) Approximability of parti-
tioning graphs with supply and demand. Journal of Discrete Algorithms
6(4):627 – 650

Ito T, Hara T, Zhou X, Nishizeki T (2012) Minimum cost partitions of trees
with supply and demand. Algorithmica 64(3):400–415

Jovanovic R (2015) Benchmark data sets for the problem of partitioning
graphs with supply and demand. URL http://mail.ipb.ac.rs/~rakaj/

home/graphsdlc.htm

Jovanovic R, Bousselham A (2014) A greedy method for optimizing the self-
adequacy of microgrids presented as partitioning of graphs with supply and
demand. In: The 2nd International Renewable and Sustainable Energy Con-
ference Ouarzazate, Morocco October 17-19, 2014, IEEE conference, pp
154–159

Jovanovic R, Tuba M (2011) An ant colony optimization algorithm with im-
proved pheromone correction strategy for the minimum weight vertex cover
problem. Applied Soft Computing 11(8):5360 – 5366

Jovanovic R, Tuba M (2013) Ant colony optimization algorithm with
pheromone correction strategy for the minimum connected dominating set
problem. Computer Science and Information Systems 10(3):133–149

Jovanovic R, Tuba M, Voß S (2014) An ant colony optimization algorithm
for partitioning graphs with supply and demand URL http://arxiv.org/

abs/1411.1080, 1503.00899
Jovanovic R, Bousselham A, Voß S (2015) A heuristic method for solving

the problem of partitioning graphs with supply and demand. Annals of
Operations Research DOI 10.1007/s10479-015-1930-5

Kawabata M, Nishizeki T (2013) Partitioning trees with supply, demand and
edge-capacity. IEICE Transactions 96-A(6):1036–1043

Morishita S, Nishizeki T (2013) Parametric power supply networks. In: Du DZ,
Zhang G (eds) Computing and Combinatorics, Lecture Notes in Computer
Science, vol 7936, Springer, Berlin, pp 245–256

Narayanaswamy NS, Ramakrishna G (2012) Linear time algorithm for tree
t-spanner in outerplanar graphs via supply-demand partition in trees URL
http://arxiv.org/abs/1210.7919, accepted in Discrete Applied Mathe-
matics (2014)

http://mail.ipb.ac.rs/~rakaj/home/graphsdlc.htm
http://mail.ipb.ac.rs/~rakaj/home/graphsdlc.htm
http://arxiv.org/abs/1411.1080
http://arxiv.org/abs/1411.1080
1503.00899
http://arxiv.org/abs/1210.7919

24 Raka Jovanovic et al.

Popa A (2013) Modelling the power supply network - hardness and approx-
imation. In: Chan TH, Lau L, Trevisan L (eds) Theory and Applications
of Models of Computation, Lecture Notes in Computer Science, vol 7876,
Springer, Berlin, pp 62–71

Reinelt G, Wenger KM (2010) Generating partitions of a graph into a fixed
number of minimum weight cuts. Discrete Optimization 7(12):1 – 12

Reinelt G, Theis DO, Wenger KM (2008) Computing finest mincut partitions
of a graph and application to routing problems. Discrete Applied Mathe-
matics 156(3):385 – 396

Tashkova K, Korosec P, Silc J (2011) A distributed multilevel ant-colony al-
gorithm for the multi-way graph partitioning. International Journal of Bio-
Inspired Computation 3(5):286–296

Voß S, Fink A, Duin C (2005) Looking ahead with the pilot method. Annals
of Operations Research 136(1):285–302

Partitioning of Supply/Demand Graphs with Capacity Limitations 25

Table 3 Comparison of the proposed algorithms with the GRASP for general graphs when
1500 solutions have been generated for ACO (best results are underlined).

Sup X Dem X
Sub

Avg(Stdev) Max Hits

GRASP ACO ACO-C GRASP ACO ACO-C GRASP ACO ACO-C

3 Subgraphs

10 X 30 0.95(1.76) 1.58(1.70) 0.89(1.74) 10.17 10.80 10.49 23 8 23
10 X 50 0.21(0.41) 0.62(0.41) 0.10(0.27) 1.59 1.24 0.88 31 12 35
10 X 100 0.06(0.33) 0.32(0.17) 0.01(0.06) 2.05 0.44 0.42 38 9 39

25 X 75 0.64(0.78) 0.37(0.29) 0.14(0.24) 3.90 0.77 0.66 13 15 30
25 X 125 0.50(0.69) 0.23(0.17) 0.01(0.05) 3.97 0.51 0.32 12 14 39
25 X 250 1.06(1.52) 0.12(0.08) 0.02(0.06) 0.19 6.34 0.17 11 5 34

50 X 150 0.96(1.06) 0.27(0.15) 0.07(0.12) 4.96 0.68 0.28 5 7 29
50 X 250 0.89(1.12) 0.21(0.13) 0.07(0.09) 5.46 0.79 0.25 1 2 25
50 X 500 1.33(0.94) 0.14(0.08) 0.10(0.07) 3.90 0.40 0.33 0 0 6

100 X 300 1.62(1.43) 0.33(0.22) 0.24(0.24) 6.03 0.88 1.43 0 0 4
100 X 500 1.37(1.26) 0.33(0.32) 0.25(0.34) 5.65 1.33 1.41 0 0 5
100 X 1000 2.57(2.41) 0.47(0.47) 0.32(0.37) 11.08 1.80 1.82 0 0 3

5 Subgraphs

10 X 30 1.16(0.78) 2.10(0.80) 1.19(0.69) 2.79 4.82 2.62 11 1 9
10 X 50 0.72(0.52) 1.03(0.36) 0.59(0.39) 2.39 1.86 1.01 10 2 12
10 X 100 0.39(0.47) 0.48(0.17) 0.20(0.21) 3.03 1.25 0.58 10 0 21

25 X 75 0.81(0.51) 0.70(0.29) 0.36(0.27) 2.39 1.57 0.64 3 2 14
25 X 125 0.68(0.62) 0.41(0.19) 0.24(0.15) 3.68 1.22 0.37 3 2 11
25 X 250 0.82(0.79) 0.26(0.11) 0.12(0.07) 3.04 0.55 0.17 0 0 10

50 X 150 1.02(0.65) 0.51(0.35) 0.24(0.26) 3.01 1.91 1.68 0 0 10
50 X 250 1.23(0.84) 0.36(0.17) 0.21(0.14) 4.30 0.88 0.68 0 0 3
50 X 500 1.49(0.91) 0.34(0.19) 0.17(0.11) 4.37 0.95 0.48 0 0 2

100 X 300 1.95(1.07) 0.71(0.49) 0.44(0.39) 4.81 2.48 1.93 0 0 2
100 X 500 2.04(0.88) 0.65(0.35) 0.38(0.26) 3.82 1.51 1.06 0 0 0
100 X 1000 2.69(1.16) 0.71(0.54) 0.63(0.48) 5.82 2.61 2.03 0 0 0

10 Subgraphs

25 X 75 1.35(0.55) 1.48(0.63) 0.71(0.27) 2.94 2.83 1.60 0 0 0
25 X 125 1.00(0.54) 0.92(0.27) 0.37(0.09) 2.36 1.50 0.71 0 0 0
25 X 250 0.94(0.65) 0.74(0.23) 0.27(0.12) 2.97 2.83 0.69 0 0 0

50 X 150 1.63(0.85) 1.10(0.42) 0.50(0.24) 4.10 2.52 1.15 0 0 0
50 X 250 1.80(0.83) 1.00(0.39) 0.44(0.24) 4.48 2.07 1.16 0 0 0
50 X 500 1.93(0.76) 0.72(0.26) 0.38(0.20) 4.51 1.54 0.99 0 0 0

100 X 300 1.84(0.74) 1.15(0.44) 0.67(0.26) 3.97 2.63 1.38 0 0 0
100 X 500 2.42(0.85) 1.16(0.44) 0.79(0.37) 3.94 2.76 1.68 0 0 0
100 X 1000 2.92(1.05) 0.96(0.43) 0.84(0.48) 5.47 2.06 2.05 0 0 0

26 Raka Jovanovic et al.

Table 4 Comparison of the proposed algorithms with the GRASP for tree graphs when
1500 solutions have been generated for ACO (best results are underlined).

Sup X Dem X
Sub

Avg(Stdev) Max Hits

GRASP ACO ACO-C GRASP ACO ACO-C GRASP ACO ACO-C

3 Subgraphs

10 X 30 5.19(9.13) 2.51(4.08) 1.44(4.07) 37.48 21.44 21.44 25 21 33
10 X 50 3.18(6.40) 0.93(2.27) 1.05(3.48) 25.70 12.50 17.80 26 29 34
10 X 100 2.45(4.65) 0.62(1.29) 0.26(0.71) 17.49 6.22 3.31 24 27 34

25 X 75 5.48(7.43) 1.68(2.18) 1.58(2.59) 30.97 10.07 10.44 12 16 24
25 X 125 3.76(6.17) 0.94(2.52) 0.78(2.27) 26.07 13.46 9.79 12 25 32
25 X 250 3.08(4.93) 1.22(3.22) 0.92(2.71) 20.05 13.99 13.99 18 27 31

50 X 150 2.95(4.11) 2.07(3.89) 2.13(4.04) 14.83 14.82 15.85 8 17 22
50 X 250 3.15(4.95) 0.73(1.39) 0.66(1.38) 22.42 7.11 6.23 13 18 24
50 X 500 5.58(7.95) 1.36(2.54) 1.51(2.82) 29.64 10.96 10.96 9 19 23

100 X 300 3.03(5.22) 1.62(2.16) 1.51(2.17) 23.96 9.80 8.19 10 11 17
100 X 500 2.05(3.42) 1.19(2.18) 0.87(1.81) 12.20 10.07 9.08 8 13 19
100 X 1000 3.71(6.24) 1.42(2.53) 1.35(4.81) 28.43 21.35 16.12 6 16 17

5 Subgraphs

10 X 30 2.50(4.02) 2.71(3.85) 0.65(1.50) 17.22 19.21 5.29 22 19 33
10 X 50 2.59(4.00) 1.70(3.40) 1.34(3.12) 12.29 12.57 12.57 25 28 31
10 X 100 1.69(2.91) 0.78(1.97) 0.24(0.69) 9.67 10.35 3.32 26 29 34

25 X 75 4.15(4.21) 1.64(2.28) 1.34(2.50) 14.81 10.37 10.58 9 15 24
25 X 125 6.27(6.38) 1.20(1.76) 1.08(2.40) 23.55 5.93 13.65 10 16 22
25 X 250 5.75(6.81) 0.61(1.03) 0.89(2.10) 30.38 4.86 11.24 10 24 25

50 X 150 4.97(6.98) 1.90(2.55) 1.85(2.84) 36.84 10.48 10.01 7 11 17
50 X 250 4.57(4.44) 1.08(1.55) 1.26(1.89) 18.95 5.30 7.88 7 17 19
50 X 500 5.13(5.72) 1.14(2.17) 1.15(2.16) 22.79 11.13 10.76 2 14 17

100 X 300 4.24(4.59) 2.54(2.88) 2.15(2.73) 17.55 13.13 12.47 3 8 8
100 X 500 4.63(4.84) 1.42(1.63) 1.55(1.79) 22.09 5.62 6.63 3 10 10
100 X 1000 7.12(6.71) 2.48(2.87) 1.70(2.37) 28.32 11.50 9.31 0 4 6

10 Subgraphs

25 X 75 4.21(4.37) 1.89(1.69) 0.61(0.75) 20.37 6.60 3.07 7 8 20
25 X 125 3.76(4.13) 1.60(1.77) 1.05(1.60) 17.60 7.58 6.51 8 6 18
25 X 250 3.86(4.11) 0.89(1.12) 1.04(1.30) 17.00 4.06 5.24 8 16 20

50 X 150 4.04(2.93) 1.95(1.75) 1.34(1.24) 10.50 7.64 4.18 3 5 10
50 X 250 4.31(4.20) 1.32(1.45) 1.14(1.28) 21.13 6.37 5.12 2 8 14
50 X 500 5.27(3.66) 1.05(1.32) 0.91(1.24) 15.39 4.47 4.50 1 10 18

100 X 300 4.55(3.23) 2.23(1.72) 2.04(1.71) 12.16 7.39 7.54 1 1 5
100 X 500 4.32(3.46) 1.38(1.49) 1.10(1.23) 15.12 5.02 3.94 0 6 9
100 X 1000 5.99(4.34) 1.09(1.02) 1.30(1.38) 22.26 4.22 4.85 0 5 8

	Introduction
	Maximal Partitioning of Supply/Demand Graphs with Capacity Limitations
	Greedy Algorithm
	Application of Ant Colony Optimization
	Results
	Conclusion

