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Abstract: - In this paper we present an application of ant colony optimization (ACO) to the Minimum Weighted 

Dominating Set Problem. We introduce a heuristic for this problem that takes into account the weights of 

vertexes being covered and show that it is more efficient than the greedy algorithm using the standard heuristic. 

Further we give implementation details of ACO applied to this problem. We tested our algorithm on graphs with 

different sizes, edge densities, and weight distribution functions and shown that it gives greatly improved results 

over these acquired by the greedy algorithms. 
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1   Introduction 
A dominating set for graph G= (V, E) is a subset of 

vertices W ∈ V, such that every vertex in V \ W is 

adjacent to some vertex in W. We call vertexes u, v 

adjacent if there exists an edge (u, v) ∈ E. The 

minimum dominating set problem (MDSP) is to find 

a smallest possible dominating set in a graph. The 

minimum weight dominating set problem (MWDSP) 

is defined in the case that weights ci are added to 

vertexes vi and instead of finding W with the 

minimum number of elements we search for W that 

has the minimum sum of weights.  The existence of 

a dominating set of k elements is one of the classical 

NP-complete decision problems [1]. MDS for 

general graphs is equivalent to the covering set 

problem. 

    A wide range of practical problems can be 

transformed to this form, from positioning retail 

stores to Sensor Networks and Mobile ad hoc 

Networks (MANETs).  Different extensions of the 

the MDS like connected or weighted, are used to 

more precisely define the properties of the problem 

being solved [2]. Due to the fact that finding the 

optimal solution for MDS problem and its variations 

cannot be done in polynomial time a wide range of 

methods have been used to acquire near optimal 

solutions like greedy algorithm [3], Constant-factor 

approximation [4], energy function algorithm [5], 

collaborative cover heuristic [6] and  Polynomial 

Kernels [7].  

    Ant colony optimization (ACO) is another 

metaheuristic for solving combinatorial problems, 

that was first used on the Traveling Salesman 

Problem by M. Dorigo. The MDSP has also been 

solved using population based algorithms like ant 

colony optimization (ACO) and genetic algorithms 

with ACO giving better results [8]. In this paper we 

extend the application of ACO to the MWDSP. A 

heuristic function that takes into account the weights 

of vertexes being covered is also introduced. We 

show advantages of using ACO instead of the 

greedy algorithms for MWDSP. 

     This paper is organized as follows. In the second 

section we explain heuristic functions that are used 

for this problem. In the next section we give details 

on applying ACO on MWDSP. In the fourth section 

we show our test and results.  

 

 

2   Greedy Algorithms for MWDSP 
The idea of the basic greedy algorithm as presented 

in [3] for the MDS is to add a new node to W  in 

each iteration, until W  forms a dominating set. We 

use the term that a node is covered if  j ∈  W or  j  is 

adjacent to some node i ∈ W, and uncovered in the 

opposite case.  

     In iteration n, we put a new node i ∈ Vn into W 

that covers the maximum number of uncovered 

vertexes. Vn is the set on vertexes that have not been 

selected in the first n iterations.  The algorithm is 

finished when all the nodes have been covered. This 

heuristic needs to be extended by taking into account 

the weights of vertexes.  

    To implement this algorithm the first step is to 

represent the problem in a way that dynamically 

calculates the heuristic function, and makes tracking 
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the covered vertexes simple. We use a similar 

approach as presented by Shyu for the Minimum 

Weighted Vertex Cover Problem [9] which is a 

weighted version of the heuristic used in [3].  In it a 

fully connected graph Gc(V,Ec) is derived from G. In 

the article [9] they propose adding weights of 1 if 

the edge exists in G or 0 if it does not exist in the 

original graph. We have adopted this approach 

which is illustrated by Fig. 1.   

 

 
 

Figure 1: Transition from the original graph to a 

fully connected one. Black edges represent edges 

with a value one and red ones have a value zero. 

 

As we mentioned before we also have to update this 

graph as we add new vertexes to our result set. This 

is done in the following way when we add vertex a 

all edges in Gc  that are connected to a and to its 

neighbors, are set to 0. This is illustrated by Fig. 2.  

 

 
 

Figure 2. Correction of a graph when vertex a is 

added to the solution set. Black edges represent 

edges with a value one and red ones have a value 

zero. 

 

Now we can define Gk (V,Eck,) as the state of the 

graph after k vertexes have been added to the 

solution set, and a corresponding functions in 

Equation 1.   
 

   ( , ) ( ( , ))k cki j Value E i j   (1) 

 

This update rule makes it possible to dynamically 

evaluate the preference of vertexes with function ψκ. 

Now we can define a dynamic heuristic (Greedy1) 
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The heuristic in Equation 2 states that vertexes with 

low weight and have a large number of unused 

edges are highly desirable. The addition of 1 to the 

sum is used to make a difference between vertexes 

that have no connections but are not yet covered. 

The heuristic γ takes into account only the weight of 

the vertex that is currently being selected but not the 

weights of the vertexes that are being covered.  We 

propose a new heuristic (Greedy2) that takes this 

into account  
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ηjk states that we prefer vertexes that have low 

weight, a large number of connections  and cover 

nodes with a high sum of weights.  

     For the two versions of the greedy algorithm to 

work, we have to be able to recognize if all the 

vertexes have been covered. This is done by adding 

set Y0 = V at the start of the algorithm and at each 

step i, when vertex a is selected, we have  
  

1{ | ( , ) ( , ) }/i iY v v a E a v E Y      (4) 

 

 The algorithm is finished when Yi=∅. 
 
 

3   ACO for MWDSP 
The use of ACO has proven to be effective on 

various types of problems from Economic Load 

Dispatch [10], Scheduling problems [11], even 

image processing [12]. The application of ACO on 

MWDSP differs in two main aspects to the original 

application on the Traveling Salesman Problem 

(TSP). In TSP our solution is an array of all the 

cities appearing in the problem or in other words the 

solution is the permutation of the set of vertexes. In 

the case of MWDSP the solution is a subset of the 

graph vertexes set, in which the order is 

unimportant. In the case of TSP the heuristic 

function being used is static in the sense that it 

represents the distance between vertexes and does 

not change during the generation of the solution.  

Contrary, for MWDSP, the heuristic function is the 

ratio between the weight and the sum of weights of 

neighboring vertexes, which is dynamic. This sum 
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changes as we add new vertexes to the solution set 

because more vertexes become covered.  

    These two differences affect the basic algorithm 

in two directions.  First ants leave the pheromone on 

vertexes instead of edges. Second we dynamically 

update the graph, and with it, the heuristic function 

as shown in the previous section. Using the heuristic 

defined with ηjk in Equation 3. we can setup the state 

transition rule for ants. 
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In Equation 5 q0 is the standard parameter that 

appears in ACO that specifies the exploitation / 

exploration rate of individual ant searches. q is a 

random variable that decides the type of selection on 

each step. Yk is a list of available vertexes. We point 

out that opposite to the TSP, transition rule does not 

depend on the last selected vertex and that is why we 

have τi instead of τij. 

    The next step is to define the global (when an ant 

finishes its path) and a local (when an ant chooses a 

new vertex) update rules. The role of the global 

update rule is to make paths that create better 

solutions to become more desirable, or in other 

words, it intensifies exploitation.  
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Equations 6, 7 define the global update rule. In it Δτι  

is a quality measure of solution subset W that 

contains vertex i, and with it we define an global 

update rule in Equation 7. This measure is inverse 

proportional to the weight of a solution. Parameter p 

is used to set the influence of newly found solution 

on the pheromone trail.  

    The local update rule purpose is to shuffle 

solutions and to prevent all ants from using very 

strong vertexes. The idea is to make vertexes less 

desirable as more ants visit them. In this way, 

exploration is supported. The formula for the local 

update rule has the standard form  

 

0(1 )i i       (8) 

 

For the value of  t0 we take the quality measure of 

the solution acquired with the greedy algorithm 

(Greedy2).  Parameter φ is used to specify the 

strength of the local update rule.     

 

 

4   Tests and Results 
In this section we compare the results of applying 

the standard greedy algorithm for MWDSP 

(Greedy1), our improved version of this algorithm 

(Greedy2) and ACO optimization using the same 

heuristic as Greedy2. The program for our 

experiments was written in C#, using the framework 

from article [13]. We have created a plug-in for this 

system that implements ACO for MWDSP.   

     We used the following parameters for the ACO 

algorithm. Colonies consisted of 10 ants. The 

exploration rate was q0=0.1, evaporation rates were 

φ=0.1 and p=0.1. For the influence factor of the 

heuristic we used α=4. We implemented ACO in the 

MMAS variation. The initial best solution V’ was 

given by Greedy2 and the initial value of the 

pheromone trail is given by Equation 9. 
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In Equation 9,  n is the number of nodes in the V’.  

Each colony had 10 000 iterations.  

     We generated two types of random problem 

instances for our tests. In the first one weights for 

nodes where randomly selected for vertexes from 

the interval [20, 70]. In the second group the weights 

where dependent of the number of connections 

vertex v had and it would be randomly selected from 

the [1, e(v)
2
].  e gives the number of connections for 

v. We used graphs from 50 to 1000 nodes with 

different number of randomly created edges but 

always making the graph connected. For all the 

tested vertex-node pairs, we created 10 different 

problem instances and we observed the average 

solution values for each of the three methods. We 

show our results in Tables 1, 2, 3, 4. 

    When comparing the two greedy algorithms, we 

first notice that the improved heuristic that takes into 

account the weights of covered vertexes gives 

almost uniformly better results, for both types of 

generated problem. The Greedy2 would give results 

that would be better up to 10%. The improvement 

was smallest for sparse graphs. 
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Table 1. Comparison of results for small and 

medium problems for Type1 problems 
 

Size Greedy1 Greedy2 ACO 

50*50 610.3 609.9 539.8 

50*100 509.5 472.7 391.9 

50*250 262.6 260.2 195.3 

50*500 157.7 155.5 112.8 

50*750 114.1 99.8 69.0 

50*1000 86.2 83.0 44.7 

    

100*100 1232 1223.7 1087.2 

100*250 864.4 819.7 698.7 

100*500 564.1 554.3 442.8 

100*750 448.2 413.5 313.7 

100*1000 352.6 336.4 247.8 

100*2000 195.3 210.6 125.9 

    

150*250 1799.5 1758.6 1630.1 

150*250 1548.0 1496.4 1317.7 

150*500 1064.2 1051.8 899.9 

150*750 870.0 840.3 674.4 

150*1000 704.4 685.8 540.7 

150*2000 415.2 366.3 293.1 

150*3000 288.8 283.9 204.7 

    

200*250 2329.2 2274.1 2039.2 

200*500 1729.2 1707.8 1389.4 

200*750 1349.4 1324.9 1096.2 

200*1000 1124.6 1102.0 869.9 

200*2000 703.5 665.3 524.1 

200*3000 513.1 523.9 385.7 

 

 

Table 2. Comparison of results for large problems 

for Type1 problems 
 

Size Greedy1 Greedy2 ACO 

500*500 6046.2 5944.6 5476.3 

500*1000 4785.8 4664.2 4069.8 

500*2000 3248.0 3140.8 2627.5 

500*5000 1712.0 1689.8 1398.5 

500*10000 990.6 1006.1 825.7 

    

800*1000 9160.3 8953.4 8098.9 

800*2000 6729.8 6597.6 5739.9 

800*5000 3833.4 3747.5 3116.5 

800*10000 2325.2 2248.9 1923 

    

1000*1000 12146.3 11987.7 10924.4 

1000*5000 5595.4 5501.3 4662.7 

1000*10000 3550.5 3414.1 2890.3 

1000*15000 2562.6 2428.1 2164.3 

1000*20000 2017.8 1918.1 1734.3 

 

Table 3. Comparison of results for small and 

medium problems for Type2 problems 
 

Size Greedy1 Greedy2 ACO 

50*50 73.7 72.2 62.3 

50*100 137.7 126.6 98.4 

50*250 383.3 362.8 202.4 

50*500 872.7 750.6 312.9 

50*750 1358.7 1227.2 386.3 

    

100*100 150.6 144.2 126.5 

100*250 327.5 299.4 236.6 

100*500 794.3 725.9 404.8 

100*750 1075.3 998 615.1 

100*1000 1358.4 1243.9 697.3 

100*2000 3398.7 3203.2 1193.9 

    

150*250 223.4 214.2 190.1 

150*250 323.6 318 253.9 

150*500 652.9 609.4 443.2 

150*750 1023.3 900.6 623.3 

150*1000 1426.1 1265.2 825.3 

150*2000 3233.8 2701.9 1436.4 

150*3000 5041.6 4356.2 1751.9 

    

200*250 348.9 335.5 293.2 

200*500 618.7 589.1 456.5 

200*750 913.3 867.3 657.9 

200*1000 1342.2 1222.6 829.2 

200*2000 2620.7 2433.6 1626 

200*3000 4450.8 3702.0 2210.3 

 

 

 

Table 4. Comparison of results for large problems 

for Type2 problems 
 

Size Greedy1 Greedy2 ACO 

500*500 743.7 705.7 651.2 

500*1000 1294.7 1198.1 1018.1 

500*2000 2632.2 2378.1 1871.8 

500*5000 6642.8 5714 4299.8 

500*10000 14619.9 14163.3 8543.5 

    

800*1000 1375.8 1325.5 1171.2 

800*2000 2551 2359.3 1938.7 

800*5000 6643.7 5957.5 4439.0 

800*10000 14068.4 12443.1 8951.1 

    

1000*1000 1479.0 1432.0 1289.3 

1000*5000 6722.9 6082.9 4720.1 

1000*10000 14352.8 13141.7 9407.7 

1000*15000 23032.8 20476 14433.5 

1000*20000 32295.5 28427.8 19172.6 
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ACO used as initial guess the result acquired by 

Greed2 so we shall compare its results to it. First we 

point out that ACO has improved results in all the 

tested cases. The improvement would vary for more 

and less dense graphs. In the case of graphs with 

lowest density, or in other words the average 

number of edges per vertex, the improvement would 

be the smallest 10-20%. The advantages of ACO 

would be increased with the increase of the density 

and in the cases when the average number of edges 

per vertex is 20 it would be from 20% to even 70%.  

This shows that ACO is very efficient on this 

problem, and that both greedy algorithms are not 

good for dense graphs. 

 

 

5   Conclusion 
In this paper we have shown an implementation of 

ACO for MWDSP. We have presented a new 

heuristic function for the greedy algorithm that takes 

into account the weights of vertexes being covered 

and shown that it is an improvement to the standard 

one. We used this heuristic function in our 

implementation of ACO. Tests for these methods 

have been done on a variety of graphs with different 

sizes, edge densities and weight generation 

algorithms. Our results show that our heuristic 

function improves the performance of the greedy 

algorithm. ACO proved to be very efficient on the 

MWDSP and greatly improved the quality of results 

especially in dense graphs. 

     In the future we wish to extend work to 

connected dominating set problems due to the fact 

that they are more closely related to MANETs than 

the non-connected version. 
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