
Ant Colony Optimization Applied to

Minimum Weight Dominating Set Problem

 Raka JOVANOVIC Milan TUBA Dana SIMIAN

 Texas AM University Faculty of Computer Science Department of Computer Science

 at Qatar Megatrend University Belgrade Lucian Blaga University of Sibiu

PO Box 23874, Doha Bulevar umetnosti 29 5-7 dr. I. Ratiu str.

 QATAR SERBIA ROMANIA

 rakabog@yahoo.com tubamilan@ptt.rs d_simian@yahoo.com

Abstract: - In this paper we present an application of ant colony optimization (ACO) to the Minimum Weighted

Dominating Set Problem. We introduce a heuristic for this problem that takes into account the weights of

vertexes being covered and show that it is more efficient than the greedy algorithm using the standard heuristic.

Further we give implementation details of ACO applied to this problem. We tested our algorithm on graphs with

different sizes, edge densities, and weight distribution functions and shown that it gives greatly improved results

over these acquired by the greedy algorithms.

Key-Words: - Ant Colony Optimization, Dominating Set Problem, Optimization Problems, Population Based

Algorithms

1 Introduction
A dominating set for graph G= (V, E) is a subset of

vertices W ∈ V, such that every vertex in V \ W is

adjacent to some vertex in W. We call vertexes u, v

adjacent if there exists an edge (u, v) ∈ E. The

minimum dominating set problem (MDSP) is to find

a smallest possible dominating set in a graph. The

minimum weight dominating set problem (MWDSP)

is defined in the case that weights ci are added to

vertexes vi and instead of finding W with the

minimum number of elements we search for W that

has the minimum sum of weights. The existence of

a dominating set of k elements is one of the classical

NP-complete decision problems [1]. MDS for

general graphs is equivalent to the covering set

problem.

 A wide range of practical problems can be

transformed to this form, from positioning retail

stores to Sensor Networks and Mobile ad hoc

Networks (MANETs). Different extensions of the

the MDS like connected or weighted, are used to

more precisely define the properties of the problem

being solved [2]. Due to the fact that finding the

optimal solution for MDS problem and its variations

cannot be done in polynomial time a wide range of

methods have been used to acquire near optimal

solutions like greedy algorithm [3], Constant-factor

approximation [4], energy function algorithm [5],

collaborative cover heuristic [6] and Polynomial

Kernels [7].

 Ant colony optimization (ACO) is another

metaheuristic for solving combinatorial problems,

that was first used on the Traveling Salesman

Problem by M. Dorigo. The MDSP has also been

solved using population based algorithms like ant

colony optimization (ACO) and genetic algorithms

with ACO giving better results [8]. In this paper we

extend the application of ACO to the MWDSP. A

heuristic function that takes into account the weights

of vertexes being covered is also introduced. We

show advantages of using ACO instead of the

greedy algorithms for MWDSP.

 This paper is organized as follows. In the second

section we explain heuristic functions that are used

for this problem. In the next section we give details

on applying ACO on MWDSP. In the fourth section

we show our test and results.

2 Greedy Algorithms for MWDSP
The idea of the basic greedy algorithm as presented

in [3] for the MDS is to add a new node to W in

each iteration, until W forms a dominating set. We

use the term that a node is covered if j ∈ W or j is

adjacent to some node i ∈ W, and uncovered in the

opposite case.

 In iteration n, we put a new node i ∈ Vn into W

that covers the maximum number of uncovered

vertexes. Vn is the set on vertexes that have not been

selected in the first n iterations. The algorithm is

finished when all the nodes have been covered. This

heuristic needs to be extended by taking into account

the weights of vertexes.

 To implement this algorithm the first step is to

represent the problem in a way that dynamically

calculates the heuristic function, and makes tracking

Proceedings of the 12th WSEAS International Conference on AUTOMATIC CONTROL, MODELLING & SIMULATION

ISSN: 1790-5117 322 ISBN: 978-954-92600-1-4

the covered vertexes simple. We use a similar

approach as presented by Shyu for the Minimum

Weighted Vertex Cover Problem [9] which is a

weighted version of the heuristic used in [3]. In it a

fully connected graph Gc(V,Ec) is derived from G. In

the article [9] they propose adding weights of 1 if

the edge exists in G or 0 if it does not exist in the

original graph. We have adopted this approach

which is illustrated by Fig. 1.

Figure 1: Transition from the original graph to a

fully connected one. Black edges represent edges

with a value one and red ones have a value zero.

As we mentioned before we also have to update this

graph as we add new vertexes to our result set. This

is done in the following way when we add vertex a

all edges in Gc that are connected to a and to its

neighbors, are set to 0. This is illustrated by Fig. 2.

Figure 2. Correction of a graph when vertex a is

added to the solution set. Black edges represent

edges with a value one and red ones have a value

zero.

Now we can define Gk (V,Eck,) as the state of the

graph after k vertexes have been added to the

solution set, and a corresponding functions in

Equation 1.

 (,) ((,))k cki j Value E i j  (1)

This update rule makes it possible to dynamically

evaluate the preference of vertexes with function ψκ.

Now we can define a dynamic heuristic (Greedy1)

(,)

(,)

1

()

c
ki j E

jk

Cov i j

Cov

w j












 (2)

The heuristic in Equation 2 states that vertexes with

low weight and have a large number of unused

edges are highly desirable. The addition of 1 to the

sum is used to make a difference between vertexes

that have no connections but are not yet covered.

The heuristic γ takes into account only the weight of

the vertex that is currently being selected but not the

weights of the vertexes that are being covered. We

propose a new heuristic (Greedy2) that takes this

into account

(,)
(1 () (,))

()

c
ki j E

jk

Cov w i i j

w j










 (3)

ηjk states that we prefer vertexes that have low

weight, a large number of connections and cover

nodes with a high sum of weights.

 For the two versions of the greedy algorithm to

work, we have to be able to recognize if all the

vertexes have been covered. This is done by adding

set Y0 = V at the start of the algorithm and at each

step i, when vertex a is selected, we have

1{ | (,) (,) }/i iY v v a E a v E Y     (4)

 The algorithm is finished when Yi=∅.

3 ACO for MWDSP
The use of ACO has proven to be effective on

various types of problems from Economic Load

Dispatch [10], Scheduling problems [11], even

image processing [12]. The application of ACO on

MWDSP differs in two main aspects to the original

application on the Traveling Salesman Problem

(TSP). In TSP our solution is an array of all the

cities appearing in the problem or in other words the

solution is the permutation of the set of vertexes. In

the case of MWDSP the solution is a subset of the

graph vertexes set, in which the order is

unimportant. In the case of TSP the heuristic

function being used is static in the sense that it

represents the distance between vertexes and does

not change during the generation of the solution.

Contrary, for MWDSP, the heuristic function is the

ratio between the weight and the sum of weights of

neighboring vertexes, which is dynamic. This sum

Proceedings of the 12th WSEAS International Conference on AUTOMATIC CONTROL, MODELLING & SIMULATION

ISSN: 1790-5117 323 ISBN: 978-954-92600-1-4

changes as we add new vertexes to the solution set

because more vertexes become covered.

 These two differences affect the basic algorithm

in two directions. First ants leave the pheromone on

vertexes instead of edges. Second we dynamically

update the graph, and with it, the heuristic function

as shown in the previous section. Using the heuristic

defined with ηjk in Equation 3. we can setup the state

transition rule for ants.

0

0

0

1 , & arg max

0 , & arg max

,

k

k

k

i ik
i A

k

j i ik
i A

j jk

j iki Y

q q j

p q q j

q q







 

 

 

 










 



  






(5)

In Equation 5 q0 is the standard parameter that

appears in ACO that specifies the exploitation /

exploration rate of individual ant searches. q is a

random variable that decides the type of selection on

each step. Yk is a list of available vertexes. We point

out that opposite to the TSP, transition rule does not

depend on the last selected vertex and that is why we

have τi instead of τij.

 The next step is to define the global (when an ant

finishes its path) and a local (when an ant chooses a

new vertex) update rules. The role of the global

update rule is to make paths that create better

solutions to become more desirable, or in other

words, it intensifies exploitation.

1
,

()
i

j W

i W
w j




  


 (6)

(1)i i ip    

(7)

Equations 6, 7 define the global update rule. In it Δτι

is a quality measure of solution subset W that

contains vertex i, and with it we define an global

update rule in Equation 7. This measure is inverse

proportional to the weight of a solution. Parameter p

is used to set the influence of newly found solution

on the pheromone trail.

 The local update rule purpose is to shuffle

solutions and to prevent all ants from using very

strong vertexes. The idea is to make vertexes less

desirable as more ants visit them. In this way,

exploration is supported. The formula for the local

update rule has the standard form

0(1)i i      (8)

For the value of t0 we take the quality measure of

the solution acquired with the greedy algorithm

(Greedy2). Parameter φ is used to specify the

strength of the local update rule.

4 Tests and Results
In this section we compare the results of applying

the standard greedy algorithm for MWDSP

(Greedy1), our improved version of this algorithm

(Greedy2) and ACO optimization using the same

heuristic as Greedy2. The program for our

experiments was written in C#, using the framework

from article [13]. We have created a plug-in for this

system that implements ACO for MWDSP.

 We used the following parameters for the ACO

algorithm. Colonies consisted of 10 ants. The

exploration rate was q0=0.1, evaporation rates were

φ=0.1 and p=0.1. For the influence factor of the

heuristic we used α=4. We implemented ACO in the

MMAS variation. The initial best solution V’ was

given by Greedy2 and the initial value of the

pheromone trail is given by Equation 9.

0

'

1

()
j V

n w j







 (9)

In Equation 9, n is the number of nodes in the V’.

Each colony had 10 000 iterations.

 We generated two types of random problem

instances for our tests. In the first one weights for

nodes where randomly selected for vertexes from

the interval [20, 70]. In the second group the weights

where dependent of the number of connections

vertex v had and it would be randomly selected from

the [1, e(v)
2
]. e gives the number of connections for

v. We used graphs from 50 to 1000 nodes with

different number of randomly created edges but

always making the graph connected. For all the

tested vertex-node pairs, we created 10 different

problem instances and we observed the average

solution values for each of the three methods. We

show our results in Tables 1, 2, 3, 4.

 When comparing the two greedy algorithms, we

first notice that the improved heuristic that takes into

account the weights of covered vertexes gives

almost uniformly better results, for both types of

generated problem. The Greedy2 would give results

that would be better up to 10%. The improvement

was smallest for sparse graphs.

Proceedings of the 12th WSEAS International Conference on AUTOMATIC CONTROL, MODELLING & SIMULATION

ISSN: 1790-5117 324 ISBN: 978-954-92600-1-4

Table 1. Comparison of results for small and

medium problems for Type1 problems

Size Greedy1 Greedy2 ACO

50*50 610.3 609.9 539.8

50*100 509.5 472.7 391.9

50*250 262.6 260.2 195.3

50*500 157.7 155.5 112.8

50*750 114.1 99.8 69.0

50*1000 86.2 83.0 44.7

100*100 1232 1223.7 1087.2

100*250 864.4 819.7 698.7

100*500 564.1 554.3 442.8

100*750 448.2 413.5 313.7

100*1000 352.6 336.4 247.8

100*2000 195.3 210.6 125.9

150*250 1799.5 1758.6 1630.1

150*250 1548.0 1496.4 1317.7

150*500 1064.2 1051.8 899.9

150*750 870.0 840.3 674.4

150*1000 704.4 685.8 540.7

150*2000 415.2 366.3 293.1

150*3000 288.8 283.9 204.7

200*250 2329.2 2274.1 2039.2

200*500 1729.2 1707.8 1389.4

200*750 1349.4 1324.9 1096.2

200*1000 1124.6 1102.0 869.9

200*2000 703.5 665.3 524.1

200*3000 513.1 523.9 385.7

Table 2. Comparison of results for large problems

for Type1 problems

Size Greedy1 Greedy2 ACO

500*500 6046.2 5944.6 5476.3

500*1000 4785.8 4664.2 4069.8

500*2000 3248.0 3140.8 2627.5

500*5000 1712.0 1689.8 1398.5

500*10000 990.6 1006.1 825.7

800*1000 9160.3 8953.4 8098.9

800*2000 6729.8 6597.6 5739.9

800*5000 3833.4 3747.5 3116.5

800*10000 2325.2 2248.9 1923

1000*1000 12146.3 11987.7 10924.4

1000*5000 5595.4 5501.3 4662.7

1000*10000 3550.5 3414.1 2890.3

1000*15000 2562.6 2428.1 2164.3

1000*20000 2017.8 1918.1 1734.3

Table 3. Comparison of results for small and

medium problems for Type2 problems

Size Greedy1 Greedy2 ACO

50*50 73.7 72.2 62.3

50*100 137.7 126.6 98.4

50*250 383.3 362.8 202.4

50*500 872.7 750.6 312.9

50*750 1358.7 1227.2 386.3

100*100 150.6 144.2 126.5

100*250 327.5 299.4 236.6

100*500 794.3 725.9 404.8

100*750 1075.3 998 615.1

100*1000 1358.4 1243.9 697.3

100*2000 3398.7 3203.2 1193.9

150*250 223.4 214.2 190.1

150*250 323.6 318 253.9

150*500 652.9 609.4 443.2

150*750 1023.3 900.6 623.3

150*1000 1426.1 1265.2 825.3

150*2000 3233.8 2701.9 1436.4

150*3000 5041.6 4356.2 1751.9

200*250 348.9 335.5 293.2

200*500 618.7 589.1 456.5

200*750 913.3 867.3 657.9

200*1000 1342.2 1222.6 829.2

200*2000 2620.7 2433.6 1626

200*3000 4450.8 3702.0 2210.3

Table 4. Comparison of results for large problems

for Type2 problems

Size Greedy1 Greedy2 ACO

500*500 743.7 705.7 651.2

500*1000 1294.7 1198.1 1018.1

500*2000 2632.2 2378.1 1871.8

500*5000 6642.8 5714 4299.8

500*10000 14619.9 14163.3 8543.5

800*1000 1375.8 1325.5 1171.2

800*2000 2551 2359.3 1938.7

800*5000 6643.7 5957.5 4439.0

800*10000 14068.4 12443.1 8951.1

1000*1000 1479.0 1432.0 1289.3

1000*5000 6722.9 6082.9 4720.1

1000*10000 14352.8 13141.7 9407.7

1000*15000 23032.8 20476 14433.5

1000*20000 32295.5 28427.8 19172.6

Proceedings of the 12th WSEAS International Conference on AUTOMATIC CONTROL, MODELLING & SIMULATION

ISSN: 1790-5117 325 ISBN: 978-954-92600-1-4

ACO used as initial guess the result acquired by

Greed2 so we shall compare its results to it. First we

point out that ACO has improved results in all the

tested cases. The improvement would vary for more

and less dense graphs. In the case of graphs with

lowest density, or in other words the average

number of edges per vertex, the improvement would

be the smallest 10-20%. The advantages of ACO

would be increased with the increase of the density

and in the cases when the average number of edges

per vertex is 20 it would be from 20% to even 70%.

This shows that ACO is very efficient on this

problem, and that both greedy algorithms are not

good for dense graphs.

5 Conclusion
In this paper we have shown an implementation of

ACO for MWDSP. We have presented a new

heuristic function for the greedy algorithm that takes

into account the weights of vertexes being covered

and shown that it is an improvement to the standard

one. We used this heuristic function in our

implementation of ACO. Tests for these methods

have been done on a variety of graphs with different

sizes, edge densities and weight generation

algorithms. Our results show that our heuristic

function improves the performance of the greedy

algorithm. ACO proved to be very efficient on the

MWDSP and greatly improved the quality of results

especially in dense graphs.

 In the future we wish to extend work to

connected dominating set problems due to the fact

that they are more closely related to MANETs than

the non-connected version.

Acknowledgment: This research is supported by

Project 144007, Ministry of Science, Republic of

Serbia.

References:

[1] M. R. Garey, and D. S. Johnson, Computers and

Intractability. A Guide to the Theory of

NPCompleteness., New York-San Francisco:

W. H. Freeman and Company, 1979.

[2] J. Blum, M. Ding, A. Thaeler et al., "Connected

Dominating Set in Sensor Networks and

MANETs," Handbook of Combinatorial

Optimization, D. D.-Z. and P. P., eds., pp. 329 -

369, Kluwer: Academic Publishers, 2004.

[3] A. K. Parekh, “Analysis of a greedy heuristic

for finding small dominating sets in graphs,”

Inf. Process. Lett., vol. 39, no. 5, pp. 237-240,

1991.

[4] C. Ambühl, T. Erlebach, M. Mihalák et al.,

"Constant-factor approximation for minimum-

weight (connected) dominating sets in unit disk

graphs." pp. 3-14.

[5] X. Xu, Z. Tang, W. Sun et al., “An Algorithm

for the Minimum Dominating Set Problem

Based on a New Energy Function,” in SICE

Annual Conference, Sapporo, Japan, 2004, pp.

924-926.

[6] R. Misra, and C. Mandal, “Minimum Connected

Dominating Set Using a Collaborative Cover

Heuristic for Ad Hoc Sensor Networks,” IEEE

Transactions on Parallel and Distributed

Systems, vol. 21, pp. 292-302, 2010.

[7] S. Gutner, "Polynomial Kernels and Faster

Algorithms for the Dominating Set Problem on

Graphs with an Excluded Minor,"

Parameterized and Exact Computation: 4th

International Workshop, IWPEC 2009,

Copenhagen, Denmark, September 10-11, 2009,

Revised Selected Papers, pp. 246-257: Springer-

Verlag, 2009.

[8] C. K. Ho, Y. P. Singh, and H. T. Ewe, “An

Enhanced Ant Colony Optimization

Metaheuristic for the Minimum Dominating Set

Problem,” Applied Artificial Intelligence, vol.

20, pp. 881-903, 2006.

[9] S. S. Jian, Y. Peng-Yeng, and L. B. M.T., “An

Ant Colony Optimization Algorithm for the

Minimum Weight Vertex Cover Problem,”

Annals of Operations Research, vol. 131, pp.

283-304, 2004.

[10] A. Vlachos, “An Ant Colony Optimization

(ACO) algorithm solution to Economic Load

Dispatch (ELD) problem,” WSEAS

Transactions On Systems, vol. 5, no. 8, pp. 1763

- 1771, 2006.

[11] [11]F. Kolahan, M. Abachizadeh, and S.

Soheili, “A comparison between Ant colony and

Tabu search algorithms for job shop scheduling

with sequence-dependent setups,” WSEAS

Transactions on Systems, vol. 12, pp. 2819-

2824, 2006.

[12] N. E. Mastorakis, and X. Zhuang, “Image

processing with the artificial swarm

intelligence,” WSEAS Transactions on

Computers, vol. 4, no. 4, pp. 333-341, 2005.

[13] R. Jovanovic, M. Tuba, and D. Simian, “An

Object-Oriented Framework with

Corresponding Graphical User Interface for

Developing Ant Colony Optimization Based

Algorithms,” WSEAS Transactions on

Computers, vol. 7, no. 12, 2008

Proceedings of the 12th WSEAS International Conference on AUTOMATIC CONTROL, MODELLING & SIMULATION

ISSN: 1790-5117 326 ISBN: 978-954-92600-1-4

