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Abstract: - In this paper a combined algorithm for simulation of counter propagating matter waves in optical 

lattices is presented. The mathematical model is based on an adaptation of a similar steady state model 

previously used for beams propagation in photonic lattices. Using the same mathematical model we developed 

two different algorithms. The first one is focused on calculation speed and calculation of the final result. The 

second implementation is used to show the evolution of this process during propagation. We show shortcomings 

of each approach and advantages of their combined use.  
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1   Introduction 
Numerical simulations are often used for 

investigation of physical phenomena. Two versions 

of algorithm for simulation of counter propagating 

matter waves in optical lattices are presented. 

     In a dilute boson gas at sufficiently low tempe-

ratures particles can condense and, in this way, form 

a Bose–Einstein condensate (BEC). Since 1995, 

when this phenomenon was first observed [1, 2], 

BECs have gained much attention, due to the fact 

that these condensates can be precisely manipulated 

in experiment [3, 4]. On the other hand, properties of 

BECs show similarities with the physical systems 

studied in other branches of physics, such as 

nonlinear (NL) optics and NL wave theory. 

Similarities between these theories manifest them-

selves in dynamical equations used to describe the 

corresponding physical systems. More concretely, 

these theories share as their determining part the 

general NL Schrödinger equation (NLSE). In 

literature, there are several forms of NLSEs, and 

what they have in common is the term representing 

the nonlinearity. Within the mean-field model, the 

evolution of BECs is, in a pretty accurate way, 

described by the Gross–Pitaevskii equation (GPE). 

The NL term in this partial differential equation 

reflects the interatomic interaction in a diluted cold 

gas. 

     Numerical solutions of similar problems with 

NLSE have been solved using finite difference [5], 

finite element [6] and multi-configuration time-

dependent Hartree-Fock method [7].  Simulation of 

BEC dynamics has also been implemented using 

multi processor machines [8]. In this paper we 

present implementation details of numerical 

simulation for interaction of two counter 

propagating (CP) condensates that are initially 

confined to the so-called pancake shape [9] and 

propagate head-on along the square optical lattice. 

Similar to the case of light beams propagating in 

photonic lattices we are interested in stable structu-

res.  Finding these structures is possible by using an 

adaptation of the steady state model based on beam-

step propagation method. Solving of Gross-

Pitaevskii equation can also be done using techni-

ques that preserve certain intrinsic properties of the 

equation [10]. This approach is computationally 

very efficient but it does not simulate the process, it 

just gives the final state (solution). In other words, 

steps in the algorithm do not represent different 

steps in propagation but just iterations in the solution 

solving method. When simulating this process it is 

necessary to use 2+1 dimensions, which greatly 

increases calculation time and space. In our 

simulation we implement this 2+1 dimensional 

model, but optimized it by exclusion of unnecessary 

calculations.  

    The paper is organized as follows. In the next 

section we present the mathematical model for our 

simulations. In the third section we compare the 
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steady state and the time dependent method. In 

Section 4 we introduce our optimization and show 

results.    

 

 

2   Mathematical Model 
We study the interaction of two counter propagating 

(CP) condensates that are initially confined to the 

so-called pancake shape [9] and propagate head-on 

along the square optical lattice. In this manner we 

numerically consider the evolution of two BECs for 

which it is possible to take separated wave 

functions.  

 

 
Figure 1. Problem geometry with forward (F) 

backword (B) BEC 

 
    The propagation of the forward (F) and the 

backward (B) BEC takes place in the longitudinal z 

direction, while we study the intensity in (x,y) plane. 

This propagation can be represented in by two 

coupled GPEs (Eq. 1): 
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where F and B are the forward and the backward 

wave functions, I is the total intensity of beams |F| 

and |B|(|I|2=|F|
2
+|B|

2
), V(x,y) is external potential. 

When simulating counter propagation we need to 

solve these equations. Δ is the transverse laplacian. 

We use the split-step (Fourier) method. The equation 

for each condensate is split into a pair of equations. 
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We solve the Eq. 2 in inverse space using Fast 

Fourier Transform 

 
2 2 2

x yq k k   (4) 

2

( , ) ( , )iq dzF z dz q e F z q   (5) 

2

( , ) ( , )iq dzB z dz q e B z q   (6) 
 

In Equations 4,5 ~ is used to indicate function in 

inverse space.  dz is the step size in z dimension.  

We use these solutions for the second pair of 

equations and their solution is  
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These two steps combined give the solution of Eq. 1. 

 

 

3   Implementation Details 
When simulating the counter propagating BEC we 

have to define values of several parameters to fully 

define the process.  First the dimensions of the 

problem in x, y dimensions and also the initial 

distance between the condensates zmax.  

Corresponding to these values, we define the 

number of greed points on each dimension nxy, nz. 

The number of grid points has to be selected in a 

fashion that the FFT procedure is correct. Potential 

V  in our case was the following function: 
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 (8) 

 

The last needed parameters are the initial values for 

forward F0 and backward Bnz condensates.   

     We simulate the propagation of F from point 0 to 

zmax which corresponds to grid slice 0 to nz and the 

propagation of B in the opposite direction. In the 

initial approach we used the adaptation of the steady 

state model based on beam-step propagation method 

which is used for finding the final state. The 

implementation of this model (AL1) corresponds to 

the following pseudo code 
 

do{ 

     F
*
=F0; B

*
=Bnz 

      Ip = Inz/2 

         Ii
* =  

Ii
*’ 

       for(i=0; i < nz ; i++ ){ 

                F
*
= FS2 (FS1(F

*
,Ii

*
)) 

   Ii
*’

=|F
*
|
2
 

       } 

       for(i= nz-1; i >=0 ; i++ ){ 

               B
*
= BS2 (BS1(B

*
,I

*
zn-i)) 

                Ii
*’

+= |B
*
|
2
    

       } 

} while(|Inz/2- Ip|< ε) 
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In pseudo codes for both algorithms we use FS1, BS1 

for a function that calculate solutions for Eq. (5 , 6) 

and FS2, BS2  for Eq. 7. We first notice that in this 

algorithm the main loop is finished when the change 

in I = |F|
2
+|B|

2
 at the middle of the maximal distance 

has fallen below some test value ε. We chose nz/2 

for the test position due to the fact that the change in 

condensate energies is greatest at this position. In 

each iteration of the main loop we propagate 

condensates individually using 2D variables F
*
, B

* 

over the whole distance between initial positions of 

condensates. We save the values of I in a 3D array 

which is used in the next step of the main loop. The 

connection between the two condensates is done 

only through I.  

     The algorithm basically works in the following 

way. At first step each condensate propagates 

without any interaction with the second one. In the 

following iterations, condensate propagation is 

computed more precisely with the previous value of 

I
*
 and a corrected value of I

*’
 is prepared for the next 

step. The main advantage of this approach is fast 

convergence to solutions if they exist.   

     In our research we wanted to observe the 

evolution of this process. We implemented 

simultaneous propagation of condensates, and 

compared the results. We used the following 

algorithm (AL2)  

 

for(j=0; j < nz ; j++ ) 

        for(i=1; i < j ; i++ ){ 

               Ii = |Fi|
2
 +|Bi|

2
 

   Fi= FS2 (FS1(F i-1,Ii)) 

               Bi= BS2 (BS1(B zn-i+1_,Ii)) 

} 

} 

 

     In the second algorithm the outer loop finishes 

when both condensates have propagated the whole 

distance. Opposite to the approach in AL1 the 

interaction is calculated at each propagation step of z 

using the current value of condensates. To 

accomplish this we use two 3D arrays for storing the 

values of F and B over the entire propagation area. 

The inner loop simulates the propagation of the 

condensates for one step in the z direction. The 

movement of condensate F (B) for one grid block in 

z direction actually means that all known (previously 

calculated) sections move one step ahead. Their 

movement is affected by both, the section of the 

same condensate that is in front of them and the 

section of the counter propagating condensate at that 

position. With this algorithm both these effects have 

been taken into account.  

     For visualization of our results we use a different 

approach than proposed  by Peter M. Ketcham and 

David L. Feder [11]. The goal of our simulation was 

to observe the effect of interacting condensates. We 

used a simpler method of visualization in which we 

excluded the information about the angular 

momentum. We have done this because we believed 

that images combining this information belonging to 

different condensates would have become cluttered 

and confusing. In our visualization we observe only 

the intensity of condensates, by creating isosurfaces 

for points having the same intensity for each of BEC 

separately. We color one of them in red and the 

other one in blue. In Fig. 2, 3 we show frames from 

animation created by this simulation. 

 

 
Figure 2. Simulation of interaction of the off-site 

CP solitons during propagation. 

 

 

 

 
Figure 3. Simulation of interaction of the on-site CP 

solitons during propagation. 
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4   Comparison of Algorithms 
Both of the algorithms for simulating BEC 

propagation have been developed using the same 

mathematical model and because of that it is 

necessary for final results to be equivalent to a 

certain level of precision. In our test this was 

confirmed.  

     We first consider the needed memory for 

implementing these algorithms. The memory was 

equivalent for both cases. In the first algorithm we 

needed two arrays of dimensions nxy
2 

* nz for 

storing the current values of I
*
, and from the 

previous step I
*’

.  In the case of the second algorithm 

we needed two arrays of the same dimensions for 

storing F
*
, B

*
. 

     An exact comparisson of speed for these two 

models was not possible. In the case of the AL1 the 

number of iterations needed to achieve the desired 

precision for a certain problem size was not fixed 

and depended on potential V and initial values F0 ,  
B0, while in the other algorithm the number of 

iterations was only dependent of nz. In simulations 

that we performed the steady state algorithm was 2-5 

times faster. The increase in calculation time was 

significant when we compare AL1 to AL2, but less 

than expected. This is due to the fact in the steady 

state case there is a smaller number in of iterations 

of the main loop, but all of them calculate zn steps 

for each of the condensates. Contrary to this, in the 

AL2 the number of steps for condensates grows as 

they propagate further. The relationship between 

calculation times was the following 

      

1: 2 Pr :
2

zn
AL AL ecisionIterations  (9) 

 

To be able to observe properties of BEC 

propagation,  the simulation had to be done with a 

high number of grid points. For x, y dimensions we 

used 1024 or 2048 and the number of grid point in 

the z dimension would be dependent on zmax in the 

sense that the FFT procedure need to be correct. 

This resulted in long calculation time for which the 

increase of 2-5 times was in some cases 

unacceptable, and excluded the use of AL2. 

     One of the problems with AL1 is that the 

intermediate steps of the algorithm do not present 

relevant states of condensates, just their state in the 

iterative process. This is due to the fact that the 

algorithm starts with an unphysical state of 

condensates propagated next to each other without 

any effect on each other and it later corrects these 

values. A consequence of this is that until the 

desired precision is achieved, or in other words the 

algorithm finishes, we do not know if we have a 

valid physical state or not. Opposite to this, in the 

case of AL2 each step in the algorithm is physically 

valid and can be stopped at any desired moment in 

the case the process goes in an undesired direction. 

This gave us a more effective way to analyze the 

parameters of our simulation. An example would be 

the possibility of observing the maximal distance 

between condensates at which their interaction was 

relevant.  

 

 

5   Conclusion 
In this paper we have presented a simulation of 

propagating matter waves in optical lattices. The 

mathematical modeling for the problem was an 

adaptation of the steady state model that was 

previously used for light beams propagating in 

photonic lattices. We have shown the mathematical 

details of this model and details of the iterative 

method used for simulating propagation. 

    Using this mathematical model we implemented 

two different algorithms for simulating the BEC 

propagation. One that is optimized for finding final 

state (solution). The other algorithm is used to 

observe the evolution of the process. We have 

compared the properties of these two algorithms. As 

expected both algorithms gave the same final 

solutions, but differed in intermediate solutions. We 

have analyzed the memory requirements and speed 

for each simulation method. We have concluded that 

none of the two approaches can be considered as the 

superior one, but it depends what was the goal of the 

simulation.  In practical use we realized that the best 

research method was the combined use of both 

algorithms. The use of simulation software using 

these algorithms resulted in publishing a paper in a 

physics journal [12]. 

    Similar algorithms can be developed for other 

processes that can be modeled by NLSE. We believe 

that our analysis can be applied to them. 
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