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Abstract: The aim of this paper is to provide the users of the data format HDF5 with a preprocessor package for 

lossless compression for all of its predefined numerical data types. Combining this package with  the built in 

compression filters generally compresses the data better than any of them individually, while not being 

essentially slower than the standard compression filter. In addition, it is as easy to use as any of the built in 

filters.  We have tested the increase in compression ratio that occurs when this new filter (RDIF) is combined 

with compression filters that are a part of HDF5 like SZIP and GZIP.  

 

 

Key-Words: - Data Compression, HDF5, Szip 

  

1   Introduction 
 With the increased use of computers in a wide range 

of problems from government, engineering to 

science the amount of created digital data is 

constantly increasing.  The problem of storage is of 

great importance. One approach is using more 

hardware, to store the data.  Although in many cases 

the need for extra hardware cannot be avoided, it can 

be seriously decreased using data compression. One 

of the areas that data compression has proven very 

valuable is application to images[1, 2] and sound[3]. 

There are different approaches to data compression 

like lossy and lossless.  Lossy data compression 

achieves much higher compression rations but in 

contrast to the lossless version, the data cannot be 

fully restored. In our paper we focus on lossless data 

compression. The compression process can in most 

cases be divided in two parts: the encoding stage and 

the preprocessing stage. The goal of the encoding is 

to decrease the data size, by using long bit sequences 

for rarely appearing values and short ones for 

frequent values or some similar method. Encoding 

methods do not take into account higher level 

properties like continuity and periodicity of data, 

which makes them more robust but in many cases 

significantly less efficient. Preprocessing takes 

advantage of these properties and transforms data so 

it could be more efficiently encoded. To be able to 

use these properties, it is necessary to keep data in a 

more structured form than just a sequence of bits for 

which only the creating program knows their 

meaning. 

     HDF5 is a data model, library and file format that 

is used for saving data that describes complex 

systems with a wide range of monitored parameters.  

It records the data type, data space, connections 

between data objects and other properties. It has 

become wide-spread and is used by many scientific 

projects [4] and is used by important research 

software like Wolfram Mathematica [5] and MatLab 

[6]. A great feature of HDF5 is the existence of data 

compression filters like GZIP and SZIP [7, 8]. 

HDF5 allows creating filter pipelines or in other 

words a sequence of filters that will be applied on 

data. This makes the creation and use of 

preprocessing filters simple. HDF contains as a 

standard filter Shuffle [9] that is used for 

preprocessing data. Shuffle changes the order of 

bytes in the data stream. 

     We have developed a new filter for HDF5 that 

uses the multidimensional correlation of neighboring 

data values. We use the concept of predicting the 

value of a point using its neighbors and storing the 

difference with the original. With a good prediction 

function these differences are easier to compress 

than the initial values.  In our filter we use one, two 

and three dimensional differences using Lorenzo 

predictor [10] The use of differences is not directly 

applicable to floating point numbers, at least not 

when using floating point computations. For solving 

this problem, we adopted the method for converting 

floating point data to integers proposed by Martin 

Isenburg [11]. We show in our tests that combining 

our filter with other compression and preprocessing 

filters increases the compression ratio without a 

significant rise in calculation time. These tests have 

been conducted on different examples of scientific 

data. 
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This article is organized as follows.  In Section 1 we 

give details about the prediction functions being 

used. In the following section we explain the 

software implementation and integration into HDF5. 

In the final section we show the results applying our 

filter to different types of data sets using different 

combination of filters. 

 

 

2   The RDIF Filter in HDF5 
HDF5 is used for managing and storing data in a 

structured way. One of the main features of HDF5 is 

the possibility of automatic compression of data 

when it is saved to data storage devices. HDF5 has 

several standard compression filters. N-bit and 

ScaleOffset  are two basic compression filters that 

are effective when used on data that belongs to some 

sub range of the possible values standard data types 

[12]. HDF5 also contains more powerful general 

compression filters like GZIP which implements the 

deflate algorithm[13], and SZIP which implements 

an enhanced version of Rice encoding [7, 14].  

Another group of filters are BZIP2[15] and LZF [16] 

that are used for compression in  HDF5 but have 

been developed by third parties and are not  included 

as standard parts of HDF5. 

     The HDF5 library has a possibility of applying 

multiple filters on data sets by creating filter 

pipelines. Specific preprocessing filters can be 

created by users that can prepare data for better 

compression using known properties of it. These 

user made filters can exploit properties of a very 

high level that are specific to the data (weather data, 

crash test data).  Shuffle is a general preprocessing 

filter that is a part of HDF5, and can be applied to 

any data type. It rearranges the byte order of a data 

set by grouping them by their significance or in 

other words by their position in individual data 

elements. Shuffle manages to increase the 

compression ratio by taking into account the type of 

data that is being compressed. One of the drawbacks 

of this filter is that it has no effect on byte data and 

in general, it is more effective on larger data types. 

     Data that is stored by HDF5 is more complex 

than just having information about its type. We have 

developed a new general preprocessing filter (RDIF) 

for HDF5 based on the Lorenzo predictor that does 

not use just the type of data but also its structure. In 

RDIF we use the concept of predicting the value of a 

data element using the values of its neighbors. If the 

prediction function is good these differences should 

be small and better suited for compression. In our 

filter we use the information about the dimensions of 

the data space and depending on it, we implement 

one, two or multidimensional predictor. It can be 

applied to all standard types of data 8, 16, 32 and 64 

bit signed and unsigned integers and on 32 and 64 

bit floating point numbers.  

     The filter is written in ANSI C and it is used as a 

library file (lib). It can easily be added to existing 

software that uses HDF5 by adding RDIFLIB.lib to 

linking process. To use the filter we need to register 

it with HDF5 with the following code.  

 

#include "HDF5_RDif.h" 

…. 

RegisterRDif(); 

 

When packing data the following code should be 

add to for including RDIF to the filter pipeline. 

 

H5Pset_filter(prop,  FILTER_RDIF, 0, 0, NULL); 

 

     As previously mentioned, the prediction is done 

differently for one, two and multi dimensional data. 

In the case of one dimensional data we use the 

nearest neighbor as does SZIP, Equation 1 
 
 

i iPred Data  (1) 

 

In the two dimensional case we use one dimensional 

predictions on the borders i=0, j=0 and for the 

remaining elements the two dimensional Lorenzo 

predictor Equation 2.  
 

, 1, , 1 1, 1i j i j i j i jPred data data data       (2) 

 

In the case of higher dimensions, we implement the 

two dimensional prediction on the lowest level.  

     One problem with using differences is that more 

bits may be needed to store it than the original data. 

As an example: we take the case of byte data and we 

have a sequence of the following numbers 0xff, 0x0, 

0xff. Their differences are -0xff and 0xff and it is 

obvious that an extra bit will be needed for storing 

the sign. This is a well known problem and we have 

solved it using interleaving  
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 (3) 

 

Where min( min,max )i i iData Data    , [min, 

max] is the possible range of data type.   is the 

difference of prediction and actual data value. In the 

two dimensional predictions this problem is even 
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more complex due to the fact that | | can also have 

an overflow, but we do not go into the details of this 

problem article. 

     This type of prediction and differences cannot be 

directly applied to floating point numbers when 

floating point arithmetic is used. When floating 

point subtraction is calculated, there is possibility of 

underflows appearing with irreversible loss of data. 

There have been several methods of avoiding this 

problem. One is using bit XOR instead of 

subtraction [17]. Another approach is applying 

integer arithmetic on the floating point numbers in 

the sense that bits of float pointing numbers are read 

as integers [18]. In our filter we adopted the 

approach given in article [11] for converting floating 

point numbers to integers. The IEEE standard for 

floating point numbers [19] is given by the 

following Eq. 4   
 

1
2 1

( 1) 2 (2 )
ne

m me n ns m


  
   (4) 

 

An IEEE single (double) precision number consists 

of a sign bit s, an ne = 8 (11) bit exponent e, and an 

nm= 23(52) bit mantissa m that generally represent 

the number. The conversion we use is given in Eq. 5 

 

(1 ( 1)) , 0
( )

( (1 ) 1), 0

f XOR BitLength f
Int f

f XOR BitLength f

  
 

  

 (5) 

 

In practical applications, this means that if the 

number is positive change its leading bit to 1, and in 

the case it is negative invert all of its bits. The result 

of this conversion of floating point number is a 

monotonic mapping to unsigned integers that 

preserves ordering and even linearity of differences 

for floats with the same sign and exponent. 

 

 

3 Performance evaluations  
In this section we present our test for evaluating the 

performance of RDIF. The goal of these tests is to 

show that adding our preprocessor to the filter 

pipeline increases the compression ratio with 

negligible extra calculation time. We also analyze 

the effect of combining RDIF with other filters. We 

have performed tests on existing scientific data 

saved in HDF5 format. These files are combination 

of several data types that are stored in arrays of 

varying size and dimensions. We first observe the 

overall compression ratio on these files. The second 

part of our analysis is observing the accomplished 

compression ratio on data generated by sampling 

functions of two variables.  

     In our tests, we use data acquired from the NASA 

web site, using the MIRADOR web interface for 

data users. The data is in HDF5 format. We 

collected data files of different sizes and from 

different measurements. We use data from the OMI 

(The Ozone Monitoring Instrument), MLS-Aura 

(The Microwave Limb Sounder aboard the EOS- 

Aura spacecraft) and HIRDLS-AURA (The High 

Resolution Dynamics Limb Sounder aboard the EOS 

Aura spacecraft). We have also test data acquired 

from the web site of the Laboratory for 

computational Astrophysics, University of 

California, San Diego. In these tests we compare the 

speed of data repacking using GZIP and SZIP as 

compression filters and their combination with 

Shuffle and RDIF. We have done tests with the 

GZIP optimization parameter having values of 5 and 

9. In the case of SZIP, we used blocks of size 8. 

When we use SZIP separately, it has the nearest 

neighbor set to true. When it was used in 

combination with RDIF it would have just entropy 

encoding, due to the fact that RDIF and nearest 

neighbor are partially overlapping. The 

packing/unpacking tests have been done using the 

standard HDF5 tool H5repack slightly modified to 

be able to use RDIF filter. We have measured the 

time needed for H5repack to load a HDF5 file with 

no filters applied and save it with a new set of filters 

for packing and in the opposite direction for 

unpacking. In all of our tests, we used a Dell 

Optiplex 755, Intel(R) Core(TM) Duo CPU E8500 

@ 3.16GHz, 3.25 GB of Ram  with Windows XP 

Professional Service pack 3. The results of these 

tests are given in the Tables [1, 2, 3, 4]. In all the 

tables, we use SZIP to indicate that SZIP filter has 

been used. GZIP and GZIP9 in the case GZIP filter 

is used with compression parameter set to 5 or 9 

respectively. If extra filters have been added to the 

pipeline we use “+S” for Shuffle, and “+D” for 

RDIFF. 

 

Table 1. Comparison of different combinations of 

HDF5 filters on file test.float.hdf5 from CLA. The 

size of the file is 0.1 megabytes. Compression and 

decompression times are measured in seconds. 

Filters Com. time Com ratio Dec. time  

SZIP 0.0030 1.525794 0.0030 

SZIP+S 0.0062 1.439842 0.0030 

SZIP+D 0.0030 1.397089 0.0030 

GZIP 0.0030 2.098752 0.0030 

GZIP9 0.0062 2.132849 0.0062 

GZIP+S 0.0062 2.271142 0.0030 

GZIP+D 0.0030 2.058578 0.0062 

GZIP+D+S 0.0062 2.233088 0.0030 

RECENT ADVANCES in APPLIED MATHEMATICS

ISSN: 1790-2769 224 ISBN: 978-960-474-150-2



Table 2. Comparison of different combinations of 

HDF5 filters on file MLS-Aura_L2GP-GPH_v01-

52-c01_2007d059.he5. The size of the file is 1.6 

megabytes. Compression and decompression times 

are measured in seconds. 

Filters Com. time Com ratio Dec. time  

SZIP 0.0906 1.545986 0.1156 

SZIP+S 0.0936 1.482578 0.1062 

SZIP+D 0.0906 1.740075 0.1030 

GZIP 0.4062 1.508945 0.0906 

GZIP9 0.4062 1.508945 0.1030 

GZIP+S 0.4156 1.740808 0.0968 

GZIP+D 0.4156 1.631318 0.0936 

GZIP+D+S 0.4062 1.804798 0.0968 

 
 

Table 3. Comparison of different combination of 

HDF5 filters on file HIRDLS-Aura_L2_v02-04-09-

c03_2008d001.he5. The size of the file is 120.4 

megabytes. Compression and decompression times 

are measured in seconds. 

Filters Com. time Com ratio Dec. time  

SZIP 0.7250 10.520906 5.5530 

SZIP+S 0.9312 7.654173 5.2126 

SZIP+D 0.7030 11.774671 5.1750 

GZIP 1.6780 11.756691 5.0624 

GZIP9 1.9374 11.775440 5.2530 

GZIP+S 1.6280 13.262722 6.3312 

GZIP+D 1.9562 12.231457 5.9406 

GZIP+D+S 1.7592 13.589447 5.3250 

 
 

Table4. Comparison of different combination of 

HDF5 filters on file MLS-Aura_L1BOA_v02-21-

c01_2007d044.h5. The size of the file is 319.5 

megabytes. Compression and decompression times 

are measured in seconds. 

Filters Com. time Com ratio Dec. time  

SZIP 16.4030 1.218118 16.3930 

SZIP+S 13.9592 1.157996 14.9406 

SZIP+D 12.7030 1.327255 14.8624 

GZIP 31.4062 1.163908 13.5842 

GZIP9 31.6624 1.163812 13.8156 

GZIP+S 28.5468 1.363979 13.1718 

GZIP+D 31.1374 1.411996 14.0906 

GZIP+D+S 28.2906 1.625557 14.1203 
 

 

     We first notice that only in the case from Table 1 

did our filter not have a good performance. It has 

slightly degraded the level of compression for both 

SZIP and GZIP. This is due to the fact that in this 

case the data was only one dimensional and it was 

separated into small chunks. The HDF5 library has 

been developed in a fashion that it can be further 

developed independent of filters. Because of this 

RDIF has to add extra header information that stores 

data type and dimensions. In all the other tested files 

the compression ratio has improved. The 

improvement varies from 10% to 30%. Adding 

RDIF to the filter pipeline had only minor change in 

calculation time. A surprising effect was that in 

some cases it even decreased the overall 

compression time. This can be explained by smaller 

write time to the hard drive.  

    Surprisingly, after the process of packing and 

unpacking, HDF5 files were not bit-wise identical 

for different combination of filters. To confirm the 

validity of our filter, we used the h5diff tool 

provided by HDF5 group. This tool is used to 

compare the data inside two HDF5 files. Using 

h5diff we have seen that the data and the structure of 

tested files have been exactly preserved for all 

combination of filters. 

     The second type of tests that we have conducted 

is on two dimensional smooth functions. We 

generated data that we compress and store using 

HDF5 and in the opposite direction read and 

decompressed data into memory. The function we 

used is F (x,y) = (2+sin(x)+ cos(y))m.  We tested 

RDIF for float 32 bit data (m=1) and for integer 16 

bit data (m = 16000). The data was a 657* 660 

matrix. We can see the results in Tables 5, 6.    

  

Table 5. Comparison of different combination of 

HDF5 filters for generated float 32 bit  

Filters Com. mb/s Com ratio Dec. time  

SZIP  35.21 1.675539 0.0172 

SZIP+S  32.35 1.489831 0.0187 

SZIP+D 11.91 9.864591 0.0125 

GZIP 10.94 1.140343 0.0140 

GZIP9  10.69 1.140343 0.0140 

GZIP+S  11.66 1.934022 0.0109 

GZIP+D  3.08 11.86597 0.0110 

GZIP+D+S  2.36 14.97928 0.0125 

 

Table 6. Comparison of different combination of 

HDF5 filters for generated float 32 bit  

Filters Com. mb/s Com ratio Dec. time  

SZIP  20.13 1.389290 0.0015 

SZIP+S  28.62 1.091209 0.0016 

SZIP+D  10.33 8.647445 0.0016 

GZIP  14.38 1.026243 0.0016 

GZIP9  14.40 1.026243 0.0016 

GZIP+S  11.27 1.686536 0.0016 

GZIP+D  9.63 9.635869 0.0016 

GZIP+D+S  2.25 11.214086 0.0016 
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In these tests the compression ratio has been greatly 

improved even up to 10 times when RDIF was 

added. This shows that RDIF is very suitable for 

preprocessing smooth data. We believe that in many 

of the cases of smooth functions even higher order 

differences would give even better results, which we 

plan to add to our filter in the future.   

     Our tests have shown that the combined use of 

Shuffle and SZIP gives poor results. Shuffle 

improves the performance of GZIP. If RDIF is 

added before SHUFFLE in the filter pipeline, even 

greater compression is achieved by GZIP. Shuffle 

should not be used before our filter due to the fact 

after changing byte order differences will not be 

calculated on true values of data. RDIF improves the 

compression ratio of GZIP, but the best results are 

acquired when it is combined with Shuffle. 

Decompression time in all the tested cases was very 

similar for all the tested combination of filters and 

data sets. In the case of compression, SZIP was 2-4 

times faster than GZIP.         

 

 

4 Conclusions  
In this paper we have presented RDIF, a new 

preprocessing filter for HDF5 that is currently being 

developed. The main goal of RDIF is to improve the 

compression ratio achieved in HDF5 using existing 

compression filters. The use of this filter is simple 

and can be easily added to existing software that 

uses HDF5. We have tried to increase compression 

ration by exploiting properties like data type and 

data dimensions that are preserved inside HDF5. 

Preprocessing is done using predictions based on 

values of neighboring elements and storing the 

difference between the prediction and the actual 

value.  RDIF can be applied to all HDF5 supported 

numerical data types. The use of our filter has 

proven to be efficient on real data acquired by 

NASA and gave an increase in compression ratio 

10%-30% with a small effect on calculation time. 

We have also tested the use of the new filter on data 

generated by two dimensional smooth functions. For 

this type of data RDIF has shown to be extremely 

efficient and improvement the compression ratio 

even up to 10 times.   

     In the future we plan to add a possibility of 

selecting predictions with higher level differences, 

extending the prediction calculations to higher 

dimensions.  
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