
RDIF a preprocessing Filter for HDF5

Raka Jovanovic

Texas AM University

At Qatar

PO Box 23874,Doha

Qatar

rakabog@yahoo.com

Rudolph A. Lorentz

Texas AM University

At Qatar

PO Box 23874, Doha

Qatar

rudolph.lorentz@qatar.tamu.edu

Abstract: The aim of this paper is to provide the users of the data format HDF5 with a preprocessor package for

lossless compression for all of its predefined numerical data types. Combining this package with the built in

compression filters generally compresses the data better than any of them individually, while not being

essentially slower than the standard compression filter. In addition, it is as easy to use as any of the built in

filters. We have tested the increase in compression ratio that occurs when this new filter (RDIF) is combined

with compression filters that are a part of HDF5 like SZIP and GZIP.

Key-Words: - Data Compression, HDF5, Szip

1 Introduction
 With the increased use of computers in a wide range

of problems from government, engineering to

science the amount of created digital data is

constantly increasing. The problem of storage is of

great importance. One approach is using more

hardware, to store the data. Although in many cases

the need for extra hardware cannot be avoided, it can

be seriously decreased using data compression. One

of the areas that data compression has proven very

valuable is application to images[1, 2] and sound[3].

There are different approaches to data compression

like lossy and lossless. Lossy data compression

achieves much higher compression rations but in

contrast to the lossless version, the data cannot be

fully restored. In our paper we focus on lossless data

compression. The compression process can in most

cases be divided in two parts: the encoding stage and

the preprocessing stage. The goal of the encoding is

to decrease the data size, by using long bit sequences

for rarely appearing values and short ones for

frequent values or some similar method. Encoding

methods do not take into account higher level

properties like continuity and periodicity of data,

which makes them more robust but in many cases

significantly less efficient. Preprocessing takes

advantage of these properties and transforms data so

it could be more efficiently encoded. To be able to

use these properties, it is necessary to keep data in a

more structured form than just a sequence of bits for

which only the creating program knows their

meaning.

 HDF5 is a data model, library and file format that

is used for saving data that describes complex

systems with a wide range of monitored parameters.

It records the data type, data space, connections

between data objects and other properties. It has

become wide-spread and is used by many scientific

projects [4] and is used by important research

software like Wolfram Mathematica [5] and MatLab

[6]. A great feature of HDF5 is the existence of data

compression filters like GZIP and SZIP [7, 8].

HDF5 allows creating filter pipelines or in other

words a sequence of filters that will be applied on

data. This makes the creation and use of

preprocessing filters simple. HDF contains as a

standard filter Shuffle [9] that is used for

preprocessing data. Shuffle changes the order of

bytes in the data stream.

 We have developed a new filter for HDF5 that

uses the multidimensional correlation of neighboring

data values. We use the concept of predicting the

value of a point using its neighbors and storing the

difference with the original. With a good prediction

function these differences are easier to compress

than the initial values. In our filter we use one, two

and three dimensional differences using Lorenzo

predictor [10] The use of differences is not directly

applicable to floating point numbers, at least not

when using floating point computations. For solving

this problem, we adopted the method for converting

floating point data to integers proposed by Martin

Isenburg [11]. We show in our tests that combining

our filter with other compression and preprocessing

filters increases the compression ratio without a

significant rise in calculation time. These tests have

been conducted on different examples of scientific

data.

RECENT ADVANCES in APPLIED MATHEMATICS

ISSN: 1790-2769 222 ISBN: 978-960-474-150-2

This article is organized as follows. In Section 1 we

give details about the prediction functions being

used. In the following section we explain the

software implementation and integration into HDF5.

In the final section we show the results applying our

filter to different types of data sets using different

combination of filters.

2 The RDIF Filter in HDF5
HDF5 is used for managing and storing data in a

structured way. One of the main features of HDF5 is

the possibility of automatic compression of data

when it is saved to data storage devices. HDF5 has

several standard compression filters. N-bit and

ScaleOffset are two basic compression filters that

are effective when used on data that belongs to some

sub range of the possible values standard data types

[12]. HDF5 also contains more powerful general

compression filters like GZIP which implements the

deflate algorithm[13], and SZIP which implements

an enhanced version of Rice encoding [7, 14].

Another group of filters are BZIP2[15] and LZF [16]

that are used for compression in HDF5 but have

been developed by third parties and are not included

as standard parts of HDF5.

 The HDF5 library has a possibility of applying

multiple filters on data sets by creating filter

pipelines. Specific preprocessing filters can be

created by users that can prepare data for better

compression using known properties of it. These

user made filters can exploit properties of a very

high level that are specific to the data (weather data,

crash test data). Shuffle is a general preprocessing

filter that is a part of HDF5, and can be applied to

any data type. It rearranges the byte order of a data

set by grouping them by their significance or in

other words by their position in individual data

elements. Shuffle manages to increase the

compression ratio by taking into account the type of

data that is being compressed. One of the drawbacks

of this filter is that it has no effect on byte data and

in general, it is more effective on larger data types.

 Data that is stored by HDF5 is more complex

than just having information about its type. We have

developed a new general preprocessing filter (RDIF)

for HDF5 based on the Lorenzo predictor that does

not use just the type of data but also its structure. In

RDIF we use the concept of predicting the value of a

data element using the values of its neighbors. If the

prediction function is good these differences should

be small and better suited for compression. In our

filter we use the information about the dimensions of

the data space and depending on it, we implement

one, two or multidimensional predictor. It can be

applied to all standard types of data 8, 16, 32 and 64

bit signed and unsigned integers and on 32 and 64

bit floating point numbers.

 The filter is written in ANSI C and it is used as a

library file (lib). It can easily be added to existing

software that uses HDF5 by adding RDIFLIB.lib to

linking process. To use the filter we need to register

it with HDF5 with the following code.

#include "HDF5_RDif.h"

….

RegisterRDif();

When packing data the following code should be

add to for including RDIF to the filter pipeline.

H5Pset_filter(prop, FILTER_RDIF, 0, 0, NULL);

 As previously mentioned, the prediction is done

differently for one, two and multi dimensional data.

In the case of one dimensional data we use the

nearest neighbor as does SZIP, Equation 1

i iPred Data (1)

In the two dimensional case we use one dimensional

predictions on the borders i=0, j=0 and for the

remaining elements the two dimensional Lorenzo

predictor Equation 2.

, 1, , 1 1, 1i j i j i j i jPred data data data      (2)

In the case of higher dimensions, we implement the

two dimensional prediction on the lowest level.

 One problem with using differences is that more

bits may be needed to store it than the original data.

As an example: we take the case of byte data and we

have a sequence of the following numbers 0xff, 0x0,

0xff. Their differences are -0xff and 0xff and it is

obvious that an extra bit will be needed for storing

the sign. This is a well known problem and we have

solved it using interleaving

2 , 0

2 | | 1 , 0

| | ,| |

i i i

i i i i

i i i i



 

 

   


       
    

 (3)

Where min(min,max)i i iData Data    , [min,

max] is the possible range of data type.  is the

difference of prediction and actual data value. In the

two dimensional predictions this problem is even

RECENT ADVANCES in APPLIED MATHEMATICS

ISSN: 1790-2769 223 ISBN: 978-960-474-150-2

more complex due to the fact that | | can also have

an overflow, but we do not go into the details of this

problem article.

 This type of prediction and differences cannot be

directly applied to floating point numbers when

floating point arithmetic is used. When floating

point subtraction is calculated, there is possibility of

underflows appearing with irreversible loss of data.

There have been several methods of avoiding this

problem. One is using bit XOR instead of

subtraction [17]. Another approach is applying

integer arithmetic on the floating point numbers in

the sense that bits of float pointing numbers are read

as integers [18]. In our filter we adopted the

approach given in article [11] for converting floating

point numbers to integers. The IEEE standard for

floating point numbers [19] is given by the

following Eq. 4

1
2 1

(1) 2 (2)
ne

m me n ns m


  
  (4)

An IEEE single (double) precision number consists

of a sign bit s, an ne = 8 (11) bit exponent e, and an

nm= 23(52) bit mantissa m that generally represent

the number. The conversion we use is given in Eq. 5

(1 (1)) , 0
()

((1) 1), 0

f XOR BitLength f
Int f

f XOR BitLength f

  
 

  

 (5)

In practical applications, this means that if the

number is positive change its leading bit to 1, and in

the case it is negative invert all of its bits. The result

of this conversion of floating point number is a

monotonic mapping to unsigned integers that

preserves ordering and even linearity of differences

for floats with the same sign and exponent.

3 Performance evaluations
In this section we present our test for evaluating the

performance of RDIF. The goal of these tests is to

show that adding our preprocessor to the filter

pipeline increases the compression ratio with

negligible extra calculation time. We also analyze

the effect of combining RDIF with other filters. We

have performed tests on existing scientific data

saved in HDF5 format. These files are combination

of several data types that are stored in arrays of

varying size and dimensions. We first observe the

overall compression ratio on these files. The second

part of our analysis is observing the accomplished

compression ratio on data generated by sampling

functions of two variables.

 In our tests, we use data acquired from the NASA

web site, using the MIRADOR web interface for

data users. The data is in HDF5 format. We

collected data files of different sizes and from

different measurements. We use data from the OMI

(The Ozone Monitoring Instrument), MLS-Aura

(The Microwave Limb Sounder aboard the EOS-

Aura spacecraft) and HIRDLS-AURA (The High

Resolution Dynamics Limb Sounder aboard the EOS

Aura spacecraft). We have also test data acquired

from the web site of the Laboratory for

computational Astrophysics, University of

California, San Diego. In these tests we compare the

speed of data repacking using GZIP and SZIP as

compression filters and their combination with

Shuffle and RDIF. We have done tests with the

GZIP optimization parameter having values of 5 and

9. In the case of SZIP, we used blocks of size 8.

When we use SZIP separately, it has the nearest

neighbor set to true. When it was used in

combination with RDIF it would have just entropy

encoding, due to the fact that RDIF and nearest

neighbor are partially overlapping. The

packing/unpacking tests have been done using the

standard HDF5 tool H5repack slightly modified to

be able to use RDIF filter. We have measured the

time needed for H5repack to load a HDF5 file with

no filters applied and save it with a new set of filters

for packing and in the opposite direction for

unpacking. In all of our tests, we used a Dell

Optiplex 755, Intel(R) Core(TM) Duo CPU E8500

@ 3.16GHz, 3.25 GB of Ram with Windows XP

Professional Service pack 3. The results of these

tests are given in the Tables [1, 2, 3, 4]. In all the

tables, we use SZIP to indicate that SZIP filter has

been used. GZIP and GZIP9 in the case GZIP filter

is used with compression parameter set to 5 or 9

respectively. If extra filters have been added to the

pipeline we use “+S” for Shuffle, and “+D” for

RDIFF.

Table 1. Comparison of different combinations of

HDF5 filters on file test.float.hdf5 from CLA. The

size of the file is 0.1 megabytes. Compression and

decompression times are measured in seconds.

Filters Com. time Com ratio Dec. time

SZIP 0.0030 1.525794 0.0030

SZIP+S 0.0062 1.439842 0.0030

SZIP+D 0.0030 1.397089 0.0030

GZIP 0.0030 2.098752 0.0030

GZIP9 0.0062 2.132849 0.0062

GZIP+S 0.0062 2.271142 0.0030

GZIP+D 0.0030 2.058578 0.0062

GZIP+D+S 0.0062 2.233088 0.0030

RECENT ADVANCES in APPLIED MATHEMATICS

ISSN: 1790-2769 224 ISBN: 978-960-474-150-2

Table 2. Comparison of different combinations of

HDF5 filters on file MLS-Aura_L2GP-GPH_v01-

52-c01_2007d059.he5. The size of the file is 1.6

megabytes. Compression and decompression times

are measured in seconds.

Filters Com. time Com ratio Dec. time

SZIP 0.0906 1.545986 0.1156

SZIP+S 0.0936 1.482578 0.1062

SZIP+D 0.0906 1.740075 0.1030

GZIP 0.4062 1.508945 0.0906

GZIP9 0.4062 1.508945 0.1030

GZIP+S 0.4156 1.740808 0.0968

GZIP+D 0.4156 1.631318 0.0936

GZIP+D+S 0.4062 1.804798 0.0968

Table 3. Comparison of different combination of

HDF5 filters on file HIRDLS-Aura_L2_v02-04-09-

c03_2008d001.he5. The size of the file is 120.4

megabytes. Compression and decompression times

are measured in seconds.

Filters Com. time Com ratio Dec. time

SZIP 0.7250 10.520906 5.5530

SZIP+S 0.9312 7.654173 5.2126

SZIP+D 0.7030 11.774671 5.1750

GZIP 1.6780 11.756691 5.0624

GZIP9 1.9374 11.775440 5.2530

GZIP+S 1.6280 13.262722 6.3312

GZIP+D 1.9562 12.231457 5.9406

GZIP+D+S 1.7592 13.589447 5.3250

Table4. Comparison of different combination of

HDF5 filters on file MLS-Aura_L1BOA_v02-21-

c01_2007d044.h5. The size of the file is 319.5

megabytes. Compression and decompression times

are measured in seconds.

Filters Com. time Com ratio Dec. time

SZIP 16.4030 1.218118 16.3930

SZIP+S 13.9592 1.157996 14.9406

SZIP+D 12.7030 1.327255 14.8624

GZIP 31.4062 1.163908 13.5842

GZIP9 31.6624 1.163812 13.8156

GZIP+S 28.5468 1.363979 13.1718

GZIP+D 31.1374 1.411996 14.0906

GZIP+D+S 28.2906 1.625557 14.1203

 We first notice that only in the case from Table 1

did our filter not have a good performance. It has

slightly degraded the level of compression for both

SZIP and GZIP. This is due to the fact that in this

case the data was only one dimensional and it was

separated into small chunks. The HDF5 library has

been developed in a fashion that it can be further

developed independent of filters. Because of this

RDIF has to add extra header information that stores

data type and dimensions. In all the other tested files

the compression ratio has improved. The

improvement varies from 10% to 30%. Adding

RDIF to the filter pipeline had only minor change in

calculation time. A surprising effect was that in

some cases it even decreased the overall

compression time. This can be explained by smaller

write time to the hard drive.

 Surprisingly, after the process of packing and

unpacking, HDF5 files were not bit-wise identical

for different combination of filters. To confirm the

validity of our filter, we used the h5diff tool

provided by HDF5 group. This tool is used to

compare the data inside two HDF5 files. Using

h5diff we have seen that the data and the structure of

tested files have been exactly preserved for all

combination of filters.

 The second type of tests that we have conducted

is on two dimensional smooth functions. We

generated data that we compress and store using

HDF5 and in the opposite direction read and

decompressed data into memory. The function we

used is F (x,y) = (2+sin(x)+ cos(y))m. We tested

RDIF for float 32 bit data (m=1) and for integer 16

bit data (m = 16000). The data was a 657* 660

matrix. We can see the results in Tables 5, 6.

Table 5. Comparison of different combination of

HDF5 filters for generated float 32 bit

Filters Com. mb/s Com ratio Dec. time

SZIP 35.21 1.675539 0.0172

SZIP+S 32.35 1.489831 0.0187

SZIP+D 11.91 9.864591 0.0125

GZIP 10.94 1.140343 0.0140

GZIP9 10.69 1.140343 0.0140

GZIP+S 11.66 1.934022 0.0109

GZIP+D 3.08 11.86597 0.0110

GZIP+D+S 2.36 14.97928 0.0125

Table 6. Comparison of different combination of

HDF5 filters for generated float 32 bit

Filters Com. mb/s Com ratio Dec. time

SZIP 20.13 1.389290 0.0015

SZIP+S 28.62 1.091209 0.0016

SZIP+D 10.33 8.647445 0.0016

GZIP 14.38 1.026243 0.0016

GZIP9 14.40 1.026243 0.0016

GZIP+S 11.27 1.686536 0.0016

GZIP+D 9.63 9.635869 0.0016

GZIP+D+S 2.25 11.214086 0.0016

RECENT ADVANCES in APPLIED MATHEMATICS

ISSN: 1790-2769 225 ISBN: 978-960-474-150-2

In these tests the compression ratio has been greatly

improved even up to 10 times when RDIF was

added. This shows that RDIF is very suitable for

preprocessing smooth data. We believe that in many

of the cases of smooth functions even higher order

differences would give even better results, which we

plan to add to our filter in the future.

 Our tests have shown that the combined use of

Shuffle and SZIP gives poor results. Shuffle

improves the performance of GZIP. If RDIF is

added before SHUFFLE in the filter pipeline, even

greater compression is achieved by GZIP. Shuffle

should not be used before our filter due to the fact

after changing byte order differences will not be

calculated on true values of data. RDIF improves the

compression ratio of GZIP, but the best results are

acquired when it is combined with Shuffle.

Decompression time in all the tested cases was very

similar for all the tested combination of filters and

data sets. In the case of compression, SZIP was 2-4

times faster than GZIP.

4 Conclusions
In this paper we have presented RDIF, a new

preprocessing filter for HDF5 that is currently being

developed. The main goal of RDIF is to improve the

compression ratio achieved in HDF5 using existing

compression filters. The use of this filter is simple

and can be easily added to existing software that

uses HDF5. We have tried to increase compression

ration by exploiting properties like data type and

data dimensions that are preserved inside HDF5.

Preprocessing is done using predictions based on

values of neighboring elements and storing the

difference between the prediction and the actual

value. RDIF can be applied to all HDF5 supported

numerical data types. The use of our filter has

proven to be efficient on real data acquired by

NASA and gave an increase in compression ratio

10%-30% with a small effect on calculation time.

We have also tested the use of the new filter on data

generated by two dimensional smooth functions. For

this type of data RDIF has shown to be extremely

efficient and improvement the compression ratio

even up to 10 times.

 In the future we plan to add a possibility of

selecting predictions with higher level differences,

extending the prediction calculations to higher

dimensions.

References:

[1] S. Amat, J. Ruiz, and J. C. Trillo, “Compression

of Color Images Using Nonlinear

Multiresolution Schemes,” WSEAS Transactions

on Signal Processing, vol. 2, no. 2, pp. 302-308,

2006.

[2] B. Carpentieri, “Image compression via textual

substitution,” WSEAS Transactions Information

Science. and Application, vol. 6, no. 5, pp. 768-

777, 2009.

[3] S. Saha, and V. Reddy, “Audio Compression

Technology for Voice Transmission,” WSEAS

Transactions on Circuits and Systems, vol. 9,

no. 3, pp. 1858-1862, 2004.

[4] The HDF5 group. "HDF5 Users,"

www.bigdata.org/HDF5/users5.html

[5] Wolfram Research Inc. "HDF5, Wolfram

Mathematica documentation Center,"

http://reference.wolfram.com/mathematica/ref/f

ormat/HDF5.html.

[6] The MathWorks Inc. "HDF5, MATLAB

Function Reference,"

http://matlab.izmiran.ru/help/techdoc/ref/hdf5.ht

ml.

[7] Y. Pen-Shu., X.-S. Wei., M. Lowel. et al.,

“Implementation of ccsds lossless data

compression in hdf,” in Earth Science

Technology Conference, Pasadena, 2002.

[8] Consultative Committee for Space Data

Systems, BLUE BOOK, Washington, DC:

CCSDS Secretariat Program Integration

Division (Code MG) National Aeronautics and

Space Administration, 1997.

[9] "Performance evaluation report: gzip, bzip2

compression with and without shuffling

algorithm,"http://www.hdfgroup.org/HDF5/doc

_resource/H5Shuffle_Perf.pdf.

[10] L. Ibarria, P. Lindstrom, J. Rossignac et al.,

“Out-of-core compression and decompression of

large n-dimensional scalar fields,” Computer

Graphics Forum, vol. 22, pp. 343-348, 2003.

[11] M. Isenburg, “Fast and efficient compression of

floating-point data,” IEEE Transactions on

Visualization and Computer Graphics, vol. 12,

no. 5, pp. 1245-1250, 2006.

[12] M. Yang. "N-bit and ScaleOffset filters,"

http://www.hdfgroup.org/training/hdf5-

class/HDF5-nbit-scaleoffset.pdf.

[13] D. Salomon, Data Compression: the Complete

reference, London: Springer-Verlang, 2007.

[14] P.-S. Yeh, "The CCSDS Lossless Data

Compression Recommendation for Space

Applications," Lossless Compression

HandBook, pp. 311-326 London: Academic

Press, 2003.

[15] S. Julian. "BZIP2 and LIBBZIP2, version 1.0.5:

A program and library for data compression,"

November, 2009; www.bzip.org

RECENT ADVANCES in APPLIED MATHEMATICS

ISSN: 1790-2769 226 ISBN: 978-960-474-150-2

http://www.bigdata.org/HDF5/users5.html
http://reference.wolfram.com/mathematica/ref/format/HDF5.html
http://reference.wolfram.com/mathematica/ref/format/HDF5.html
http://matlab.izmiran.ru/help/techdoc/ref/hdf5.html
http://matlab.izmiran.ru/help/techdoc/ref/hdf5.html
http://www.hdfgroup.org/HDF5/doc_resource/H5Shuffle_Perf.pdf%3e
http://www.hdfgroup.org/HDF5/doc_resource/H5Shuffle_Perf.pdf%3e
http://www.hdfgroup.org/training/hdf5-class/HDF5-nbit-scaleoffset.pdf
http://www.hdfgroup.org/training/hdf5-class/HDF5-nbit-scaleoffset.pdf
http://www.bzip.org/

[16] A. Collette. "LZF Compression Filter for

HDF5," http://h5py.alfven.org/lzf/.

[17] P. Ratanaworabhan, J. Ke, and M. Burtscher,

“Fast lossless compression of scientific floating-

point data,” in Data Compression Conference,

2006, pp. 133-142.

[18] V. Engelson, D. Fritzson, and P. Fritzson,

“Lossless compression of high-volume

numerical data from simulations,” in D. Data

Compression Conference, 2000, pp. 574-586.

[19] IEEE 754: , Standard for binary floating-point

arithmetic, 1985.

RECENT ADVANCES in APPLIED MATHEMATICS

ISSN: 1790-2769 227 ISBN: 978-960-474-150-2

http://h5py.alfven.org/lzf/

