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Abstract: - In this paper we present a new method for displaying the Mandelbrot Set. Our algorithm is closely 

connected to Pickover Stalks and Buddhabrot method. Pickover Stalks method created biomorphs, diverse and 

complicated forms greatly resembling invertebrate organisms. Our method extends previously developed 

methods that preserve information about calculating the Mandelbrot Set. We observe the calculation-path of 

points tested for belonging to the Mandelbrot Set. Two variations of this display method are presented: one that 

only takes into account the paths taken and one that also uses information about their lengths.  
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1   Introduction 
Fractals are geometric shapes that have the property 

of self-similarity, or in other words, that the shape 

can be divided into parts that are reduced size copies 

(at least approximately) of the whole.  Benoît 

Mandelbrot first used the term in 1975. The 

application and use of fractals has been increasing 

with the increase of computer power. They have 

shown their usability in a wide range of domains 

from biology and medicine [1], image processing 

[2], [3], art etc. 

     Fractal theory gives methods for describing the 

irregularity of natural objects, opposite to the 

idealizations created when using Euclidean 

geometry. The fractal dimension can be seen as a 

measure of complexity, or as an index of the scale-

dependency of a pattern. This measure is defined 

mathematically with Hausdorff dimension [4].  

      Natural objects do not exhibit exact self-

similarity, but to some degree statistical similarities. 

One direction of application of fractals in biology is 

calculating its fractal dimension and using it for a 

comparison between systems [5], [6]. The relevance 

of this parameter has been shown on the example of 

different sized insects living on a tree trunk and the 

distances they travel on it. If the bark has a fractal 

dimension of D = 1.4, an insect an order of 

magnitude smaller than another one perceives a 

length increase of 10
D-1

 = 100
0.4

 = 2.51, or a habitat 

surface area increase of 2.51
2
 = 6.31.     

     The second direction of the application of fractals 

in biology is in artificially creating biological objects 

or systems. An example is the use of iterated 

functions system (IFS) fractals for creating virtual 

trees [7]. C.A. Pickover demonstrated a new concept 

of Mandelbrot Set (M-set) coloring that created 

images closely corresponding to single cellular 

organisms which were named biomorphs [8]. This 

has shown the connection of the M-set and living 

organisms and the possible importance of 

researching its properties for biological science.  

     For the biomorphs creation, an essential step was 

the concept of Pickover Stalks. This was the first 

method that observes the behavior of points during 

the calculation the M-Set; the coloring was based on 

how closely the orbits of interior points come to the 

x and y axes. A novel approach to displaying the M-

Set is the Buddhabrot method, which uses 

information of the number of visits to points in the 

iterative creation algorithm [9]. We extend this 

method by preserving not only the information of 

which points have been visited, but also the order in 

which they have been visited. We visualize the paths 

points pass in the iterative process.  

     The paper is organized as follows. In Section 2 

we show the algorithm for creating the M-Set and 

the Buddhabrot method. In Section 3 we present our 

extension of the Buddhabrot technique based on 

calculation paths. In the next section we analyze 

some characteristic images of M-Set created with the 

techniques presented.    

 

 

2   Buddhabrot Display Algorithm 
The M-Set is defined as the set of complex values of 

c for which |Zn| under iteration of the complex 

quadratic polynomial Zn+1= Zn
2
+ c remains bounded. 

That is the original M-Set, but the concept has been 
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extended to an arbitrary function F and 

corresponding M-Set generated with the iterative 

method Zn+1 = F(Zn ,c). We display the M-Set in a 

given area A = (xmin, xmax)*(ymin, ymax) of the 

complex plain and a given resolution h which 

defines a grid G(A,h). The standard algorithm for 

displaying the M-Set in G is given in the following 

pseudo code   

 

  foreach (PointG){ 

        Iteration = 0; 

        Z = Point  

          while ( (|Z|
2
<bound) 

                    and  (iteration < MaxIteration)){ 

   Z = F(Z , Point) 

   Iteration++     

            } 

        Color(Point) =ColorIndex(iteration)     

} 

 

With this display algorithm we show not only if a 

point is a member of the M-Set but also for non-

member points the number of iterations they have 

been bounded (Fig. 1).          

 

 
 

Figure 1. The Mandelbrot Set for function 

Zn+1 = Zn
2
+ c, maximum iterations 128, 

in the area (-2, 1)*(-i, i) 

 

In the basic coloring algorithm we only use the 

number of iterations that |Z| was bounded, but we do 

not use the information of which points Z have been 

passed and how many times, during these steps. The 

Buddhabrot method extends basic display algorithm 

by preserving this data.   

     The idea is adding a two-dimensional array 

corresponding to grid G, and counting the number of 

“hits” Z has made on elements of the grid during its 

iterations. The Buddhabrot algorithm is shown in the 

following pseudo code. 

Counter.SetToZero(); 
 

for (MaxNumberOfPoints){ 
 

        Point  = Random element of area A 

        Iteration = 0 

        Z = Point  

        Steps.Empty()   
 

          while ( (|Z|
2
<bound)   

                  and  (iteration < MaxIteration)){ 
  
   Steps.Add(Z)  

   Z = F(Z , Point) 

   Iteration++     

            } 

         if((iteration=MaxIteration)=OUTSIDE){ 

                foreach(Z  Steps) 

 Counter (Z) += 1 

         } 

} 

 foreach (PointG){ 

     Color(Point) = ColorIndex(Counter(Point)) 

} 

 

We wish to point out some differences compared to 

the basic algorithm. First, instead of using the nodes 

of the grid, we use a fixed number of random points 

inside area A. This is important because if we took 

just nodes of a square grid, a possibility exists that 

they shall have some common properties and our 

“statistical” image will not be correct in that case. 

For each tested point we save the iteration steps in 

an array Steps. This is done because we create two 

separate images: one for points inside (Fig. 2), and 

one for points outside (Fig. 3) the M-Set. 

 

 
 

Figure 2. The Buddhabrot coloring, outside points, 

maximum iterations 25600, points rendered 24*10
4
 

 

Counter is a two-dimensional array that corresponds 

to blocks of grid G, it is used as the counter of 

“hits”.  After finishing the calculations loop for a 

point, depending on whether it is a member of the 

M-Set, we update the Counter with the points that 

have been crossed. After MaxNumberOfPoints has 
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been reached we use the Counter for coloring the 

screen. The image acquired for points out of the M-

Set is named Buddhabrot. 

 

 
 

Figure 3. The Buddhabrot coloring, inside points, 

maximum iterations 25600, points rendered 6*10
4
 

 

 

3 Calculation-Path Display Algorithms 
In this section, we show our novel concept for 

displaying the M-Set. We extend the idea of 

preserving information from the calculations of the 

fractal image. We count not only which points have 

been visited during iterations steps, but we also track 

the “calculation path”. The path from Zn to Zn+1 is 

seen as a line connecting these two points. The 

calculation path of point Z is an array of lines 

connecting successive Zi appearing in the iterative 

method for checking if the point belongs to the M-

Set. We named this display method Calculation-

Path. It is shown in the following pseudo code.  

 

Counter.SetToZero(); 
 

  foreach (PointInputGrid){ 
 

        Iteration = 0; 

        Z = Point  

        CalculationPath .Empty()   
   

          while ( (|Z|
2 
< bound)   

                    and  (iteration < MaxIteration)){ 
 

   CalculationPath.Add(Z)  

   Z = F(Z , Point) 

   Iteration++     

            } 

         if((iteration = MaxIteration) = OUTSIDE){ 

                for (i=0; i<CalculationPath.length-1; i++){ 

               foreach(P 1i iZ Z G  ) 

      Counter (P) += 1 

   } 

         }      

} 
 

foreach (PointG){ 

     Color(Point) = ColorIndex(Counter(Point)) 

} 

 

In this algorithm we also use Counter for counting 

“hits”, and different images are created for images 

outside (Fig. 4)  and inside (Fig. 5) of the M-Set.  

 

 
 

Figure 4. The Calculation-Path coloring, outside 

points, max iterations 256000, input grid 300*200, 

output grid 1200*800 

 

 
 

Figure 5. The Calculation-Path coloring, inside 

points, max iterations 256, input grid 300*200, 

output grid 3000*2000 

 

The main difference is in the way the iteration step 

points are handled, instead of just incrementing 

Counter elements corresponding to these points we 

increment all the grid elements belonging on the line 

ZiZi+1 , excluding the point Zi. We wish to point out 

that when implementing this algorithm, the speed of 

the line incrementing is of great influence to the 

overall calculation time. Due to the fact that line 

incrementing is the same as drawing lines on 

Counter we used the Breshmans line algorithm [10] 

and Fast-Clipping algorithm [11] to optimize this 

process. The second big difference is the use of two 

grids, one for the input points, and a second one for 
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the finalized image. Different combination of these 

grids gives different effects to the final image. 

     We also propose a variation of the Calculation-

Path image algorithm, in which we also take into 

account the length of ZiZi+1. We use the following 

method of incrementing  
 

     foreach(P 1i iZ Z G  ) 

            Counter (P) += Const / Length( 1i iZ Z  ) 
 

This is a natural extension; it could be understood as 

the time spent at each point, but other functions can 

also be used instead of Const/Length( 1i iZ Z  ). In our 

images we used Const/Length( 1i iZ Z  )
2 
to even more 

emphasize the shorter paths. We call images created 

with this variation Time-Spent (Fig. 6, 7).  

 

 
 

Figure 6. The Time-Spent coloring, outside points, 

max iterations 256000,  input grid 300*200, output 

grid 1200*800 

 

 
 

Figure 7. The Time-Spent coloring, inside points, 

max iterations 256,  input grid 300*200, output grid 

3000*2000  

 

 

4   Calculation-Path Fractal Images  
We created fractal generator software for creating 

Buddhabrot(BUD), Calculation-Path(CP) and Time-

Spent(TS) fractal images. An alpha version of this 

software can be downloaded from 

http://mail.phy.bg.ac.yu/~rakaj/home/.  Due to the 

similarity of algorithms for generating the BUD, CP 

and TS images we shall compare some of their 

properties.  

     We first notice that for CP and TS images we 

need a lower number of points for creating images 

due to the fact that we are drawing lines instead of 

points. When generating images with a large number 

of points, images can even lose details due to 

intensive overlapping of paths. In this case, more 

statistical information is presented, but individual 

paths are less visible. When creating the new type 

images, instead of using random points we used 

points of a grid.  This approach  gave a more 

representative sampling of the space when a small 

number of points was tested. Images acquired when 

sampling the space with a very sparse grid are very 

interesting because they visualize the movement  of 

individual points and different behavior in different 

regions (Fig. 8, 9). 

 

  
 

Figure 8. The Calculation-Path coloring, inside 

points, max iterations 25600, input grid 60*50, 

output grid 3000*2000 

 

In the case of tests with a  large number of points,  a 

random selection is better for the same reasons as for 

the Buddhabrot method.  

    Alex Boswell’s method for vastly increasing the 

speed of rendering of highly zoomed regions [12]  

using the Metropolis–Hastings algorithm [13] is less 

productive in our case because distribution of paths 

is more complicated than the distribution of visited 

points.  Opposite to the Buddhabrot images where 

zooming into them without this optimization 

resulted in an extremely big increase in calculation 

time, for images created with these technique it can 

be done in approximately the same time due to the 

use of lines instead of points. The zoomed image  

sometimes slightly differ in color from the reign 
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selected in the start image because in the new output 

grid line pairs that have intersected at the same point 

now might intersect at points besides each other. 

Using this possibility we can create large scale 

images without a large increase in calculation time 

because it depends mostly on the size of the input 

grid.  

 

 
 

Figure 9. The Time-Spent coloring, inside points, 

max iterations 25600, input grid 60*50, output grid 

3000*2000 

 

     When using this method of displaying the M-Set 

we can observe some new properties like 

connections between different parts of the set. This 

display method can be used on Julia sets also. 

 

 

5   Conclusion 
In this paper we have presented an algorithm for 

creating images that make it possible to observe new 

aspects of the M-Set. These images display different 

information about the M-Set than previously 

developed display methods like Buddhabrot and 

Pickover Stalks.  The Calculation-Path images show 

as the connection between different areas of the M-

Set, and give us statistical information about the 

iterative process for calculating the members of the 

M-Set. This is done by preserving previously 

ignored information of the order of points appearing 

in the steps of iterative algorithm. We created two 

variations of images. The first one only uses the 

directions and frequency of calculation paths. The 

second variation also takes into account the length of 

these paths. 

     This display method can also be used on Julia 

type fractals. In the future we wish to adopt 

previously developed algorithms for the Buddhabrot 

method like Alex Boswell optimization method and  

the 4D Buddhabrot Hologram to the Calculation-

Path concept. Due to the similarity of the algorithm 

to Pickover Stalks which proved its value in biology 

throw biomorphs, we believe research in this 

direction is justified. 
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