
A New Visualization Algorithm for the Mandelbrot Set

 RAKA JOVANOVIC MILAN TUBA DANA SIMIAN

 Institute of Physics Faculty of Computer Science Department of Computer Science

 Belgrade Megatrend University Belgrade Lucian Blaga University of Sibiu

Pregrevica 118, Zemun Bulevar umetnosti 29 5-7 dr. I. Ratiu str.

 SERBIA SERBIA ROMANIA

 rakabog@yahoo.com tubamilan@ptt.rs d_simian@yahoo.com

Abstract: - In this paper we present a new method for displaying the Mandelbrot Set. Our algorithm is closely

connected to Pickover Stalks and Buddhabrot method. Pickover Stalks method created biomorphs, diverse and

complicated forms greatly resembling invertebrate organisms. Our method extends previously developed

methods that preserve information about calculating the Mandelbrot Set. We observe the calculation-path of

points tested for belonging to the Mandelbrot Set. Two variations of this display method are presented: one that

only takes into account the paths taken and one that also uses information about their lengths.

Key-Words: - Mandelbrot, Buddhabrot, Fractal, Algorithm, Pickover Stalks

1 Introduction
Fractals are geometric shapes that have the property

of self-similarity, or in other words, that the shape

can be divided into parts that are reduced size copies

(at least approximately) of the whole. Benoît

Mandelbrot first used the term in 1975. The

application and use of fractals has been increasing

with the increase of computer power. They have

shown their usability in a wide range of domains

from biology and medicine [1], image processing

[2], [3], art etc.

 Fractal theory gives methods for describing the

irregularity of natural objects, opposite to the

idealizations created when using Euclidean

geometry. The fractal dimension can be seen as a

measure of complexity, or as an index of the scale-

dependency of a pattern. This measure is defined

mathematically with Hausdorff dimension [4].

 Natural objects do not exhibit exact self-

similarity, but to some degree statistical similarities.

One direction of application of fractals in biology is

calculating its fractal dimension and using it for a

comparison between systems [5], [6]. The relevance

of this parameter has been shown on the example of

different sized insects living on a tree trunk and the

distances they travel on it. If the bark has a fractal

dimension of D = 1.4, an insect an order of

magnitude smaller than another one perceives a

length increase of 10
D-1

 = 100
0.4

 = 2.51, or a habitat

surface area increase of 2.51
2
 = 6.31.

 The second direction of the application of fractals

in biology is in artificially creating biological objects

or systems. An example is the use of iterated

functions system (IFS) fractals for creating virtual

trees [7]. C.A. Pickover demonstrated a new concept

of Mandelbrot Set (M-set) coloring that created

images closely corresponding to single cellular

organisms which were named biomorphs [8]. This

has shown the connection of the M-set and living

organisms and the possible importance of

researching its properties for biological science.

 For the biomorphs creation, an essential step was

the concept of Pickover Stalks. This was the first

method that observes the behavior of points during

the calculation the M-Set; the coloring was based on

how closely the orbits of interior points come to the

x and y axes. A novel approach to displaying the M-

Set is the Buddhabrot method, which uses

information of the number of visits to points in the

iterative creation algorithm [9]. We extend this

method by preserving not only the information of

which points have been visited, but also the order in

which they have been visited. We visualize the paths

points pass in the iterative process.

 The paper is organized as follows. In Section 2

we show the algorithm for creating the M-Set and

the Buddhabrot method. In Section 3 we present our

extension of the Buddhabrot technique based on

calculation paths. In the next section we analyze

some characteristic images of M-Set created with the

techniques presented.

2 Buddhabrot Display Algorithm
The M-Set is defined as the set of complex values of

c for which |Zn| under iteration of the complex

quadratic polynomial Zn+1= Zn
2
+ c remains bounded.

That is the original M-Set, but the concept has been

Proceedings of the 10th WSEAS International Conference on MATHEMATICS and COMPUTERS in BIOLOGY and CHEMISTRY

ISSN: 1790-5125 162 ISBN: 978-960-474-062-8

extended to an arbitrary function F and

corresponding M-Set generated with the iterative

method Zn+1 = F(Zn ,c). We display the M-Set in a

given area A = (xmin, xmax)*(ymin, ymax) of the

complex plain and a given resolution h which

defines a grid G(A,h). The standard algorithm for

displaying the M-Set in G is given in the following

pseudo code

 foreach (PointG){

 Iteration = 0;

 Z = Point

 while ((|Z|
2
<bound)

 and (iteration < MaxIteration)){

 Z = F(Z , Point)

 Iteration++

 }

 Color(Point) =ColorIndex(iteration)

}

With this display algorithm we show not only if a

point is a member of the M-Set but also for non-

member points the number of iterations they have

been bounded (Fig. 1).

Figure 1. The Mandelbrot Set for function

Zn+1 = Zn
2
+ c, maximum iterations 128,

in the area (-2, 1)*(-i, i)

In the basic coloring algorithm we only use the

number of iterations that |Z| was bounded, but we do

not use the information of which points Z have been

passed and how many times, during these steps. The

Buddhabrot method extends basic display algorithm

by preserving this data.

 The idea is adding a two-dimensional array

corresponding to grid G, and counting the number of

“hits” Z has made on elements of the grid during its

iterations. The Buddhabrot algorithm is shown in the

following pseudo code.

Counter.SetToZero();

for (MaxNumberOfPoints){

 Point = Random element of area A

 Iteration = 0

 Z = Point

 Steps.Empty()

 while ((|Z|
2
<bound)

 and (iteration < MaxIteration)){

 Steps.Add(Z)

 Z = F(Z , Point)

 Iteration++

 }

 if((iteration=MaxIteration)=OUTSIDE){

 foreach(Z Steps)

 Counter (Z) += 1

 }

}

 foreach (PointG){

 Color(Point) = ColorIndex(Counter(Point))

}

We wish to point out some differences compared to

the basic algorithm. First, instead of using the nodes

of the grid, we use a fixed number of random points

inside area A. This is important because if we took

just nodes of a square grid, a possibility exists that

they shall have some common properties and our

“statistical” image will not be correct in that case.

For each tested point we save the iteration steps in

an array Steps. This is done because we create two

separate images: one for points inside (Fig. 2), and

one for points outside (Fig. 3) the M-Set.

Figure 2. The Buddhabrot coloring, outside points,

maximum iterations 25600, points rendered 24*10
4

Counter is a two-dimensional array that corresponds

to blocks of grid G, it is used as the counter of

“hits”. After finishing the calculations loop for a

point, depending on whether it is a member of the

M-Set, we update the Counter with the points that

have been crossed. After MaxNumberOfPoints has

Proceedings of the 10th WSEAS International Conference on MATHEMATICS and COMPUTERS in BIOLOGY and CHEMISTRY

ISSN: 1790-5125 163 ISBN: 978-960-474-062-8

been reached we use the Counter for coloring the

screen. The image acquired for points out of the M-

Set is named Buddhabrot.

Figure 3. The Buddhabrot coloring, inside points,

maximum iterations 25600, points rendered 6*10
4

3 Calculation-Path Display Algorithms
In this section, we show our novel concept for

displaying the M-Set. We extend the idea of

preserving information from the calculations of the

fractal image. We count not only which points have

been visited during iterations steps, but we also track

the “calculation path”. The path from Zn to Zn+1 is

seen as a line connecting these two points. The

calculation path of point Z is an array of lines

connecting successive Zi appearing in the iterative

method for checking if the point belongs to the M-

Set. We named this display method Calculation-

Path. It is shown in the following pseudo code.

Counter.SetToZero();

 foreach (PointInputGrid){

 Iteration = 0;

 Z = Point

 CalculationPath .Empty()

 while ((|Z|
2
< bound)

 and (iteration < MaxIteration)){

 CalculationPath.Add(Z)

 Z = F(Z , Point)

 Iteration++

 }

 if((iteration = MaxIteration) = OUTSIDE){

 for (i=0; i<CalculationPath.length-1; i++){

 foreach(P 1i iZ Z G )

 Counter (P) += 1

 }

 }

}

foreach (PointG){

 Color(Point) = ColorIndex(Counter(Point))

}

In this algorithm we also use Counter for counting

“hits”, and different images are created for images

outside (Fig. 4) and inside (Fig. 5) of the M-Set.

Figure 4. The Calculation-Path coloring, outside

points, max iterations 256000, input grid 300*200,

output grid 1200*800

Figure 5. The Calculation-Path coloring, inside

points, max iterations 256, input grid 300*200,

output grid 3000*2000

The main difference is in the way the iteration step

points are handled, instead of just incrementing

Counter elements corresponding to these points we

increment all the grid elements belonging on the line

ZiZi+1 , excluding the point Zi. We wish to point out

that when implementing this algorithm, the speed of

the line incrementing is of great influence to the

overall calculation time. Due to the fact that line

incrementing is the same as drawing lines on

Counter we used the Breshmans line algorithm [10]

and Fast-Clipping algorithm [11] to optimize this

process. The second big difference is the use of two

grids, one for the input points, and a second one for

Proceedings of the 10th WSEAS International Conference on MATHEMATICS and COMPUTERS in BIOLOGY and CHEMISTRY

ISSN: 1790-5125 164 ISBN: 978-960-474-062-8

the finalized image. Different combination of these

grids gives different effects to the final image.

 We also propose a variation of the Calculation-

Path image algorithm, in which we also take into

account the length of ZiZi+1. We use the following

method of incrementing

 foreach(P 1i iZ Z G )

 Counter (P) += Const / Length(1i iZ Z )

This is a natural extension; it could be understood as

the time spent at each point, but other functions can

also be used instead of Const/Length(1i iZ Z ). In our

images we used Const/Length(1i iZ Z )
2
to even more

emphasize the shorter paths. We call images created

with this variation Time-Spent (Fig. 6, 7).

Figure 6. The Time-Spent coloring, outside points,

max iterations 256000, input grid 300*200, output

grid 1200*800

Figure 7. The Time-Spent coloring, inside points,

max iterations 256, input grid 300*200, output grid

3000*2000

4 Calculation-Path Fractal Images
We created fractal generator software for creating

Buddhabrot(BUD), Calculation-Path(CP) and Time-

Spent(TS) fractal images. An alpha version of this

software can be downloaded from

http://mail.phy.bg.ac.yu/~rakaj/home/. Due to the

similarity of algorithms for generating the BUD, CP

and TS images we shall compare some of their

properties.

 We first notice that for CP and TS images we

need a lower number of points for creating images

due to the fact that we are drawing lines instead of

points. When generating images with a large number

of points, images can even lose details due to

intensive overlapping of paths. In this case, more

statistical information is presented, but individual

paths are less visible. When creating the new type

images, instead of using random points we used

points of a grid. This approach gave a more

representative sampling of the space when a small

number of points was tested. Images acquired when

sampling the space with a very sparse grid are very

interesting because they visualize the movement of

individual points and different behavior in different

regions (Fig. 8, 9).

Figure 8. The Calculation-Path coloring, inside

points, max iterations 25600, input grid 60*50,

output grid 3000*2000

In the case of tests with a large number of points, a

random selection is better for the same reasons as for

the Buddhabrot method.

 Alex Boswell’s method for vastly increasing the

speed of rendering of highly zoomed regions [12]

using the Metropolis–Hastings algorithm [13] is less

productive in our case because distribution of paths

is more complicated than the distribution of visited

points. Opposite to the Buddhabrot images where

zooming into them without this optimization

resulted in an extremely big increase in calculation

time, for images created with these technique it can

be done in approximately the same time due to the

use of lines instead of points. The zoomed image

sometimes slightly differ in color from the reign

Proceedings of the 10th WSEAS International Conference on MATHEMATICS and COMPUTERS in BIOLOGY and CHEMISTRY

ISSN: 1790-5125 165 ISBN: 978-960-474-062-8

selected in the start image because in the new output

grid line pairs that have intersected at the same point

now might intersect at points besides each other.

Using this possibility we can create large scale

images without a large increase in calculation time

because it depends mostly on the size of the input

grid.

Figure 9. The Time-Spent coloring, inside points,

max iterations 25600, input grid 60*50, output grid

3000*2000

 When using this method of displaying the M-Set

we can observe some new properties like

connections between different parts of the set. This

display method can be used on Julia sets also.

5 Conclusion
In this paper we have presented an algorithm for

creating images that make it possible to observe new

aspects of the M-Set. These images display different

information about the M-Set than previously

developed display methods like Buddhabrot and

Pickover Stalks. The Calculation-Path images show

as the connection between different areas of the M-

Set, and give us statistical information about the

iterative process for calculating the members of the

M-Set. This is done by preserving previously

ignored information of the order of points appearing

in the steps of iterative algorithm. We created two

variations of images. The first one only uses the

directions and frequency of calculation paths. The

second variation also takes into account the length of

these paths.

 This display method can also be used on Julia

type fractals. In the future we wish to adopt

previously developed algorithms for the Buddhabrot

method like Alex Boswell optimization method and

the 4D Buddhabrot Hologram to the Calculation-

Path concept. Due to the similarity of the algorithm

to Pickover Stalks which proved its value in biology

throw biomorphs, we believe research in this

direction is justified.

References:

[1] Theo F. Nonnenmacher, Gabriele A. Losa,

Ewald R. Weibel, Fractals in Biology and

Medicine, Birkhauser, Berlin, 1997.

[2] Liangbin Zhang, Bishui Zhoi, Image retrieval

method based on entropy and fractal coding,

WSEAS TRANSACTIONS on SYSTEMS, Vol.

7, No. 4, 2008, pp. 332-341

[3] Mehdi Yaghoobi, Reza Mohammaddadi,

Kambiz Rahbar, A New Approach in Fractal

Image Compression with Genetic Algorithm,

WSEAS TRANSACTIONS on COMPUTERS

Vol 4, No. 1, 2005, pp. 34-39

[4] J. W. Harris, H. Stocker, Handbook of

Mathematics and Computational Science. New

York: Springer-Verlag, 1998, pp. 113-114,

[5] B. Burlando, The fractal dimension of taxonomic

systems, Journal of Theoretical Biology, Vol.

146, No. 7, pp. 99-114.

[6] J.D. Corbit, D.J. Garbary, Fractal dimension as a

quantitative measure of complexity in plant

development, Proceedings of the Royal society

of London B, Vol. 262, No. 1363, 1995, pp. 1-6.

[7] Deng Fang, Xi Li-Fneg, An Application of L-

system and IFS in 3D Fractal Simulation,

WSEAS TRANSACTIONS on SYSTEMS,

Vol.7, No. 4, 2008, pp. 352-361

[8] C. A. Pickover, Biomorphs: Computer displays

of biological forms generated from mathematical

feedback loops, Computer Graphics Forum, Vol.

5 , No. 4, 1986, pp. 313-316

 [9] Melinda Green, The Buddhabrot Technique

www.superliminal.com/fractals/bbrot/bbrot.htm,

visited 25.2.2009

[10] M. S. Sobkow, P. Pospisil, Y-Hong Yang. A

Fast Two-Dimensional Line Clipping Algorithm

via Line Encoding, Computer & Graphics, Vol.

1, No. 4, 1987, pp. 459-467

[11] Jack E. Bresenham, Algorithm for computer

control of a digital plotter, IBM Systems Journal,

Vol. 4, No.1, 1965, pp. 25-30

[12] Alexander Boswell, The Buddhabrot

http://www.steckles.com/buddha/, visited

25.2.2009

[13] W. K. Hastings, Monte Carlo Sampling

Methods Using Markov Chains and Their

Applications, Biometrika, Vol. 5 No. 71, 1970,

pp. 97-109

This Research is supported by Project 144007,

Ministry of Science, Republic of Serbia.

Proceedings of the 10th WSEAS International Conference on MATHEMATICS and COMPUTERS in BIOLOGY and CHEMISTRY

ISSN: 1790-5125 166 ISBN: 978-960-474-062-8

http://www.steckles.com/buddha/

