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Abstract: - In this paper we analyze the application of the Ant Colony Optimization to the Minimum Weight 

Vertex Covering Problem. We use the software system that we developed and implemented different standard 

ACO algorithms to this problem: Ant Colony System, the use of Elitism, Rank based approach and the 
MinMax system. We have made a comparative assessment of the effectiveness of these algorithms to the 

Minimum Weight Vertex Covering Problem in different problem cases and shown that Elitist Ant System and 

MinMax Ant System give better solutions for larger test cases while run-times for all algorithms were similar. 
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1   Introduction 
The Minimum Weight Vertex Cover Problem 

(MWVCP) is considered for an undirected graph 

G=(V, E), with weights assigned to each vertex in 

the graph. A vertex cover of a graph is set of 
vertexes  V’⊂V  that has the property that for every 

edge  e(v1,v2)∈E  at least one of v1,v2  is an element 

of V’. A minimal vertex cover is a vertex cover that 

has the minimal sum of weights of vertexes that are 

members of that cover. 

     It has been shown that this problem is NP-

complete even when it is restricted to a unit-

weighted planar graph with the maximum vertex 

degree of three [1] (degree of a vertex is the number 

of edges that have that vertex as a member). A large 
number of real life problems could be converted to 

this form. An example could be the optimal 

positioning of garbage disposal facilities. 
     In the same way as for many other NP–complete 

problems, finding the optimal solution is very time 

consuming and, in larger problem cases, even 

impossible in realistic time. Because of this a variety 

of different methods have been presented for 

calculating near optimal solutions. The first method 

is a greedy heuristic approach of collecting the 

vertex with the smallest ratio between its weight and 

degree [2], [3]. This problem has also been solved by 
use of genetic algorithms [4]. 

     The use of Ant Colony Optimization (ACO) gave 

very good results when used on the MWVCP. The 

solutions were better than those acquired by genetic 

algorithms and local search methods like tabu search 

and simulated annealing [5].  

     It has been shown that for some problems 

variations of ACO give results of different quality 
[6]. Because of this we have decided to analyze the 

implementation details and effect of different Ant 

Colony Optimization algorithms like Ant colony 
system, the use of Elitism, Rank based Ant colony 

systems and the MinMax approach to the MWVCP. 

     This paper is organized as follows. In section 2 

we present the implementation of ACO for the 

MWVCP. In Section 3 we show the algorithm 

variations for this problem. In Section 4 we analyze 
and compare experimental results of using different 

variations of the ACO. 

 
 

2   ACO for MWVCP 
The use of ACO has proven to be effective on 

various types of problems from Economic Load 

Dispatch [7], Scheduling problems [8], even Image 

Processing [9] and its use has been also proven 

powerful on the MWVCP. The MWVCP is however, 

different from most of the problems solved using 

ACO in two main aspects. To illustrate this, for 

comparison, we will use the Traveling Salesman 
Problem (TSP). 

      For the TSP the solution is an array of all the 

cities appearing in the problem, or in other words, 



the solution is a permutation of the set of cities. In 

the case of MWVCP the solution is a subset of the 

graph vertexes set in which the order is unimportant. 

     In the TSP the heuristic function is static in the 

sense that it represents the distance between cities 
and does not change during the calculation of the 

path. Opposite to this, for MWVCP the heuristic 

function is the ratio between the weight and the 
degree of a vertex, which is dynamic. The degree of 

a vertex changes as we add new vertexes to the 

solution set because more edges become covered.   

     These two differences affect the basic algorithm 

in the direction that the ants leave the pheromone on 

vertexes instead on edges and that we dynamically 

update the graph, and with it the heuristic function. 

The first step in solving these problems is 

representing the problem in a way that makes 

dynamic calculation of the heuristic function simple. 
Since ants in their search can move from one vertex 

to any other vertex, it is natural to use a fully 

connected graph Gc(V,Ec)  derived from G. In [5] it 

is proposed to add weights of 1 if the edge exists in 

G or 0 if it does not exist in the original graph. We 

have adopted this approach, which is illustrated by 

Fig.1.   

 
 

Fig. 1 Expansion to the fully connected graph 
 

As we mentioned before, we also have to update this 

graph as we add new vertexes to the result set. This 
is done in the following way: when we add vertex a 

all edges in G c  that are connected to a, are set to 0. 

This is illustrated by Fig. 2.  
 

 
Fig. 2 Adding a vertex to the solution set 

 

Let us define Gk (V,Eck,) as the state of the graph 

after k vertexes have been added to the solution, and 

a corresponding function:   
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Now we can define a dynamic heuristic 
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In Equation 2 w(j) is the weight of a vertex. Using 

the heuristic defined with ηjk  in Equation 2 we can 

setup the state transition rule for ants: 
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In Equation 3 q0 is the standard parameter that 

specifies the exploitation / exploration rate, and q is 
a random variable that decides the type of selection 

on each step. Ak is a list of available vertexes. We 

point out that opposite to the TSP transition rule, it 
does not depend on the last selected vertex and that 

is why we have τi instead of τij. 

      To fully specify an Ant Colony System we still 

have to define the global (when an ant finishes its 

path) and local (when an ant chooses a new vertex) 

update rule: 
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(1 )i i ipτ τ τ= − +△  (5) 

 

In Equation 4 ∆τι  is a quality measure of solution 

subset V’ that contains vertex i, and with it we define 

a global update rule in Equation 5. Parameter p is 
used to set the influence of newly found solution on 

the pheromone trail. The formula for the local update 

rule has the standard form  

 

0(1 )i iτ ϕ τ ϕτ= − +  (6) 

 



For the value of t0 we take the quality measure of the 

solution acquired with the greedy algorithm when we 

select the vertex with the best ration of vertex degree 

and weight. Parameter φ is used to specify the 

strength of the local update rule.     

 

 

3 Variations of ACO for MWVCP 
On the TSP different variations of ACO gave 
different quality of results [6]. That is why we have 

performed a comparative assessment of standard 

variations of ACO on the MWVCP. The variations 

mostly differ in the global update rule. We have used 

the following variations. 

     Ant System (AS) in which all ants leave 

pheromone. It is defined with Equations 7 and 5. In 

Equation 7 AntS is the set of all the solutions created 

by ants in the current step of the algorithm. 
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   Reinforced Ant System (RAS), which is the same 

as Ant colony system except the global best solution, 

is reinforced in each iteration. It is defined with 

Equations 8 and 5. 
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     Elitist Ant System (EAS) in which only the 

global best solution leaves pheromone at each 
iteration. It is defined  with Equations 9 and 5. 

 

1
,

( )
gb

i gb

j V

i V
w j

τ
′∈

′= ∀ ∈
∑

△  (9) 

 

     MinMax Ant System (MMAS) is same as the 
Elitist Ant colony system, but with an extra 

constraint that all pheromone values min max[ , ]iτ τ τ∈ . 

We adopt the formulas presented in [10] in which 

τmax  is calculated dynamically as new best solutions 

are found  by Equation 10, and τmin is calculated at 

the beginning of calculations with Equation 11.  avg 

is the average number of vertexes that are possible to 
be chosen, pbest is the possibility of the best overall 

solution being found and τ0 is the initial value of the 

pheromone trail gotten as the quality measure of the 
greedy algorithm solution. 
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Rank Based Ant Colony System (RANKAS) in 

which besides the quality we also use the rank (R) of 

found solutions. The rank is quality of the solutions 

compared to solutions found by other ants in the 

same iteration. It is defined with Equations 5 and 12. 
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In this variation we select RK best ranked solutions 

and, depending on their quality and rank, we correct 

the pheromone trail.   

 

 

4 Application and  Results 
In this section we present the comparative 

assessment of different variations of ACO. The 

implementation of an iteration step is shown in the 

pseudo-code in Fig. 3. 

     In the Tables 1, 2, 3, 4, 5, 6 EAS (Elitist Ant 
Colony System) corresponds to the algorithm 

presented in [5], in which the efficiency of using Ant 

colony optimization on this problem was shown. 

     We have tested for different number of edges and 

vertexes. In each test, we have used colonies 

consisting of 10 ants. The exploration rate was 

q0=0.1, and the  influence factor of heuristics was   

α= 1, evaporation rates where φ=0.1, p=0.1. In 



RANKAS we used RK=5. The initial value of the 

pheromone trail and τ0 where calculated from the 

solution gained using the greedy algorithm presented 

in [3]. In MMAS the value of pbest =0.05.   

 

Reset Graph Info 

Reset Solution for all Ants 
 

while  (! AllAntsFinished) 

    For All Ants 

       If(AntNotFinished)      

         begin 
 

           add new vertex A to solution  

           based on   probability 
 

          correct ants covering graph data 
 

          calculate  new heuristic 
 

          local update rule for A 
 

        End If 

     End for 

 End while 
 

  Compute ∆τi for variation 

  Compute   τi  
 

Fig. 3 Pseudo-code for an iteration step 

 

     For each variation we conducted 10 separate runs. 

In each test, we set a maximum number of possible 

iterations and compared results obtained up to that 

number of steps. The analysis is done by observing 
the best found solution and the average solution 

value. The calculation time of each variation of ACO 

is very similar, so we excluded it from the analysis 
and instead we used the number of iterations. The 

program for our experiments was written in C#, 

using the framework from [11]. 
     We generated random problem instances in which 

weights where randomly selected for vertexes from 

the interval [20, 70]. We used graphs of 25, 50, 150 

vertexes and for each of this sizes, we tested two 

different sets of edges. In the algorithm for edge set 

creation, we generated n edges from each vertex to 

random vertexes where n was a random number 

between [1,4]  in Tables 1,3,5 and between [1,10] in 

Tables 2,4,6. 
     In small problem cases (Tables 1 and 2) all ACO 

variations gave good results, except the two most 

basic AS and RAS. The quality of solution acquired 

by these two variations was also bad in larger 

problem sizes. For average values RANKAS gave 

the best quality of results, but the best solution was 

found at a higher number of iterations than MMAS 
and EAS.  

Table 1. Number of nodes 25, Number of edges 71, 

greedy algorithm solution value 1088, Maximum 

number of iterations 1250 
 

Variation Best 
Value 

Best Value 
Iteration 

Average 

AS 839 696 871.6 

EAS  779 89 834.7 

RAS  787 606 856.3 

RANKAS 779 1120 827.1 

MMAS 779 129 830.6 

  
Table 2. Number of nodes 25, Number of edges 131, 

greedy algorithm solution value 1135, Maximum 

number of iterations 1250 
 

Variation Best 

Value 

Best Value 

Iteration 

Average 

AS 952 1064 986.7 

EAS  952 21 985.3 

RAS  952 78 994.1 

RANKAS 952 45 957.6 

MMAS 952 34 983.6 

 

     In the medium (Tables 3 and 4) and large (Tables 

5 and 6) problem cases MMAS and EAS gave the 

best results, with EAS being slightly better. 

     In medium size problems RANK preformed 

slightly worse than these variations, but in large 

cases this difference would greatly increase. For 

problems of this size RANK performance was 

similar to AS and RAS. 

 

Table 3. Number of nodes 50, Number of edges 172, 

greedy algorithm solution value 2238, Maximum 
number of iterations 2000 
 

Variation Best 

Value 

Best Value 

Iteration 

Average 

AS 1736 4 1740.1 

EAS  1554 1767 1597.4 

RAS  1716 517 1744.3 

RANKAS 1650 1620 1694.7 

MMAS 1556 235 1589.3 
 

 

Table 4. Number of nodes 50, Number of edges 374, 

greedy algorithm solution value 2238, Maximum 

number of iterations 2000 
 

Variation Best 

Value 

Best Value 

Iteration 

Average 

AS 1861 1329 1918.6 

EAS  1833 298 1876.3 

RAS  1861 127 1885.8 

RANKAS 1833 1583 1872.2 

MMAS 1833 295 1882.2 



 

Table 5. Number of nodes 150, Number of edges 

562, greedy algorithm solution value 6782, 

Maximum number of iterations 2000 
 

Variation Best 

Value 

Best Value 

Iteration 

Average 

AS 5827 993 5951.2 

EAS  4920 1688 5117.9 

RAS  5760 1476 5912.1 

RANKAS 5694 999 5802.2 

MMAS 5002 1952 5169.2 
 

 

Table 6. Number of nodes 150, Number of edges 

1470, greedy algorithm solution value 6834, 
Maximum number of iterations 2000 
 

Variation Best 

Value 

Best Value 

Iteration 

Average 

AS 6303 1606 6354.7 

EAS  5688 1932 5872.5 

RAS  6284 402 6185.8 

RANKAS 6156 624 6230.7 

MMAS 5756 1701 5889.6 

   

 

5   Conclusion 
In this paper, we performed a comparative 

assessment of the standard variations of ACO on the 

MWVC problem. To do this we have transformed 

variation formulas to a form that could be applied to 

this problem. We used our previously developed 
framework [11] to create software for conducting 

tests. The difference in calculation time for all the 

variations was neglectable.  An overall best variation 
did not exist but it depended on the size of the 

problem. The basic use of ACO gave significantly 

worse results in all tested cases compared to MMAS, 

EAS and RANKAS. Through analysis it has been 

shown that EAS and MMAS gave the best results in 

large problem cases with EAS slightly better. Rank 

Based Ant Systems gave the best results in small 

cases, and slightly worse in medium problem 

instances, but in large cases it is not a good 
approach.   
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