
A Comparative Assessment of Ant Colony Optimization Algorithms

for the Minimum Weight Vertex Cover Problem

 RAKA JOVANOVIC MILAN TUBA

 Institute of Physics Faculty of Computer Science

 Belgrade Megatrend University of Belgrade

 Pregrevica 118, Zemun Bulevar umetnosti 29, N. Belgrade

 SERBIA SERBIA

 rakabog@yahoo.com tubamilan@ptt.rs

Abstract: - In this paper we analyze the application of the Ant Colony Optimization to the Minimum Weight

Vertex Covering Problem. We use the software system that we developed and implemented different standard

ACO algorithms to this problem: Ant Colony System, the use of Elitism, Rank based approach and the
MinMax system. We have made a comparative assessment of the effectiveness of these algorithms to the

Minimum Weight Vertex Covering Problem in different problem cases and shown that Elitist Ant System and

MinMax Ant System give better solutions for larger test cases while run-times for all algorithms were similar.

Key-Words: - Ant Colony Optimization, Minimum Weight Vertex Cover, Evolutionary Computation, Swarm

Intelligence

1 Introduction
The Minimum Weight Vertex Cover Problem

(MWVCP) is considered for an undirected graph

G=(V, E), with weights assigned to each vertex in

the graph. A vertex cover of a graph is set of
vertexes V’⊂V that has the property that for every

edge e(v1,v2)∈E at least one of v1,v2 is an element

of V’. A minimal vertex cover is a vertex cover that

has the minimal sum of weights of vertexes that are

members of that cover.

 It has been shown that this problem is NP-

complete even when it is restricted to a unit-

weighted planar graph with the maximum vertex

degree of three [1] (degree of a vertex is the number

of edges that have that vertex as a member). A large
number of real life problems could be converted to

this form. An example could be the optimal

positioning of garbage disposal facilities.
 In the same way as for many other NP–complete

problems, finding the optimal solution is very time

consuming and, in larger problem cases, even

impossible in realistic time. Because of this a variety

of different methods have been presented for

calculating near optimal solutions. The first method

is a greedy heuristic approach of collecting the

vertex with the smallest ratio between its weight and

degree [2], [3]. This problem has also been solved by
use of genetic algorithms [4].

 The use of Ant Colony Optimization (ACO) gave

very good results when used on the MWVCP. The

solutions were better than those acquired by genetic

algorithms and local search methods like tabu search

and simulated annealing [5].

 It has been shown that for some problems

variations of ACO give results of different quality
[6]. Because of this we have decided to analyze the

implementation details and effect of different Ant

Colony Optimization algorithms like Ant colony
system, the use of Elitism, Rank based Ant colony

systems and the MinMax approach to the MWVCP.

 This paper is organized as follows. In section 2

we present the implementation of ACO for the

MWVCP. In Section 3 we show the algorithm

variations for this problem. In Section 4 we analyze
and compare experimental results of using different

variations of the ACO.

2 ACO for MWVCP
The use of ACO has proven to be effective on

various types of problems from Economic Load

Dispatch [7], Scheduling problems [8], even Image

Processing [9] and its use has been also proven

powerful on the MWVCP. The MWVCP is however,

different from most of the problems solved using

ACO in two main aspects. To illustrate this, for

comparison, we will use the Traveling Salesman
Problem (TSP).

 For the TSP the solution is an array of all the

cities appearing in the problem, or in other words,

the solution is a permutation of the set of cities. In

the case of MWVCP the solution is a subset of the

graph vertexes set in which the order is unimportant.

 In the TSP the heuristic function is static in the

sense that it represents the distance between cities
and does not change during the calculation of the

path. Opposite to this, for MWVCP the heuristic

function is the ratio between the weight and the
degree of a vertex, which is dynamic. The degree of

a vertex changes as we add new vertexes to the

solution set because more edges become covered.

 These two differences affect the basic algorithm

in the direction that the ants leave the pheromone on

vertexes instead on edges and that we dynamically

update the graph, and with it the heuristic function.

The first step in solving these problems is

representing the problem in a way that makes

dynamic calculation of the heuristic function simple.
Since ants in their search can move from one vertex

to any other vertex, it is natural to use a fully

connected graph Gc(V,Ec) derived from G. In [5] it

is proposed to add weights of 1 if the edge exists in

G or 0 if it does not exist in the original graph. We

have adopted this approach, which is illustrated by

Fig.1.

Fig. 1 Expansion to the fully connected graph

As we mentioned before, we also have to update this

graph as we add new vertexes to the result set. This
is done in the following way: when we add vertex a

all edges in G c that are connected to a, are set to 0.

This is illustrated by Fig. 2.

Fig. 2 Adding a vertex to the solution set

Let us define Gk (V,Eck,) as the state of the graph

after k vertexes have been added to the solution, and

a corresponding function:

(,) ((,))k cki j Value E i jψ = (1)

Now we can define a dynamic heuristic

(,)
(,)

()

c
ki j E

jk

i j

w j

ψ
η ∈=

∑
 (2)

In Equation 2 w(j) is the weight of a vertex. Using

the heuristic defined with ηjk in Equation 2 we can

setup the state transition rule for ants:

0

0

0

1 , & arg max

0 , & arg max

,

k

k

k

i ik
i A

k

j i ik
i A

j jk

j iki A

q q j

p q q j

q qα

α

α

α

τ η

τ η

τ η

τ η

∈

∈

∈

> =

= > ≠

≤
∑

(3)

In Equation 3 q0 is the standard parameter that

specifies the exploitation / exploration rate, and q is
a random variable that decides the type of selection

on each step. Ak is a list of available vertexes. We

point out that opposite to the TSP transition rule, it
does not depend on the last selected vertex and that

is why we have τi instead of τij.

 To fully specify an Ant Colony System we still

have to define the global (when an ant finishes its

path) and local (when an ant chooses a new vertex)

update rule:

1
,

()
i

j V

i V
w j

τ
′∈

′= ∀ ∈
∑

△ (4)

(1)i i ipτ τ τ= − +△ (5)

In Equation 4 ∆τι is a quality measure of solution

subset V’ that contains vertex i, and with it we define

a global update rule in Equation 5. Parameter p is
used to set the influence of newly found solution on

the pheromone trail. The formula for the local update

rule has the standard form

0(1)i iτ ϕ τ ϕτ= − + (6)

For the value of t0 we take the quality measure of the

solution acquired with the greedy algorithm when we

select the vertex with the best ration of vertex degree

and weight. Parameter φ is used to specify the

strength of the local update rule.

3 Variations of ACO for MWVCP
On the TSP different variations of ACO gave
different quality of results [6]. That is why we have

performed a comparative assessment of standard

variations of ACO on the MWVCP. The variations

mostly differ in the global update rule. We have used

the following variations.

 Ant System (AS) in which all ants leave

pheromone. It is defined with Equations 7 and 5. In

Equation 7 AntS is the set of all the solutions created

by ants in the current step of the algorithm.

1

()

i

k

k

i

V Ants

i V AntS

j V

i V

w j
τ

′∈

′∈
′∈

′∀ ∈

=∑ ∑
△

∪

 (7)

 Reinforced Ant System (RAS), which is the same

as Ant colony system except the global best solution,

is reinforced in each iteration. It is defined with

Equations 8 and 5.

'

1

()

1

()

i

gb

k

k

gb i

V Ants

i

j V

V AntS

j V

i V V

w j

w j

τ

′∈

′∈

′∈
′∈

′∀ ∈ ∪

=

+

∑

∑ ∑

△

∪

 (8)

 Elitist Ant System (EAS) in which only the

global best solution leaves pheromone at each
iteration. It is defined with Equations 9 and 5.

1
,

()
gb

i gb

j V

i V
w j

τ
′∈

′= ∀ ∈
∑

△ (9)

 MinMax Ant System (MMAS) is same as the
Elitist Ant colony system, but with an extra

constraint that all pheromone values min max[,]iτ τ τ∈ .

We adopt the formulas presented in [10] in which

τmax is calculated dynamically as new best solutions

are found by Equation 10, and τmin is calculated at

the beginning of calculations with Equation 11. avg

is the average number of vertexes that are possible to
be chosen, pbest is the possibility of the best overall

solution being found and τ0 is the initial value of the

pheromone trail gotten as the quality measure of the
greedy algorithm solution.

max

1

(1)
gb

p
τ τ=

−
△ (10)

0

min

(1)

(1)

n
best

n
best

p

avg p

τ
τ

−
=

−
 (11)

Rank Based Ant Colony System (RANKAS) in

which besides the quality we also use the rank (R) of

found solutions. The rank is quality of the solutions

compared to solutions found by other ants in the

same iteration. It is defined with Equations 5 and 12.

{ | (())

()}

1

()

(()) 1

()

i

gb

k k

gb i

V BRank

i

j V

V BRank j V

BRank V R V RK

V AntS

i V V

w j

RK R V

RK w j

τ

′∈

′∈

′∈ ′∈

= <

∧ ∈

′ ′∀ ∈ ∪

=

−
+

∑

∑ ∑

△

∪

(12)

In this variation we select RK best ranked solutions

and, depending on their quality and rank, we correct

the pheromone trail.

4 Application and Results
In this section we present the comparative

assessment of different variations of ACO. The

implementation of an iteration step is shown in the

pseudo-code in Fig. 3.

 In the Tables 1, 2, 3, 4, 5, 6 EAS (Elitist Ant
Colony System) corresponds to the algorithm

presented in [5], in which the efficiency of using Ant

colony optimization on this problem was shown.

 We have tested for different number of edges and

vertexes. In each test, we have used colonies

consisting of 10 ants. The exploration rate was

q0=0.1, and the influence factor of heuristics was

α= 1, evaporation rates where φ=0.1, p=0.1. In

RANKAS we used RK=5. The initial value of the

pheromone trail and τ0 where calculated from the

solution gained using the greedy algorithm presented

in [3]. In MMAS the value of pbest =0.05.

Reset Graph Info

Reset Solution for all Ants

while (! AllAntsFinished)

 For All Ants

 If(AntNotFinished)

 begin

 add new vertex A to solution

 based on probability

 correct ants covering graph data

 calculate new heuristic

 local update rule for A

 End If

 End for

 End while

 Compute ∆τi for variation

 Compute τi

Fig. 3 Pseudo-code for an iteration step

 For each variation we conducted 10 separate runs.

In each test, we set a maximum number of possible

iterations and compared results obtained up to that

number of steps. The analysis is done by observing
the best found solution and the average solution

value. The calculation time of each variation of ACO

is very similar, so we excluded it from the analysis
and instead we used the number of iterations. The

program for our experiments was written in C#,

using the framework from [11].
 We generated random problem instances in which

weights where randomly selected for vertexes from

the interval [20, 70]. We used graphs of 25, 50, 150

vertexes and for each of this sizes, we tested two

different sets of edges. In the algorithm for edge set

creation, we generated n edges from each vertex to

random vertexes where n was a random number

between [1,4] in Tables 1,3,5 and between [1,10] in

Tables 2,4,6.
 In small problem cases (Tables 1 and 2) all ACO

variations gave good results, except the two most

basic AS and RAS. The quality of solution acquired

by these two variations was also bad in larger

problem sizes. For average values RANKAS gave

the best quality of results, but the best solution was

found at a higher number of iterations than MMAS
and EAS.

Table 1. Number of nodes 25, Number of edges 71,

greedy algorithm solution value 1088, Maximum

number of iterations 1250

Variation Best
Value

Best Value
Iteration

Average

AS 839 696 871.6

EAS 779 89 834.7

RAS 787 606 856.3

RANKAS 779 1120 827.1

MMAS 779 129 830.6

Table 2. Number of nodes 25, Number of edges 131,

greedy algorithm solution value 1135, Maximum

number of iterations 1250

Variation Best

Value

Best Value

Iteration

Average

AS 952 1064 986.7

EAS 952 21 985.3

RAS 952 78 994.1

RANKAS 952 45 957.6

MMAS 952 34 983.6

 In the medium (Tables 3 and 4) and large (Tables

5 and 6) problem cases MMAS and EAS gave the

best results, with EAS being slightly better.

 In medium size problems RANK preformed

slightly worse than these variations, but in large

cases this difference would greatly increase. For

problems of this size RANK performance was

similar to AS and RAS.

Table 3. Number of nodes 50, Number of edges 172,

greedy algorithm solution value 2238, Maximum
number of iterations 2000

Variation Best

Value

Best Value

Iteration

Average

AS 1736 4 1740.1

EAS 1554 1767 1597.4

RAS 1716 517 1744.3

RANKAS 1650 1620 1694.7

MMAS 1556 235 1589.3

Table 4. Number of nodes 50, Number of edges 374,

greedy algorithm solution value 2238, Maximum

number of iterations 2000

Variation Best

Value

Best Value

Iteration

Average

AS 1861 1329 1918.6

EAS 1833 298 1876.3

RAS 1861 127 1885.8

RANKAS 1833 1583 1872.2

MMAS 1833 295 1882.2

Table 5. Number of nodes 150, Number of edges

562, greedy algorithm solution value 6782,

Maximum number of iterations 2000

Variation Best

Value

Best Value

Iteration

Average

AS 5827 993 5951.2

EAS 4920 1688 5117.9

RAS 5760 1476 5912.1

RANKAS 5694 999 5802.2

MMAS 5002 1952 5169.2

Table 6. Number of nodes 150, Number of edges

1470, greedy algorithm solution value 6834,
Maximum number of iterations 2000

Variation Best

Value

Best Value

Iteration

Average

AS 6303 1606 6354.7

EAS 5688 1932 5872.5

RAS 6284 402 6185.8

RANKAS 6156 624 6230.7

MMAS 5756 1701 5889.6

5 Conclusion
In this paper, we performed a comparative

assessment of the standard variations of ACO on the

MWVC problem. To do this we have transformed

variation formulas to a form that could be applied to

this problem. We used our previously developed
framework [11] to create software for conducting

tests. The difference in calculation time for all the

variations was neglectable. An overall best variation
did not exist but it depended on the size of the

problem. The basic use of ACO gave significantly

worse results in all tested cases compared to MMAS,

EAS and RANKAS. Through analysis it has been

shown that EAS and MMAS gave the best results in

large problem cases with EAS slightly better. Rank

Based Ant Systems gave the best results in small

cases, and slightly worse in medium problem

instances, but in large cases it is not a good
approach.

Acknowledgment: The research was supported

by the Ministry of Science, Republic of Serbia,

Project no. 144007

References:

[1] Karp, R.M.. Reducibility Among Combinatorial

Problems. In R.E. Miller and J.W. Theater,

Complexity of Computer Computations, New

York: Plenum Press, 1972
[2] Chvatal, V.. A Greedy-Heuristic for the Set

Cover Problem. Mathematics of Operations

Research, Vol.4, 1979, pp. 233–235.
[3] Clarkson, K.L. A Modification of the Greedy

Algorithm for Vertex Cover. Information

Processing Letters, Vol. 16, 1983, pp. 23–25.

[4] Ashok Kumar Gupta, Alok Singh, A Hybrid

Heuristic for the Minimum Weight Vertex Cover

Problem, Asia-Pacific Journal of Operational

Research, 2006, vol. 23, No 2, pp 273-285

[5] Shyong Jian Shyu, Peng-Yeng Yin, Bertrand

M.T. Lin, An Ant Colony Optimization

Algorithm for the Minimum Weight Vertex
Cover Problem, Annals of Operations Research,

Vol.131, 2004, pp. 283–304,

[6] D.Asmar ,A. Elshamli, S. Areibi, A Comparative

Assessment of ACO Algorithms Within a TSP

Environment. In DCDIS: 4th International

Conference on Engineering Applications and

Computational Algorithms, Guelph, Ontario,

Canada, July 2005.

[7] Vlachos Aristidis, An Ant Colony Optimization
(ACO) algorithm solution to Economic Load

Dispatch (ELD) problem. WSEAS Transactions

On Systems, Vol 5, No 8, pp. 1763 – 1771, 2006
[8] Kolahan, F., Abachizadeh, M., Soheili, S, “A

comparison between Ant colony and Tabu search

algorithms for job shop scheduling with
sequence-dependent setups”, WSEAS

Transactions on Systems, Vol. 12, pp. 2819-2824,

2006

[9] Mastorakis, N.E., Zhuang, X, Image processing

with the artificial swarm intelligence, WSEAS

Transactions on Computers, Vol 4, No. 4, pp.

333-341, 2005

 [10] T. Stützle et H.H. Hoos, MAX MIN Ant

System, Future Generation Computer Systems,
Vol. 16, pp. 889-914, 2000

[11] Raka Jovanovic, Milan Tuba, Dana Simian, An

Object-Oriented Framework with Corresponding
Graphical User Interface for Developing Ant

Colony Optimization Based Algorithms, WSEAS

TRANSACTIONS on COMPUTERS, Vol. 7, No.

12, 2008, pp. 1948 – 1957

