
Analysis of Parallel Implementations of the Ant Colony Optimization

Applied to the Minimum Weight Vertex Cover Problem

 RAKA JOVANOVIC MILAN TUBA DANA SIMIAN

 Institute of Physics Faculty of Computer Science Department of Computer Science

 Belgrade Megatrend University Belgrade Lucian Blaga University of Sibiu

Pregrevica 118, Zemun Bulevar umetnosti 29 5-7 dr. I. Ratiu str.

 SERBIA SERBIA ROMANIA

 rakabog@yahoo.com tubamilan@ptt.rs d_simian@yahoo.com

Abstract: - In this paper we analyze various parallel implementations of the Ant Colony Optimization (ACO)

applied to the Minimum Weight Vertex Cover Problem (MWVCP). We investigated the ACO algorithms

applied to the MWCVP before. Here, we observe the behavior of different parallel topologies and corresponding

algorithms like fully connected, replace worst, ring and independent parallel runs. We also present a variation of

the algorithm corresponding to the ring topology that maintains the diversity of the search, but still moves to

areas with better solutions.

Key-Words: - Ant Colony Optimization, Minimum Weight Vertex Cover, Parallel Computing, Combinatorial

Optimization, Population Based Algorithms

1 Introduction
In general, a system of n parallel processors, each of

speed k, is less efficient than one processor of speed

n*k. However, such parallel system is usually much

cheaper to build and because of that, research in

parallelization is of great importance. Parallelization

of algorithms have proven to be very powerful

method in the case of population based algorithms

like ACO and Genetic algorithms [1].

 Different parallelization approaches have been

applied to ACO algorithms. It has been shown that

the multi-colony model is more effective than the

parallelization applied by assigning separate

processes to ants belonging to a single colony. This

is similar to the situation with genetic algorithms

where the best application of parallelization is to

create separate islands of populations and to

implement some kind of communication between

them. This approach gives even super-linear

improvement to population based algorithms applied

to certain problems [2].

 When working with multi-colony systems, the

communication data is of great importance.

Solutions, pheromone matrices, and parameters have

been tested as the type of information that will be

exchanged between colonies [3], [4], [5]. The

exchange of the best-so-far solution has been shown

to be a good choice, which we use in our tests.

 The last step in application of parallel ACO is to

define the methods of communication and

interaction between colonies, and the corresponding

algorithms. These algorithms are named by their

corresponding topologies and the standard ones are:

fully connected, replace worst, ring and independent

parallel runs.

 We compare the quality of the results acquired by

these parallel algorithms with the results of the

sequential implementation and our variation of the

ring topology algorithm.

 To illustrate these parallel implementations we

use one of the classical problems of graph theory:

the Minimum Vertex Cover Problem. The problem

is defined for an undirected graph G = (V, E). V is

the set of vertexes and E is a set of edges. A vertex

cover of a graph is set of vertexes V’V that has the

property that for every edge e(v1,v2)E at least one

of v1,v2 is an element of V’. A minimal vertex cover

is a vertex cover that has the minimum number of

vertexes. In this paper we devote our attention to an

extension of this problem named the Minimum

Weight Vertex Cover Problem (MWVCP) in which

weights are added to the vertexes. The solution is

not the vertex cover with the minimum number of

vertexes, but one with the minimum sum of weights.

 It has been shown that this problem is NP-

complete even when it is restricted to a unit-

weighted planar graph with the maximum vertex

degree of three [6]. In the same way as for many

other NP-complete problems, finding the optimal

solution is very time consuming and in larger

problem cases even impossible in realistic time.

Variety of different methods have been investigated

Proceedings of the 9th WSEAS International Conference on SIMULATION, MODELLING AND OPTIMIZATION

ISSN: 1790-2769 254 ISBN: 978-960-474-113-7

for calculating near optimal solutions. The first is a

greedy heuristic approach of collecting the vertex

with the smallest ratio between its weight and degree

[7], [8]. Genetic algorithms have also been used [9].

 The use of ant colony optimization gives very

good results when used for the MWVCP, better that

results acquired by genetic algorithms and local

search methods like tabu search, and simulated

annealing [10].

 This paper is organized as follows. In Section 2 we

present the implementation of ACO for the

MWVCP. In Section 3 we present different parallel

topologies for ACO. In the final section, we present

our implementation of parallelization and conducted

experiments, and compare the effectives of these

algorithms to the sequential one.

2 ACO for the MWVCP
The use of ACO has been proven to be effective on

various types of problems from Economic Load

Dispatch [11], Scheduling problems [12], Image

processing [13], and also the MWVCP.

 The MWVCP is in two main aspects different

from most of the problems solved by using ACO.

The solution of the problem is a subset of the graph

vertexes set, instead of a permutation. The heuristic

function is dynamic, while in most of other

applications it is static. These two differences affect

the basic algorithm in two directions. First, ants

leave the pheromone on vertexes instead of on edges

and second, we dynamically update the graph, and

with it, the heuristic function. The first step in

solving these problems is representing the problem

in a way that makes dynamic calculation of the

heuristic function simple.

 Since ants in their search can move from a vertex

to any other vertex, it is natural to use a fully

connected graph Gc(V,Ec) derived from G. In the

article [10] it is proposed to add weights to edges in

the new graph Gc. If an edge exists in G, it is given

the weight 1, or 0 if it does not exist in the original

graph. We have adopted this approach, which is

illustrated by Fig.1, the original graph and Fig 2, the

derived graph. Lines colored in black represent

edges with value 1, the red ones have the value 0.

 As we mentioned before, we also have to update

this graph as we add new vertexes to the result set.

This is done using the following rule: when we add

vertex a weights of all edges in Gc that are connected

to a, are set to 0. This is illustrated by Fig. 3.

Fig. 1 Original graph

Fig. 2 Fully connected graph

Fig. 3 Adding a vertex to the solution set

Let us define Gk (V,Eck,) as the state of the graph

after k vertexes have been added to the solution set,

and a corresponding function:

(,) ((,))k cki j Value E i j  (1)

This update rule has two roles. First, we can

dynamically evaluate the preference of vertexes with

function ψκ and second, it gives us the information

when all edges have been covered, or more

precisely, if the total sum of edge weights in Gk is 0,

then all edges are covered. Now we can define a

dynamic heuristic

(,)
(,)

()

c
ki j E

jk

i j

w j








 (2)

In Equation 2 w(j) is the weight of a vertex. Using

the heuristic defined with ηjk in Equation 2 we can

setup the state transition rule for ants:

Proceedings of the 9th WSEAS International Conference on SIMULATION, MODELLING AND OPTIMIZATION

ISSN: 1790-2769 255 ISBN: 978-960-474-113-7

0

0

0

1 , & arg max

0 , & arg max

,

k

k

k

i ik
i A

k

j i ik
i A

j jk

j iki A

q q j

p q q j

q q







 

 

 

 










 



  






(3)

In Equation 3 q0 is the standard parameter that

specifies the exploitation/exploration rate, and q is a

random variable that decides the type of selection on

each step. Ak is a list of available vertexes. We point

out that opposite to the TSP transition rule, it does

not depend on the last selected vertex and that is

why we have τi instead of τij.

 To fully specify an Ant Colony System we still

have to define the global (when an ant finishes its

path) and a local (when an ant chooses a new vertex)

update rules. The role of the global update rule is to

make paths creating better solutions to become more

desirable, or in other words, it intensifies

exploitation.

1
,

()
i

j V

i V
w j




  



(4)

(1)i i ip     (5)

Equation 4 defines the global update rule. In it Δτι is

a quality measure of solution subset V’ that contains

vertex i, and with it we define a global update rule in

Equation 5. This measure is inverse proportional to

the weight of a solution. Parameter p is used to set

the influence of newly found solution on the

pheromone trail.

 The local update rule purpose is to shuffle

solutions and to prevent all ants from using very

strong vertexes. The idea is to make vertexes less

desirable as more ants visit it. In this way,

exploration is supported. The formula for the local

update rule has the standard form

0(1)i i      (6)

For the value of t0 we take the quality measure of the

solution acquired with the greedy algorithm when

we select the vertex with the best ratio of vertex

degree and weight. Parameter φ is used to specify

the strength of the local update rule.

3 Different Topologies for Parallel

ACO Algorithms
Parallel algorithms are very important for population

based optimization heuristics because they can give

super-linear increase in efficiency. This level of

improvement is accomplished with the use of

multiple colonies. In our parallel implementation of

ACO for the MWVCP we have adopted the island

approach in which each colony has been given a

separate process. The method of communication

between colonies that we implemented is the

exchange of the best-so-far solution found by each

colony. We focus our analysis to the possible

systems of communication and their effectiveness in

the case of MWVCP. In the following we describe

these communication methods which are slight

variation of the topologies presented in article [14]

and the principles of the communication on each of

them:

 Fully connected. In this case, n colonies with

different random seeds are simulated and they

communicate with each other with the goal of

finding the good solutions. The interaction between

colonies is done in the following fashion. The best-

so-far solutions are collected from all the colonies.

The best overall solution, or in a variation the best

colony index, is found and it is sent to all n colonies

which set their own best-so-far solution to it.

 Replace worst. In this case, we again search for

the best overall solution for all n colonies, but we

also find the colony with the worst solution. Instead

of sending the best solution to all the colonies, it is

only sent to the worst colony which sets a new best

solution. This approach has an advantage compared

to a fully connected topology of lower amount of

communication between the colonies.

 Ring. This method of communication is inspired

by the ring topology in which a colony only

communicates with neighboring colonies. In a

colony cluster with n colonies the k indexed colony

will only give its best-so-far solution to the

[(k-1) mod n] indexed colony, and receives it from

[(k+1) mod n] indexed colony. This approach has

greatly smaller level of communication then the two

previously mentioned methods.

 Ring switch. Is very similar to the ring method in

the sense that each colony communicates only with

its neighbors. A big difference to the three already

mentioned methods is that colonies with low quality

solutions do not overwrite them with a better

solution but instead an exchange is done. In this

way, the lower quality solutions are not lost, but are

used in combination with pheromone matrixes from

other colonies. In practice colony with index k only

exchanges its solution with colony [(k-1) mod n].

 Independent parallel runs. This implementation

has no communication at all between colonies. It

runs the same sequential ACO algorithm with

different random seeds in n different processes. The

Proceedings of the 9th WSEAS International Conference on SIMULATION, MODELLING AND OPTIMIZATION

ISSN: 1790-2769 256 ISBN: 978-960-474-113-7

solution it takes is the best solution of all the

independent runs. This method has the advantage

that no extra code is needed for the parallelization.

4 Application and results for parallel

ACO algorithms
In this section, we analyze methods of communi-

cation for parallel algorithms presented in the

previous section and their effectiveness on ACO for

the MWVCP. All of the topologies have been imple-

menting using our framework from article [15].

 Parallelization has been implemented by creating

different threads for each colony and one thread that

is used as a colony cluster, a master class that

executes the communication between different

colony threads. This implementation is not a perfect

representation of a true parallel execution of

different topologies on multiprocessor machine or

machines in a network. The main drawbacks are that

communication between colonies is done without

delay, there cannot be loss of data in communication

between colonies or unexpected termination of

execution of some colonies. Because of this, we

focus our attention to the quality of the results these

topologies give, rather than the speed.

 We tested different sized problem instances with

50, 100 and 150 nodes. We also tested the effect of

different sized colony clusters with 5 or 10 colonies

working together. In all the cases each colony uses

the Elitist Ant variation of ACO as presented in

articles [10], [5]. In Tables 1, 2, 3, 4, 5, 6, all

topologies have been given the same calculation

time and the information exchange has been done

periodically every n time periods.

 When comparing the sequential algorithm to the

parallel versions, we used the standard approach of

giving them the same time of execution. We

compare the best solution and solution average of

Ft
k
(c) running k times with communication

presented in the previous section, to Ftk(c) running

once for time t*k. c is a problem instance. This puts

the sequential algorithm in a partially disadvantaged

position compared to the parallel algorithms because

of the relatively long execution time. As it is

mentioned in article [14], sequential algorithms

perform better compared to parallel ones if

calculation time is shorter. We can see the result for

the sequential algorithm in the Tables 1, 3, 5 and

compare them to results of clusters of 5 colonies. In

all of our test we simulated 5 separate runs for each

parallel topology and the sequential algorithm. We

compared the average and best found solution.

Table 1. Number of nodes 50, Number of edges

209, Number of Colonies 5, greedy algorithm

solution value 2038, Calculation Time 1 minutes,

and communication every 6 sec

Topology Best

Value

Average

Fully Connected 1712 1738.8

Replace Worst 1701 1725

Ring. 1660 1729.2

Ring Switch 1667 1704.6

Ind. Parallel Runs 1695 1719.2

Sequential 1730 1749.2

Table 2. Number of nodes 100, Number of edges

450, Number of Colonies 5, greedy algorithm

solution value 4548, Calculation Time 1 minutes,

and communication every 10 sec

Topology Best

Value

Average

Fully Connected 1735 1747

Replace Worst 1701 1730.6

Ring. 1672 1722.6

Ring Switch 1673 1712.4

Ind. Parallel Runs 1699 1719.8

Table 3. Number of nodes 100, Number of edges

450, Number of Colonies 5, greedy algorithm

solution value 4548, Calculation Time 2 minutes,

and communication every 10 sec

Topology Best

Value

Average

Fully Connected 3470 3521.6

Replace Worst 3493 3519

Ring. 3464 3516.8

Ring Switch 3464 3503.6

Ind. Parallel Runs 3503 3540

Sequential 3542 3583.4

Table 4. Number of nodes 100, Number of edges

450, Number of Colonies 10, greedy algorithm

solution value 4548, Calculation Time 2 minutes,

and communication every 20 sec

Topology Best

Value

Average

Fully Connected 3462 3502.8

Replace Worst 3499 3524.8

Ring. 3499 3507.8

Ring Switch 3460 3491

Ind. Parallel Runs 3493 3505.8

Proceedings of the 9th WSEAS International Conference on SIMULATION, MODELLING AND OPTIMIZATION

ISSN: 1790-2769 257 ISBN: 978-960-474-113-7

Table 5. Number of nodes 150, Number of edges

450, Number of Colonies 5, greedy algorithm

solution value 6782, Calculation Time 4 minutes,

and communication every 30 sec

Topology Best

Value

Average

Fully Connected 5672 5763.2

Replace Worst 5634 5735.6

Ring. 5601 5726.

Ring Switch 5643 5738.8

Ind. Parallel Runs 5746 5735.6

Sequential 5788 5852.6

Table 6. Number of nodes 150, Number of edges

450, Number of Colonies 5, greedy algorithm

solution value 6782, Calculation Time 4 minutes,

and communication every 30 sec

Topology Best

Value

Average

Fully Connected 5779 5823

Replace Worst 5800 5836.6

Ring. 5786 5821.4

Ring Switch 5765 5804

Ind. Parallel Runs 5754 5788.2

We first observe the solution quality for the smaller

case with 50 nodes, Table 1. We wish to point out

that all the parallel implementation gave better

quality solutions then the sequential algorithm. The

main reason for this is that the sequential algorithm

started stagnating relatively early in the solution

search process. If we used shorter execution time,

the difference between the sequential and the

parallel algorithms would have been smaller.

 In the small problem case, the fully connected

approach gave poor results compared to other

topologies. This can be explained by the fact that the

search started focusing on some bad initial solution,

in some runs. On the other hand, focusing all the

colonies on one good solution was not needed

because of the relatively small solution space. We

can notice that keeping the diversity of the search in

the small problem case was of great importance as

the results indicate that the bigger the diversity of

the search, the better the final solution was.

 In the case of the bigger problem, the focusing of

the search gave better results because the focused

area was big enough for different colonies not to

search over the same regions. All the topologies that

used intensified searches near good solutions gave

similar results. Due to the larger solution space, the

parallel independent runs lost its advantage to these

methods but still gave good results.

 Our second set of tests where on testing the effect

of increasing the number of colonies from 5 to 10

and using the same calculation time. In the small

problem case (Tables 1, 2) the increase was a bad

step and did not improve the quality of results. This

can be explained by the relatively small solution

space and because of the fact that colonies would be

exploring the same areas. In the case of medium

sized problems (Tables 3, 4) results where similar,

but slightly better with a higher number of colonies.

Finally, in large problem cases (Tables 5, 6) the

increase of the number of cooperating colonies

significantly worsened the solution quality even

getting it near to the sequential algorithm. In this

case, we believe that the problem was that none of

the colonies had sufficient time for improving

solutions with intensive search near good solutions.

Instead, just a wide range of areas was poorly tested.

This indicates that depending of the problem in

question, there is an optimal proportion between the

number of colonies and the time or equivalent

number of iterations dedicated to each colony.

 In our tests, the ring switch algorithm we

proposed has calculated, on average, the best results.

The ring switch algorithm has performed somewhat

worse in the case from Table 5. We expect that this

is a consequence of a relatively small number of

tests conducted and consider it a statistical error.

The good performing of ring switch can be

explained by qualities of this algorithm. First,

diversity of the search is not quickly lost because no

solutions found so far are overwritten and

disregarded. This is its advantage to algorithms that

focus the search near good solutions like fully

connected, replace worst and ring. The effect of the

exchange still moves the search of the colony cluster

in a good direction and is not kept in the same areas

as in parallel independent runs. We can observe

what happens in each of the two colonies A and B

affected by the exchange. Let us say that the colony

A has had a better best-so-far solution than colony

B. After the exchange, B will have a solution better

than before and in the worst case, in later iterations

after enough pheromone has been deposited, search

the same area as colony A had before the exchange.

In the case of colony A that has gotten a solution

worse than the one it head before, it is possible for it

to end up searching the same space as colony B

before the exchange, after a high enough number of

iterations. This is, however, not a very likely

consequence of the exchange for this colony. The

individual ants search paths do not directly depend

on best-so-far solution but from the pheromone trail.

This trail will slowly change from the good solution

trail (from colony A) to a worse trail (colony B) and

Proceedings of the 9th WSEAS International Conference on SIMULATION, MODELLING AND OPTIMIZATION

ISSN: 1790-2769 258 ISBN: 978-960-474-113-7

in this period it is highly likely for some ant to find a

solution that has better quality than colony B had at

the beginning.

5 Conclusion
We used our previously developed framework [15]

to create software for conducting tests. We

compared the effect of different parallel algorithms

for the MWVCP. We have confirmed that, similar to

the case of the TSP, the simple use of parallel

independent runs is a good approach. In small

problem cases it was even better that other, more

complicated topologies like fully connected, replace

worst and the ring. In larger problem cases, this

advantage has been lost, but the results were still of

good quality. We also introduced a variation of the

algorithm corresponding to the ring topology. In this

variation instead of overwriting lower quality

solutions an exchange was conducted between

neighboring colonies. This proved to be a good

choice because the diversity did not quickly

disappear and the search of the colony cluster was

moving towards areas with better solutions. In our

tests, ring and ring switch algorithms gave the best

results with ring switch being slightly better.

 We implemented the parallelization through the

use of threads on a Windows platform. Even in the

case of parallelization simulated by Windows on a

single processor the results were better than when

using a sequential algorithm.

 In further research, we wish to adopt and

implement the suspicion path removal hybridization

used on the TSP to this problem.

References:

[1] R.Tanese, Parallel genetic algorithms for a

hypercube. Proceedings of the second

international conference on Genetic Algorithms

and their Applications, Hillsdale, NJ, Lawrence

Erlbaum Associates, Inc, 1987, pp. 177–183

[2] Thomas Stützle, Parallelization strategies for

Ant Colony Optimization, Parallel Problem

Solving from Nature - PPSN V, Springer Berlin /

Heidelberg, 1998, pp. 722-731

[3] Bullnheimer, B.,Kotsis,G., Strauß,C, Paralle-

lization strategies for the Ant System. High

Performance Algorithms and Software in

Nonlinear Optimization. Kluwer Academic

Publishers, Norwell, MA (1998) pp. 87–100

[4] Middendorf, M., Reischle, F., Schmeck, H.:

Multi colony ant algorithms. Journal of

Heuristics Vol. No.3, 2002, pp, 305–320

[5] Benkner, S., Doerner, K.F., Hartl, R.F., Kiechle,

G., Lucka, M.: Communication strategies for

parallel cooperative ant colony optimization on

clusters and grids. Complimentary Proceedings

of PARA’04 Workshop on State-of-the-Art in

Scientific Computing, June 20-23, 2004, Lyngby,

Denmark 2005, pp. 3 - 12

[6] Karp, R.M.. Reducibility Among Combinatorial

Problems. In R.E. Miller and J.W. Theater,

Complexity of Computer Computations, New

York: Plenum Press, 1972

[7] Chvatal, V.. A Greedy-Heuristic for the Set

Cover Problem. Mathematics of Operations

Research, Vol.4, 1979, pp. 233–235.

[8] Clarkson, K.L. A Modification of the Greedy

Algorithm for Vertex Cover. Information

Processing Letters, Vol. 16, 1983, pp. 23–25.

[9] Ashok Kumar Gupta, Alok Singh, A Hybrid

Heuristic for the Minimum Weight Vertex Cover

Problem, Asia-Pacific Journal of Operational

Research, 2006, vol. 23, No 2, pp 273-285

[10] Shyong Jian Shyu, Peng-Yeng Yin, Bertrand

M.T. Lin, An Ant Colony Optimization

Algorithm for the Minimum Weight Vertex

Cover Problem, Annals of Operations Research,

Vol. 131, 2004, pp. 283–304,

 [11] Vlachos Aristidis, An Ant Colony

Optimization (ACO) algorithm solution to

Economic Load Dispatch (ELD) problem.

WSEAS Transactions On Systems, Vol 5, No 8,

pp. 1763 – 1771, 2006

[12] Kolahan, F., Abachizadeh, M., Soheili, S, A

comparison between Ant colony and Tabu search

algorithms for job shop scheduling with

sequence-dependent setups, WSEAS Transac-

tions on Systems, Vol. 12, pp. 2819- 2824, 2006

[13] Mastorakis, N.E., Zhuang, X, Image processing

with the artificial swarm intelligence, WSEAS

Transactions on Computers, Vol 4, No. 4, pp.

333-341, 2005

[14] Max Manfrin, Mauro Birattari, Thomas Stützle

and Marco Dorigo, Parallel Ant Colony

Optimization for the Traveling Salesman

Problem, Ant Colony Optimization and Swarm

Intelligence, Springer Berlin/Heidelberg (2006),

pp. 224-234

[15] Raka Jovanovic, Milan Tuba, Dana Simian, An

Object-Oriented Framework with Corresponding

Graphical User Interface for Developing Ant

Colony Optimization Based Algorithms, WSEAS

Transactions on Computers, Vol. 7, No. 12,

2008, pp. 1948 - 1957

This research is supported by Project 144007,

Ministry of Science, Republic of Serbia.

Proceedings of the 9th WSEAS International Conference on SIMULATION, MODELLING AND OPTIMIZATION

ISSN: 1790-2769 259 ISBN: 978-960-474-113-7

