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Abstract: - In this paper we analyze various parallel implementations of the Ant Colony Optimization (ACO) 

applied to the Minimum Weight Vertex Cover Problem (MWVCP). We investigated the ACO algorithms 

applied to the MWCVP before. Here, we observe the behavior of different parallel topologies and corresponding 

algorithms like fully connected, replace worst, ring and independent parallel runs. We also present a variation of 

the algorithm corresponding to the ring topology that maintains the diversity of the search, but still moves to 

areas with better solutions.  
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1   Introduction 
In general, a system of n parallel processors, each of 

speed k, is less efficient than one processor of speed 

n*k. However, such parallel system is usually much 

cheaper to build and because of that, research in 

parallelization is of great importance. Parallelization 

of algorithms have proven to be very powerful 

method in the case of population based algorithms 

like ACO and Genetic algorithms [1]. 

     Different parallelization approaches have been 

applied to ACO algorithms.  It has been shown that 

the multi-colony model is more effective than the 

parallelization applied by assigning separate 

processes to ants belonging to a single colony. This 

is similar to the situation with genetic algorithms 

where the best application of parallelization is to 

create separate islands of populations and to 

implement some kind of communication between 

them. This approach gives even super-linear 

improvement to population based algorithms applied 

to certain problems [2]. 

     When working with multi-colony systems, the 

communication data is of great importance. 

Solutions, pheromone matrices, and parameters have 

been tested as the type of information that will be 

exchanged between colonies [3], [4], [5]. The 

exchange of the best-so-far solution has been shown 

to be a good choice, which we use in our tests. 

     The last step in application of parallel ACO is to 

define the methods of communication and 

interaction between colonies, and the corresponding 

algorithms. These algorithms are named by their 

corresponding topologies and the standard ones are: 

fully connected, replace worst, ring and independent 

parallel runs.  

     We compare the quality of the results acquired by 

these parallel algorithms with the results of the 

sequential implementation and our variation of the 

ring topology algorithm. 

     To illustrate these parallel implementations we 

use one of the classical problems of graph theory: 

the Minimum Vertex Cover Problem. The problem 

is defined for an undirected graph G = (V, E). V is 

the set of vertexes and E is a set of edges. A vertex 

cover of a graph is set of vertexes V’V that has the 

property that for every edge e(v1,v2)E at least  one 

of v1,v2   is an element of V’. A minimal vertex cover 

is a vertex cover that has the minimum number of 

vertexes. In this paper we devote our attention to an 

extension of this problem named the Minimum 

Weight Vertex Cover Problem (MWVCP) in which 

weights are added to the vertexes. The solution is 

not the vertex cover with the minimum number of 

vertexes, but one with the minimum sum of weights. 

     It has been shown that this problem is NP-

complete even when it is restricted to a unit-

weighted planar graph with the maximum vertex 

degree of three [6].  In the same way as for many 

other NP-complete problems, finding the optimal 

solution is very time consuming and in larger 

problem cases even impossible in realistic time. 

Variety of different methods have been investigated 
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for calculating near optimal solutions. The first is a 

greedy heuristic approach of collecting the vertex 

with the smallest ratio between its weight and degree 

[7], [8]. Genetic algorithms have also been used [9]. 

     The use of ant colony optimization gives very 

good results  when used for the MWVCP, better that 

results acquired by genetic algorithms and local 

search methods like tabu search, and simulated 

annealing [10].    

   This paper is organized as follows. In Section 2 we 

present the implementation of ACO for the 

MWVCP. In Section 3 we present different parallel 

topologies for ACO. In the final section, we present 

our implementation of parallelization and conducted 

experiments, and compare the effectives of these 

algorithms to the sequential one.   

 

 

2   ACO for the MWVCP 
The use of ACO has been proven to be effective on 

various types of problems from Economic Load 

Dispatch [11], Scheduling problems [12], Image 

processing [13], and also the MWVCP. 

     The MWVCP is in two main aspects different 

from most of the problems solved by using ACO. 

The solution of the problem is a subset of the graph 

vertexes set, instead of a permutation. The heuristic 

function is dynamic, while in most of other 

applications it is static. These two differences affect 

the basic algorithm in two directions.  First, ants 

leave the pheromone on vertexes instead of on edges 

and second, we dynamically update the graph, and 

with it, the heuristic function. The first step in 

solving these problems is representing the problem 

in a way that makes dynamic calculation of the 

heuristic function simple. 

     Since ants in their search can move from a vertex 

to any other vertex, it is natural to use a fully 

connected graph Gc(V,Ec)  derived from G. In the 

article [10] it is proposed to add weights to edges in 

the new graph Gc. If an edge exists in G, it is given 

the weight 1, or 0 if it does not exist in the original 

graph. We have adopted this approach, which is 

illustrated by Fig.1, the original graph and Fig 2, the 

derived graph. Lines colored in black represent 

edges with value 1, the red ones have the value 0. 

     As we mentioned before, we also have to update 

this graph as we add new vertexes to the result set. 

This is done using the following rule: when we add 

vertex a weights of all edges in Gc that are connected 

to a, are set to 0. This is illustrated by Fig. 3.  

 
Fig. 1  Original graph 

 

 
Fig. 2  Fully connected graph 

 

 
Fig. 3  Adding a vertex to the solution set 

 

Let us define Gk (V,Eck,) as the state of the graph 

after k vertexes have been added to the solution set, 

and a corresponding function:  

 

( , ) ( ( , ))k cki j Value E i j   (1) 

 

This update rule has two roles. First, we can 

dynamically evaluate the preference of vertexes with 

function ψκ and second, it gives us the information 

when all edges have been covered, or more 

precisely, if the total sum of edge weights in Gk  is 0, 

then all edges are covered. Now we can define a 

dynamic heuristic 
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In Equation 2 w(j) is the weight of a vertex. Using 

the heuristic defined with ηjk  in Equation 2 we can 

setup the state transition rule for ants: 

 

Proceedings of the 9th WSEAS International Conference on SIMULATION, MODELLING AND OPTIMIZATION

ISSN: 1790-2769 255 ISBN: 978-960-474-113-7



0

0

0

1 , & arg max

0 , & arg max

,

k

k

k

i ik
i A

k

j i ik
i A

j jk

j iki A

q q j

p q q j

q q







 

 

 

 










 



  






 

(3) 

 

In Equation 3 q0 is the standard parameter that 

specifies the exploitation/exploration rate, and q is a 

random variable that decides the type of selection on 

each step. Ak is a list of available vertexes. We point 

out that opposite to the TSP transition rule, it does 

not depend on the last selected vertex and that is 

why we have τi instead of τij. 

      To fully specify an Ant Colony System we still 

have to define the global (when an ant finishes its 

path) and a local (when an ant chooses a new vertex) 

update rules. The role of the global update rule is to 

make paths creating better solutions to become more 

desirable, or in other words, it intensifies 

exploitation.  
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(1 )i i ip      (5) 

 

Equation 4 defines the global update rule. In it Δτι  is 

a quality measure of  solution subset V’ that contains 

vertex i, and with it we define a global update rule in 

Equation 5. This measure is inverse proportional to 

the weight of a solution. Parameter p is used to set 

the influence of newly found solution on the 

pheromone trail.  

     The local update rule purpose is to shuffle 

solutions and to prevent all ants from using very 

strong vertexes. The idea is to make vertexes less 

desirable as more ants visit it. In this way, 

exploration is supported. The formula for the local 

update rule has the standard form  
 

0(1 )i i       (6) 

 

For the value of t0 we take the quality measure of the 

solution acquired with the greedy algorithm when 

we select the vertex with the best ratio of vertex 

degree and weight.  Parameter φ is used to specify 

the strength of the local update rule.  

  

 

3 Different Topologies for Parallel 

ACO Algorithms  
Parallel algorithms are very important for population 

based optimization heuristics because they can give 

super-linear increase in efficiency. This level of 

improvement is accomplished with the use of 

multiple colonies. In our parallel implementation of 

ACO for the MWVCP we have adopted the island 

approach in which each colony has been given a 

separate process. The method of communication 

between colonies that we implemented is the 

exchange of the best-so-far solution found by each 

colony. We focus our analysis to the possible 

systems of communication and their effectiveness in 

the case of MWVCP. In the following we describe 

these communication methods which are slight 

variation of the topologies presented in article [14] 

and the principles of the communication on each of 

them: 

     Fully connected. In this case, n colonies with 

different random seeds are simulated and they 

communicate with each other with the goal of 

finding the good solutions. The interaction between 

colonies is done in the following fashion. The best-

so-far solutions are collected from all the colonies.  

The best overall solution, or in a variation the best 

colony index, is found and it is sent to all n colonies 

which set their own best-so-far solution to it. 

    Replace worst. In this case, we again search for 

the best overall solution for all n colonies, but we 

also find the colony with the worst solution. Instead 

of sending the best solution to all the colonies, it is 

only sent to the worst colony which sets a new best 

solution. This approach has an advantage compared 

to a fully connected topology of lower amount of 

communication between the colonies. 

     Ring. This method of communication is inspired 

by the ring topology in which a colony only 

communicates with neighboring colonies. In a 

colony cluster with n colonies the k  indexed colony 

will only give its best-so-far solution to the           

[(k-1) mod n]  indexed colony, and receives it from 

[(k+1) mod n] indexed colony. This approach has 

greatly smaller level of communication then the two 

previously mentioned methods. 

     Ring switch. Is very similar to the ring method in 

the sense that each colony communicates only with 

its neighbors. A big difference to the three already 

mentioned methods is that colonies with low quality 

solutions do not overwrite them with a better 

solution but instead an exchange is done. In this 

way, the lower quality solutions are not lost, but are 

used in combination with pheromone matrixes from 

other colonies. In practice  colony with index k only 

exchanges its solution with colony [(k-1) mod n]. 

     Independent parallel runs. This implementation 

has no communication at all between colonies. It 

runs the same sequential ACO algorithm with 

different random seeds in n different processes. The 
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solution it takes is the best solution of all the 

independent runs. This method has the advantage 

that no extra code is needed for the parallelization. 

 

 

4 Application and results for parallel 

ACO algorithms 
In this section, we analyze methods of communi-

cation for parallel algorithms presented in the 

previous section and their effectiveness on ACO for 

the MWVCP. All of the topologies have been imple-

menting using our framework from article [15]. 

     Parallelization has been implemented by creating 

different threads for each colony and one thread that 

is used as a colony cluster, a master class that 

executes the communication between different 

colony threads. This implementation is not a perfect 

representation of a true parallel execution of 

different topologies on multiprocessor machine or 

machines in a network. The main drawbacks are that 

communication between colonies is done without 

delay, there cannot be loss of data in communication 

between colonies or unexpected termination of 

execution of some colonies. Because of this, we 

focus our attention to the quality of the results these 

topologies give, rather than the speed.  

     We tested different sized problem instances with 

50, 100 and 150 nodes.  We also tested the effect of 

different sized colony clusters with 5 or 10 colonies 

working together. In all the cases each colony uses 

the Elitist Ant variation of ACO as presented in 

articles [10], [5]. In Tables 1, 2, 3, 4, 5, 6, all 

topologies have been given the same calculation 

time and the information exchange has been done 

periodically every n time periods.   

    When comparing the sequential algorithm to the 

parallel versions, we used the standard approach of 

giving them the same time of execution. We 

compare the best solution and solution average of 

Ft
k
(c) running k times with communication 

presented in the previous section,  to Ftk(c) running 

once for time t*k. c is a problem instance.  This puts 

the sequential algorithm in a partially disadvantaged 

position compared to the parallel algorithms because 

of the relatively long execution time. As it is 

mentioned in article [14], sequential algorithms 

perform better compared to parallel ones if 

calculation time is shorter. We can see the result for 

the sequential algorithm in the Tables 1, 3, 5 and 

compare them to results of clusters of 5 colonies. In 

all of our test we simulated 5 separate runs for each 

parallel topology and the sequential algorithm. We 

compared the average and best found solution.    

Table 1. Number of nodes 50, Number of edges 

209, Number of Colonies 5, greedy algorithm 

solution value 2038, Calculation Time 1 minutes, 

and communication every 6 sec 
 

Topology Best 

Value 

Average 

Fully Connected 1712 1738.8 

Replace Worst 1701 1725 

Ring. 1660 1729.2 

Ring Switch 1667 1704.6 

Ind. Parallel Runs 1695 1719.2 

Sequential 1730 1749.2 

 

Table 2. Number of nodes 100, Number of edges 

450, Number of Colonies 5, greedy algorithm 

solution value 4548, Calculation Time 1 minutes, 

and communication every 10 sec 
 

Topology Best 

Value 

Average 

Fully Connected 1735 1747 

Replace Worst 1701 1730.6 

Ring. 1672 1722.6 

Ring Switch 1673 1712.4 

Ind. Parallel Runs 1699 1719.8 

 

Table 3. Number of nodes 100, Number of edges 

450, Number of Colonies 5, greedy algorithm 

solution value 4548, Calculation Time 2 minutes, 

and communication every 10 sec 
 

Topology Best 

Value 

Average 

Fully Connected 3470 3521.6 

Replace Worst 3493 3519 

Ring. 3464 3516.8 

Ring Switch 3464 3503.6 

Ind. Parallel Runs 3503 3540 

Sequential 3542 3583.4 

 

Table 4. Number of nodes 100, Number of edges 

450, Number of Colonies 10, greedy algorithm 

solution value 4548, Calculation Time 2 minutes, 

and communication every 20 sec 
 

Topology Best 

Value 

Average 

Fully Connected 3462 3502.8 

Replace Worst 3499 3524.8 

Ring. 3499 3507.8 

Ring Switch 3460 3491 

Ind. Parallel Runs 3493 3505.8 
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Table 5. Number of nodes 150, Number of edges 

450, Number of Colonies 5, greedy algorithm 

solution value 6782, Calculation Time 4 minutes, 

and communication every 30 sec 
 

Topology Best 

Value 

Average 

Fully Connected 5672 5763.2 

Replace Worst 5634 5735.6 

Ring. 5601 5726. 

Ring Switch 5643 5738.8 

Ind. Parallel Runs 5746 5735.6 

Sequential 5788 5852.6 
 

Table 6. Number of nodes 150, Number of edges 

450, Number of Colonies 5, greedy algorithm 

solution value 6782, Calculation Time 4 minutes, 

and communication every 30 sec 
 

Topology Best 

Value 

Average 

Fully Connected 5779 5823 

Replace Worst 5800 5836.6 

Ring. 5786 5821.4 

Ring Switch 5765 5804 

Ind. Parallel Runs 5754 5788.2 
 

We first observe the solution quality for the smaller 

case with 50 nodes, Table 1. We wish to point out 

that all the parallel implementation gave better 

quality solutions then the sequential algorithm. The 

main reason for this is that the sequential algorithm 

started stagnating relatively early in the solution 

search process. If we used shorter execution time, 

the difference between the sequential and the 

parallel algorithms would have been smaller. 

     In the small problem case, the fully connected 

approach gave poor results compared to other 

topologies. This can be explained by the fact that the 

search started focusing on some bad initial solution, 

in some runs.  On the other hand, focusing all the 

colonies on one good solution was not needed 

because of the relatively small solution space. We 

can notice that keeping the diversity of the search in 

the small problem case was of great importance as 

the results indicate that the bigger the diversity of 

the search, the better the final solution was. 

     In the case of the bigger problem, the focusing of 

the search gave better results because the focused 

area was big enough for different colonies not to 

search over the same regions. All the topologies that 

used intensified searches near good solutions gave 

similar results. Due to the larger solution space, the 

parallel independent runs lost its advantage to these 

methods but still gave good results.  

     Our second set of tests where on testing the effect 

of increasing the number of colonies from 5 to 10 

and using the same calculation time. In the small 

problem case (Tables 1, 2) the increase was a bad 

step and did not improve the quality of results. This 

can be explained by the relatively small solution 

space and because of the fact that colonies would be 

exploring the same areas. In the case of medium 

sized problems (Tables 3, 4) results where similar, 

but slightly better with a higher number of colonies. 

Finally, in large problem cases (Tables 5, 6) the 

increase of the number of cooperating colonies 

significantly worsened the solution quality even 

getting it near to the sequential algorithm. In this 

case, we believe that the problem was that none of 

the colonies had sufficient time for improving 

solutions with intensive search near good solutions. 

Instead, just a wide range of areas was poorly tested. 

This indicates that depending of the problem in 

question, there is an optimal proportion between the 

number of colonies and the time or equivalent 

number of iterations dedicated to each colony.   

     In our tests, the ring switch algorithm we 

proposed has calculated, on average, the best results. 

The ring switch algorithm has performed somewhat 

worse in the case from Table 5. We expect that this 

is a consequence of a relatively small number of 

tests conducted and consider it a statistical error. 

The good performing of ring switch can be 

explained by qualities of this algorithm. First, 

diversity of the search is not quickly lost because no 

solutions found so far are overwritten and 

disregarded. This is its advantage to algorithms that 

focus the search near good solutions like fully 

connected, replace worst and ring. The effect of the 

exchange still moves the search of the colony cluster 

in a good direction and is not kept in the same areas 

as in parallel independent runs. We can observe 

what happens in each of the two colonies A and B 

affected by the exchange. Let us say that the colony 

A has had a better best-so-far solution  than colony 

B. After the exchange, B will have a solution better 

than before and in the worst case, in later iterations 

after enough pheromone has been  deposited, search 

the same area as colony A had before the exchange. 

In the case of colony A that has gotten a solution 

worse than the one it head before, it is possible for it 

to end up searching the same space as colony B 

before the exchange, after a high enough number of 

iterations. This is, however, not a very likely 

consequence of the exchange for this colony. The 

individual ants search paths do not directly depend 

on best-so-far solution but from the pheromone trail.  

This trail will slowly change from the good solution 

trail (from colony A) to a worse trail (colony B) and 
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in this period it is highly likely for some ant to find a 

solution that has better quality than colony B had at 

the beginning. 

 

 

5   Conclusion 
We used our previously developed framework [15] 

to create software for conducting tests. We 

compared the effect of different parallel algorithms 

for the MWVCP. We have confirmed that, similar to 

the case of the TSP, the simple use of parallel 

independent runs is a good approach. In small 

problem cases it was even better that other, more 

complicated topologies like fully connected, replace 

worst and the ring. In larger problem cases, this 

advantage has been lost, but the results were still of 

good quality. We also introduced a variation of the 

algorithm corresponding to the ring topology. In this 

variation instead of overwriting lower quality 

solutions an exchange was conducted between 

neighboring colonies. This proved to be a good 

choice because the diversity did not quickly 

disappear and the search of the colony cluster was 

moving towards areas with better solutions. In our 

tests, ring and ring switch algorithms gave the best 

results with ring switch being slightly better.  

     We implemented the parallelization through the 

use of threads on a Windows platform. Even in the 

case of parallelization simulated by Windows on a 

single processor the results were better than when 

using a sequential algorithm.  

     In further research, we wish to adopt and 

implement the suspicion path removal hybridization 

used on the TSP to this problem.   
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