
Noname manuscript No.
(will be inserted by the editor)

A Mixed Integer Program for Partitioning Graphs with
Supply and Demand Emphasizing Sparse Graphs

Raka Jovanovic · Stefan Voß

Received: date / Accepted: date

Abstract The focus of this paper is on finding optimal solutions for the problem
of maximal partitioning of graphs with supply and demand (MPGSD) for arbitrary
graphs. A mixed integer programming (MIP) model is developed for the problem of
interest. We also present some specific constraints that can be used in the case of tree
graphs. With the goal of lowering the computational cost for solving the underlying
model, a preprocessing stage is included. It is used to produce additional constraints
based on shortest paths in the graph. With the aim of exploring the effectiveness of the
proposed MIP formulation we have performed computational experiments for general
graphs and trees. The main objective of the tests is to observe the properties and
sizes of supply/demand graphs that can be solved to optimality using the proposed
approach in reasonable time. The conducted computational experiments have shown
that the proposed method is especially suitable for sparse graphs.

Keywords Mixed Integer Programming · Graph Partitioning · Demand Vertex ·
Supply Vertex

1 Introduction

Up to now literature on the problem of maximal partitioning of graphs with sup-
ply/demand (MPGSD) has mainly focused on theoretical properties. This is well
documented in the following works: [1–5]. Moreover, recent research has consid-
ered heuristics and metaheuristics for the problem, as can be found in [6–8]. Another

Raka Jovanovic
Qatar Environment and Energy Research Institute (QEERI), Hamad bin Khalifa University, PO Box 5825,
Doha, Qatar, E-mail: rjovanovic@qf.org.qa

Stefan Voß
Institute of Information Systems, University of Hamburg, Von-Melle-Park 5, 20146 Hamburg, Germany,
E-mail: stefan.voss@uni-hamburg.de
and Escuela de Ingenieria Industrial, Pontificia Universidad Católica de Valparaı́so, Chile

2 Raka Jovanovic, Stefan Voß

direction of research on the MPGSD is exploring different variations of the original
problem. Examples are a parametric version [9–11], supply capacity limitations[12]
and its extension by including edge capacities and flows [3,13,14]. To the best of our
knowledge, one of the missing links in literature, up to now, is some mathematical
programming formulation.

In this paper we focus on the development of such a formulation for the MPGSD
suitable for general graphs. It is important to mention that a major focus on investigat-
ing the MPGSD was for special graph classes like trees, as it is well reflected in more
theoretical elaborations like [1–3] but also in the numerical studies on heuristics like
[6–8]. Moreover, the tree structure of a solution allows to define specific constraints
for the MIP, reflecting certain properties of this type of graphs. The effect of using
such constraints and their effectiveness is also analyzed in this article.

One of the most important contributions of MIP formulations for the problem
of interest is the possibility of finding confirmed optimal solutions for arbitrary sup-
ply/demand graphs. The availability of problem instances with known optimal solu-
tions is essential for effective development of advanced metaheuristics. In the exist-
ing literature, such problem instances exist but they are acquired using a randomized
method for generating problem instances with known optimal solutions [6–8]. Al-
though such approaches attempt to provide purely random graphs (general or of a
specific type) they often have some unintentional correlations.

With the goal of evaluating the proposed MIP formulations we have implemented
the MIP in CPLEX and applied it to problem instances from literature. Our compu-
tational experiments show that it is possible to find optimal solutions for graphs of
significant size.

2 Maximal Partitioning of Graphs With Supply/Demand

The MPGSD is defined for an undirected graph G = (V, E) with a set of nodes V and
a set of edges E (an illustration of the MPGSD is given in Figure 1). The set of nodes
V is split into two disjunct subsets Vs and Vd. Each node u ∈ Vs is called supply
vertex and has a corresponding positive integer value sup(u). Elements of the second
subset v ∈ Vd are called demand vertices and have a corresponding positive integer
value sup(v). The goal is to find a partitioning Π = {S 1, S 2, .., S n} of the graph G
that satisfies the following constraints. All the subgraphs in Π must be connected and
contain only a single distinct supply node. As a result we have |Vs| = n. Each of the S i

must have a supply greater or equal to its total demand. Each demand vertex can be
an element of only one subgraph, or in other words, it can only receive ‘power’ from
one supply vertex through the edges of G. The goal is to maximize the fulfillment of
demands, or more precisely to maximize the following sum.

∑
S∈Π

∑
v∈S∩Vd

dem(v) (1)

A MIP for Partitioning Graphs with Supply and Demand Emphasizing Sparse Graphs 3

while the following constraints are satisfied for all S i ∈ Π∑
v∈S i∩Vs

sup(v) ≥
∑

v∈S i∩Vd

dem(v) (2)

S i ∩ S j = ∅ , i , j (3)
S i is connected (4)

Fig. 1 Examples of problem instances for the MPGSD. Square nodes represent supply nodes and circles
demand nodes. Numbers within the nodes correspond to supply and demand values, respectively. The right
side shows solutions, where the same color (or connected shaded set) of nodes indicates they are a part of
the same subgraph.

3 Mixed Integer Program

In this section we present a MIP formulation for the MPGSD. Initially a basic model
is presented, which is then adapted to exploit the sparsity of a graph. Further, we
include a simple preprocessing stage which is used to create a new set of variables
for the problem. As will be seen, the preprocessing stage manages to significantly
decrease the time needed for solving the MIP formulation.

3.1 Supply/Demand Related Constraints

With the goal of a more clear presentation of the MIP formulation for the MPGSD
we first present the input parameters, decision variables and the corresponding con-
straints dedicated to the relation between supply and demand nodes. Later, we intro-
duce the constraints and variables related to the connectivity of individual subgraphs.
We start with the input parameters, which describe the supply demand graph.

4 Raka Jovanovic, Stefan Voß

– n is an integer parameter equal to the total number of nodes in the graph.
– ŝi (i = 1..n) is a positive integer parameter corresponding to the supply value of

node i defined as ŝi = sup(i) for i ∈ Vs, and ŝi = 0 for i < Vs.
– d̂i (i = 1..n) is a positive integer parameter corresponding to the demand value of

node i defined as d̂i = dem(i) for i < Vs, and d̂i = 0 for i ∈ Vs.
– si (i = 1..n) is a binary parameter giving the information if node i is a supply

node, or more formally si ≡ (i ∈ Vs) (i.e., si = 1 if i ∈ Vs and si = 0 if i < Vs).

The next step is defining the necessary decision variables as follows: xi j ≡ (i ∈
Ŝ j) (i, j = 1..n). xi j is a binary variable indicating if node i is an element of the
subgraph Ŝ j represented by node j. Note that Ŝ j is not the same as the subgraphs S i

given in the definition of MPGSD. By using Ŝ j we have a simpler notation in the MIP
formulation since we can index supply and demand nodes jointly. The unnecessary
additional variables corresponding to subgraphs represented by demand nodes, are
easily removed by the automated preprocessing stage based on the model constraints.
Such a stage is a part of most standard MIP solvers like CPLEX. Now we can specify
the MIP formulation for the MPGSD without the connectivity constraint as follows:

Maximize
∑

i, j=1..n

d̂ixi j (5)

subject to
xii = si (i = 1..n) (6)

xi j − 1 + si ≤ 0 (i, j = 1..n : i , j) (7)
xi j ≤ s j (i, j = 1..n) (8)∑

j=1..n

xi j ≤ 1 (i = 1..n) (9)∑
i=1..n

ŝixi j −
∑

i=1..n

d̂ixi j ≥ 0 (j = 1..n) (10)

xi j ∈ {0, 1} (i, j = 1..n) (11)

The goal of the proposed formulation is to maximize the sum given in (5) indi-
cating the covered demand. In it xi j = 1 states that node i is contained in one of the
subgraphs. The constraints given in (6) and (7) are used to make sure a supply node
j is only a part of subgraph Ŝ j. In this way symmetries are also avoided. Constraints
(8) are used to fix the value of the unnecessary variables connected with subgraphs
having a demand node as a representative to 0, or in other words makes sure that
subgraphs Ŝ i with a demand representative node have no nodes inside. The fact that
a demand node can only be in one subgraph is ensured by (9). Constraint (10) states
that the supply must be greater or equal to the total demand in a subgraph.

3.2 Subgraph Connectivity Constraints

To fully specify the MIP model for the MPGSD we also need to guarantee that each of
the subgraphs is connected. To do so we need to have input parameters corresponding

A MIP for Partitioning Graphs with Supply and Demand Emphasizing Sparse Graphs 5

to the graph’s edges. This can be done using the standard adjacency matrix as follows:

ai j ≡ ((i, j) ∈ E) (i, j = 1..n) (12)

In practice – unless the graph G is very dense – it is advantageous to define the MIP
using the set of edges E. In the proposed formulation we use this type of definitions,
or in other words the set of edges E will be an input parameter. For practical purposes,
although G is an undirected graph, it is more convenient to use directed edges in the
MIP formulation, or in other words for each (i, j) ∈ E we will add two edges (i, j) and
(j, i) to the edge set. To be able to verify the connectivity of a subgraph, we will define
auxiliary binary decision variables ei jk that state if edge (i, j) is a part of subgraph Ŝ k.
We will say that edge (i, j) is in Ŝ k if i, j ∈ Ŝ k. Formally,

ei jk ≡ (i ∈ Ŝ k) ∧ (j ∈ Ŝ k) ∧ (sk = 1) ((i, j) ∈ E, k = 1..n) (13)

The values of ei jk can be specified using the following linear constraints:

ei jk ≤ sk ((i, j) ∈ E, k = 1..n) (14)
ei jk ≤ xik ((i, j) ∈ E, k = 1..n) (15)
ei jk ≤ x jk ((i, j) ∈ E, k = 1..n) (16)

ei jk ≥ xik + x jk + sk − 2 ((i, j) ∈ E, k = 1..n) (17)

Using the newly defined decision variables ei jk we can define additional con-
straints guaranteeing the connectivity within subgraphs. Due to the significant re-
search dedicated to solving the MPGSD for trees we shall first present constraints
that are specific for this type of graphs. Such constraints can be defined for each of
the subgraphs by exploiting the fact that a connected subgraph of a tree is also a tree:∑

i=1..n

xik −
1
2

∑
(i, j)∈E

ei jk = sk (k = 1..n) (18)

Eq. (18) is based on the fact that in any tree with a vertex set V and edge set E the
relation |V | = |E| + 1 is satisfied. In the same equation sk is used instead of 1, so the
constraint would also be applicable for empty subgraphs related to demand nodes.
The factor 1

2 is added since each edge is counted twice (once for each direction).
In case of general graphs defining connectivity constraints is more complex. One

of the standard methods of ensuring graph connectivity in a MIP formulation is by
introducing flow variables [15]. In the proposed mathematical model for MPGSD this
concept will be adopted. In case of the problem of interest, this type of formulation
needs to be extended to the setting of multiple subgraphs, whose structures are de-
pendent on the decision variable. The general idea is to set the supply node in each of
the subgraphs as a source of the flow, and check if the flow has reached all the nodes
in the subgraph. To do this a flow variable fi jk is defined for each edge (i, j) ∈ E and
subgraph Ŝ k. All the flow variables are positive integer numbers. The value of fi jk in-
dicates how much flow is moved from node i to node j in subgraph Ŝ k. Using the new

6 Raka Jovanovic, Stefan Voß

decision variables the connectivity can be guaranteed using the following constraints:

fi jk − Mei jk ≤ 0 ((i, j) ∈ E), k = 1..n) (19)
fi j j = 0 ((i, j) ∈ E) : s j = 1) (20)∑

i=1..n

xik −
∑

i=1..n

fkik = 1 (k = 1..n : sk = 1) (21)∑
i=1..n

fi jk −
∑

i=1..n

f jik ≥ x jk (j, k = 1..n : sk = 1 ∧ s j = 0) (22)∑
i=1..n

fi jk ≥ x jk (j, k = 1..n : sk = 1) (23)

Constraints (19) guarantee that flow is only allowed through edges that are inside
subgraph Ŝ k (M represents a sufficiently large number). Eq. (20) and (21) specify the
flow properties of the supply node. To be specific, (20) states that there is no input
flow entering the source node, and (21) states that the total flow out of node j is equal
to the number of demand nodes in the subgraph (|Ŝ j| − 1). Constraints (22) are used
to ensure that each node that receives flow consumes at least one unit of it. The final
constraint states that each node in a subgraph has an input flow at least equal to 1.

3.3 Preprocessing

In the previous two subsections a complete MIP for the MPGSD is given. To be ex-
act, the definition consists in the maximization of (5), based on the decision variables
xi j, ei jk and fi jk, corresponding input parameters and the constraints given in (6)-(10),
(14)-(17), (19)-(23). In general a MIP formulation having the same set of constraints
may be more effective in case it has a lower number of decision variables. As previ-
ously mentioned, in the presented formulation many of the decision variables xi j can
be removed, e.g. all those representing subgraphs having demand nodes as represen-
tatives. To be exact, instead of defining variables xi j over the set {1, .., n} × {1, .., n},
they can be defined over the following set

X = {(i, j) | (i ∈ V) ∧ (j ∈ Vs)} (24)

The set X can be also used to create a restriction of the edge set for defining variables
ei jk and fi jk. In practice this change produces a less significant decrease in computa-
tional time, needed for solving the MPGSD in a standard MIP solver like CPLEX,
than expected. This is due to the fact that such variables are automatically removed
by software of this type in the preprocessing stage.

In this section a new set of constraints is defined that manages to remove a large
number of decision variables. More precisely, the decision variables xi j correspond-
ing to supply/demand node pairs for which it is impossible to be a part of any feasible
solution are removed. The idea is that a demand node i cannot be covered by a supply
node j because it is “too far from it.” To be exact, the demand node i cannot be in a
subgraph with a supply node j if the sum of all demands on the shortest path between

A MIP for Partitioning Graphs with Supply and Demand Emphasizing Sparse Graphs 7

i and j is greater than sup(j). Using this idea we can add an additional binary input
parameter pi j (i, j = 1..n) precalculated in the following way:

dist(i, j) =
∑

k∈S V(i, j),k, j

dem′(k) (i ∈ V, j ∈ Vs) (25)

pi j ≡ (dist(i, j) ≤ sup(j)) (26)

In Eq. (25), function dem′(i) is an extended version of the dem in which dem′(j) =

M, where M is a sufficiently large number, for j ∈ Vs. In the same equation S V(i, j) is
the set of nodes on the path with a minimal weight connecting i and j. The values of
the dist(i, j), and as a consequence the values of pi j, can be calculated using Dijkstra’s
algorithm. The MIP model can now be extended by the following constraint:

xi j ≤ pi j (i, j = 1..n) (27)

In practical implementations the additional constraint will not be used but a restricted
set of decision variables xi j, which is defined over the following set.

X′ = {(i, j) | ((i, j) ∈ X) ∧ (dist(i, j) ≤ sup(j))} (28)

Our tests have shown that this preprocessing stage has a computational cost ne-
glectable compared to solving the MIP. The set X′ can also be used to restrict the
number of variables of types ei jk and fi jk. That is, instead of defining these variables
over the set {1, .., n} × {1, .., n} × {1, .., n} they will be defined over the following set:

T = {(i, j, k) | ((i, j) ∈ E) ∧ ((i, k) ∈ X′) ∧ ((j, k) ∈ X′)} (29)

4 Results

In this section, we present the results of the performed computational experiments
based on the proposed MIP formulation for the MPGSD. The model has been imple-
mented using IBM ILOG CPLEX Optimization Studio Version: 12.6.1.0, and exe-
cuted using the default solver settings. The calculations have been done on a machine
with 2 Intel(R) Xenon(R) CPU 3.30 GHz, 96GB of DDR3-1333 RAM, running on
Microsoft Windows 7 Professional 64-bit. In all the implemented models we have
used a sparse representation of the decision variables xi j, ei jk and fi jk, as presented in
the previous section. The tests have been performed on the same data sets as in [8,6]
(which can be downloaded from http://mail.ipb.ac.rs/˜rakaj/home/graphsd.htm). The
test data consists of 24 different graph sizes having 2-100 supply nodes and 6-2000
demand nodes, and for each size there are 40 different problem instances. There are
two such data sets, one for general graphs and one for trees. Note that the used general
graphs are relatively sparse.

The goal of the conducted tests is to explore the limits, in the sense of graph
properties and size, of the proposed MIP formulations for finding optimal solutions.
Further, we also aim to evaluate the effectiveness of the previously presented prepro-
cessing procedure and the tree-specific connectivity constraints. The results of our
computational experiments can be seen in Tables 1 and 2 for trees and general graphs,

8 Raka Jovanovic, Stefan Voß

respectively. The notation for the columns is as follows: GEN - flow-based connectiv-
ity constraints, TRE-P - tree-specific connectivity constraints combined with prepro-
cessing, GEN-P - GEN combined with preprocessing. All times are in milliseconds.

Table 1 Comparison of computational times for the different MIP formulations for trees.

Demand Average Median Maximal
nodes GEN TRE-P GEN-P GEN TRE-P GEN-P GEN TRE-P GEN-P

2 Supply nodes

6 15 16 19 10 10 10 78 51 90
10 25 34 29 20 20 20 74 113 130
20 53 83 57 30 38 30 273 282 274
40 84 160 138 68 103 70 343 424 350

5 Supply nodes

15 30 29 21 21 20 20 244 240 62
25 50 126 87 40 71 31 270 342 318
50 333 260 215 348 292 202 544 637 471
100 492 562 437 497 493 434 786 1232 1091

10 Supply nodes

30 62 68 44 50 31 30 271 302 272
50 202 225 153 141 264 93 462 439 377
100 792 793 490 717 621 503 1549 1956 852
200 1958 3993 1438 1790 2778 1187 5421 35186 5910

25 Supply nodes

75 317 190 100 263 261 60 563 394 302
125 1126 783 454 1050 606 423 2113 2621 796
250 6792 11509 2129 5394 6556 1731 18185 62775 10654
500 - - 15252 - - 9279 - - 88598

50 Supply nodes

150 897 348 217 889 351 152 1472 1079 400
250 4400 2008 882 4280 1536 749 9335 8034 1805
500 70907 - 9339 57412 - 5086 346809 - 72544
1000 - - - - - - - - -

100 Supply nodes

300 3562 515 342 3447 490 384 5498 877 544
500 30960 6630 1852 28472 4678 1728 89122 26093 4204
1000 - - 65634 - - 38839 - - 305700
2000 - - - - - - - - -

In case of both graph types we observe the average, median and maximal time
for finding the optimal solution for all the problem instances in one graph size. In the
results we have only considered graph sizes for which optimal solutions have been
found for all the test instances within a time limit of 600 seconds.

In case of tree graphs we have compared the performance of MIP formulations
based on the flow approach to graph connectivity with and without the use of prepro-
cessing. In Table 1 we have also included results when using the tree-specific con-

A MIP for Partitioning Graphs with Supply and Demand Emphasizing Sparse Graphs 9

Table 2 Comparison of computational times for the different MIP formulations for general graphs.

Demand Average Median Maximal
Nodes GEN GEN-P GEN GEN-P GEN GEN-P

2 Supply nodes

6 57 38 30 20 260 250
10 188 95 220 50 320 338
20 329 234 376 192 539 634
40 543 504 538 526 786 731

5 Supply nodes

15 187 111 132 66 383 375
25 1547 1141 919 702 9286 6399
50 8573 6925 5832 5153 29474 27048
100 8401 7740 5889 5413 24814 26972

10 Supply nodes

30 632 341 588 360 1203 643
50 - 39439 - 26114 - 164163
100 - - - - - -
200 - - - - - -

25 Supply nodes

75 68667 3533 37314 1402 527270 14985
125 - - - - - -
250 - - - - - -
500 - - - - - -

50 Supply nodes

150 - 31452 - 16538 - 260955
250 - - - - - -
500 - - - - - -
1000 - - - - - -

100 Supply nodes

300 - 98181.8 - 61098 - 540174
500 - - - - - -
1000 - - - - - -
2000 - - - - - -

nectivity constraint (instead of flow-based) combined with the preprocessing stage.
Note that in the results given in Table 1, the presented times only correspond to the
time needed to solve the MIP. To be more precise the preprocessing time is excluded,
since it was neglectable compared to solving the MIP. As it can be seen from the
results in Table 1, the MIP formulation is very suitable for solving MPGSD on trees.
It manages to solve almost all the problem instances to optimality. The decrease of
computational time achieved by adding the preprocessing stage is substantial in case
of all but the smallest graphs. The speedup reaches even up to ten times in case of
the largest graphs. The tree-specific constraints have produced results worse than the
flow-based approach for connectivity. Even in combination with the preprocessing
stage the tree-specific model scales poorly, and often performed worse than the flow-
based approach without preprocessing.

10 Raka Jovanovic, Stefan Voß

In case of general graphs the proposed MIP model is significantly less effective
and for a wide range of problem instances does not manage to find optimal solutions.
A similar positive effect of using the preprocessing stage has been exhibited as in
the case of trees. It is important to point out that the proposed MIP formulation is
most suitable for graphs having a low ratio of the number of demand nodes over the
number of supply nodes (|Vd |/|Vs|). In case of the tested data it made it possible to
solve all the test instances having this ratio equal to 3. In case of trees the formulation
was able to handle all instances with this ratio equal to 10.

Another important observation about the computational times for finding optimal
solutions is that it is highly dependent on the specific problem instance in case of both
trees and general graphs. The difference between the median and maximal calculation
time is significant. For a notable number of graph sizes it is increased more than three
times, and in some cases even more than ten times.

In certain cases, the proposed MIP approach manages to outperform the ant colony
optimization algorithm presented in [6]. The greatest advantage is in case of trees
having the ratio |Vd |/|Vs| = 3, where GEN-P manages to find optimal solutions in
all the cases for execution times lower or similar to the ones given for ACO [6] in
which not all of them are discovered. The advantage even grows with the increase of
the number of supply nodes. For instance, in case of graphs with 100 supply and 300
demand nodes GEN-P manages to find all the optimal solutions within 13.6 seconds
while ACO in 120 finds only 17. By observing the results in [6], it is noticeable that
for small (2,5 supply nodes) general and tree graphs the proposed MIP is advanta-
geous to ACO. It is important to point out that this is not an exact comparison due to
the differences in the computational experiments. In case of larger problem instances,
especially for general graphs, the scaling of execution time for ACO is much better
and it frequently manages to find optimal solutions. For example, in case of general
graphs having 10/200 supply/demand nodes ACO manages to find all the optimal
solutions within 60 seconds while MIP did not even in 24000.

5 Conclusion

In this paper we have presented a MIP formulation for the MPGSD. Our computa-
tional experiments have shown that its use is very efficient in case of trees and graphs
having a low ratio of |Vs|/|Vd |. In such cases it is even more efficient than the ant
colony optimization approach given in [6]. In the future we plan to explore the effec-
tiveness of using a MIP formulation for the different variations of the MPGSD. We
also intend to explore the potential of incorporating the presented MIP formulation
into a hybrid metaheuristic for solving large scale problem instances.

References

1. Narayanaswamy, N.S., Ramakrishna, G.: Linear time algorithm for tree t-spanner in outerplanar
graphs via supply-demand partition in trees. In: CoRR. (2012) abs/1210.7919.

2. Ito, T., Zhou, X., Nishizeki, T.: Partitioning trees of supply and demand. International Journal of
Foundations of Computer Science 16(4) (2005) 803–827

A MIP for Partitioning Graphs with Supply and Demand Emphasizing Sparse Graphs 11

3. Kawabata, M., Nishizeki, T.: Partitioning trees with supply, demand and edge-capacity. IEICE Trans-
actions 96-A(6) (2013) 1036–1043

4. Ito, T., Demaine, E.D., Zhou, X., Nishizeki, T.: Approximability of partitioning graphs with supply
and demand. Journal of Discrete Algorithms 6(4) (2008) 627 – 650

5. Ito, T., Zhou, X., Nishizeki, T.: Partitioning trees of supply and demand. Lecture Notes in Computer
Science 2518 (2002) 612–623

6. Jovanovic, R., Tuba, M., Voß, S.: An ant colony optimization algorithm for partitioning graphs with
supply and demand. Technical report (2014)

7. Popa, A.: Modelling the power supply network - hardness and approximation. Lecture Notes in
Computer Science 7876 (2013) 62–71

8. Jovanovic, R., Bousselham, A., Voß, S.: A heuristic method for solving the problem of partitioning
graphs with supply and demand. Annals of Operations Research (2015)

9. Morishita, S., Nishizeki, T.: Parametric power supply networks. Lecture Notes in Computer Science
7936 (2013) 245–256

10. Morishita, S., Nishizeki, T.: Parametric power supply networks. Journal of Combinatorial Optimiza-
tion 29(1) (2015) 1–15

11. Lin, M., Li, W., Feng, Q.: Parameterized minimum cost partition of a tree with supply and demand.
Lecture Notes in Computer Science 9130 (2015) 180

12. Jovanovic, R., Bousselham, A., Voß, S.: Partitioning of supply/demand graphs with capacity limita-
tions: an ant colony approach. Journal of Combinatorial Optimization (2015)

13. Inoue, K., Nishizeki, T.: Spanning distribution forests of graphs. Lecture Notes in Computer Science
9130 (2014) 117–127

14. Kawabata, M., Nishizeki, T.: Spanning distribution trees of graphs. IEICE Transactions on Informa-
tion and Systems 97(3) (2014) 406–412

15. Morgan, M., Grout, V.: Finding optimal solutions to backbone minimisation problems using mixed
integer programming. In: Proceedings of the 7th International Network Conference (INC 2008).
(2008) 53–64

