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Abstract: - Ant colony optimization (ACO) has previously been applied to the Minimum Weight Vertex Cover 

Problem with very good results. The performance of the ACO algorithm can be improved with the use of 

different variations of the basic Ant Colony System algorithm, like the use of Elitism, Rank based approach and 

the MinMax system. In this paper, we have made an analysis of effectiveness of these variations applied to the 

Minimum Weight Vertex Covering Problem for different problem cases. This analysis is done by the 

observation of several properties of acquired solutions by these algorithms like best found solution, average 

solution quality, dispersion and distribution of solutions.   
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1   Introduction 
One of the classical graph theory problems is the 

Minimal Vertex Cover Problem. The problem is 

defined for an undirected graph G = (V, E). V is the 

set of vertexes and E is a set of edges. A vertex 

covering of a graph is set of vertexes V’V that has 

the property that for every edge e(v1,v2)E at least  

one of v1,v2   is an element of V’. A minimal vertex 

cover is a vertex covering that has a minimal 

number of vertexes. In this paper we devote our 

attention to an extension of this problem named the 

Minimum Weight Vertex Cover Problem (MWVCP) 

in which weights are added to the vertexes. The 

solution is not the vertex covering with a minimal 

number of vertexes but with a minimal sum of 

weights.  

     A large number of real life problems could be 

converted to this form.  An example is the optimal 

positioning of garbage disposal facilities. Every area 

needs to be covered by a garbage disposal facility, 

but not all potential positions are equal.  It has been 

shown that this problem is NP-complete even when 

it is restricted to a unit-weighted planar graph with 

the maximum vertex degree of three [1].  The vertex 

cover is one of the core NP-complete problems that 

are frequently used for proof of NP-hardness of 

newly established ones. In the same way as for many 

other NP-complete problems, finding the optimal 

solutions is very time consuming and, in larger 

problem cases, even impossible in realistic time. 

Because of this, varieties of different methods have 

been presented for calculating near optimal 

solutions. The first method is a greedy heuristic 

approach of collecting the vertex with the smallest 

ratio between its weight and degree [2], [3]. Degree 

of vertex is the number of edges that have it as a 

member. This problem has also been solved by the 

use of more complex method genetic algorithms [4]. 

     Ant colony optimization is a meta-heuristic 

inspired by the behavior of ants used for solving 

optimization problems. Ant colonies are able to find 

the shortest possible path between their nest and a 

food source, this is done by the cooperation of the 

ants in the colony. Each ant starts from the nest and 

walks toward food. It moves until an intersection 

where it decides which path it will take. In the 

beginning it seems as a random choice but after 

some time the majority of ants are using the optimal 

path. This is achieved by using pheromone. Each ant 

deposits pheromone while walking which marks the 

rout taken. The amount of pheromone indicates the 

usage of a certain route. Pheromone trail evaporates 

as time passes. Due to this a shorter path will have 

more of it because it will have less time to evaporate 

before it is deposited again. The colony behaves 

intelligently   because each ant chooses paths that 

have more pheromone.  

     Dorigo first used the simulations of ant colony 

for on the Traveling Salesman Problem and defined 

the new meta heuristic [5]. This method has been 
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successfully used on a wide variety of problems 

since then. The use of ant colony optimization 

(ACO) gave very good results when applied to the 

MWVCP. The results acquired by ACO where better 

that the ones calculated by genetic algorithms and 

local search methods like tabu search, and simulated 

annealing [6].  

    One of the methods of improving the efficiency of 

ACO is the use of different variations of the basic 

algorithm. It has been shown that for some problems 

variations of ACO gave results of different quality 

[7]. Because of this, we have decided to analyze the 

implementation details and effect of different Ant 

colony optimization algorithms like Ant Colony 

system, the use of Elitism, Rank Based Ant colony 

systems and the MinMax approach to MWVCP. In 

this paper we will compare several different aspects 

of performance of these variations. 

     This paper is organized as follows. In Section 2 

we give an mathematical definition of the MWVCP. 

In Section 3 we present the implementation of ACO 

for this problem. In Section 4 we show the 

implementation details of ACO algorithm variations. 

In Section 5, we analyze and compare experimental 

results of the use of different variations of ACO on 

several problem instances.  

 

 

2 Mathematical Definition of MWVCP 
In this section we define the MWVCP in strict 

mathematical terms, through its integer linear 

programming form. Linear programming is a 

procedure for finding the maximum or minimum of 

a linear function where the arguments are subject to 

linear constraints. This type of formulation is a very 

good guideline for software implementation of 

problems. For the MVCP we accept the formulation 

that was presented in article [8]: 
 

      Let G = (V, E) be an undirected graph, where 
 

{1,2,.., }

{( , ) | , }

V n

E i j i j V



 
 (1) 

 

V is the set of vertexes and E is the set of edges. Let 

m = |E| and n = |V| be the number of edges and 

vertexes respectively. Let A = n x m be the vertex-

edge incidence matrix of G. The cells of matrix A 

are defined in the following way: 

 

1 ,if edge  is incident to vertex 

0 ,otherwise
ij

j i
a


 


 (2) 

 

In addition, we introduce a cost function to the 

vertex set, :w V N , which corresponds to the 

weights of the initial graph G. With the given 

definitions, the MWVCP can now be described by 

the following integer linear programming 

formulation: 

 

Minimize 
1

( )
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w i x
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3   ACO for the MWVCP 
The use of ACO has proven to be effective on 

various types of problems from Economic Load 

Dispatch [9], Scheduling problems [10], even image 

processing[11], and its use has been also very 

efficient on MWVCP. The MWVCP is in two main 

aspects different than most of the problems solved 

using ACO. To illustrate this, for comparison we 

will use the Traveling Salesman Problem (TSP).  In 

the TSP our solution is an array of all the cities 

appearing in the problem, or in other words the 

solution is the permutation of the set of cities. In the 

case of MWVCP the solution is a subset of the graph 

vertexes set, in which the order is unimportant. In 

TSP, our heuristic function is static in the sense that 

it represents the distance between cities and does not 

change during the calculation of the path.  Opposite 

to this, for the MWVCP the heuristic function is the 

ratio between the weight and the degree of a vertex, 

which is dynamic. The degree of a vertex changes as 

we add new vertexes to the solution set because 

more edges become covered. We wish to point out 

that ACO with a dynamic heuristic and a solution 

that consists of a subset instead of a permutation   

have been also used for solving the set partitioning 

[12], maximum independent set [13] and maximum 

clique [14] problems.   

     These two differences affect the basic algorithm 

in two directions.  First, ants leave the pheromone 

on vertexes instead of on edges and second, we 

dynamically update the graph, and with it, the 

heuristic function. The first step in solving these 

problems is representing the problem in a way that 

makes dynamic calculation of the heuristic function 

simple.  

      Since ants in their search can move from a 

vertex to any other vertex, it is natural to use a fully 

connected graph Gc(V,Ec)  derived from G. In the 

articles [6], [5] it is proposed to add weights to 
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edges in the new graph Gc. If an edge exists in G it is 

given the weight 1, or 0 if it does not exist in the 

original graph. We have adopted this approach, 

which is illustrated by Fig.1.   

 
Fig. 1 Expansion to the fully connected graph 

 

As we mentioned before we also have to update this 

graph as we add new vertexes to the result set. This 

is done using the following rule: when we add 

vertex a, weights of all edges in Gc  that are 

connected to a, are set to 0. This is illustrated by  

Fig. 2.  

 
Fig. 2 Adding a vertex to the solution set 

 

Now we can define Gk (V,Eck,) as the state of the 

graph after k vertexes have been added to the 

solution set, and a corresponding functions in 

Equation 3: 

 

( , ) ( ( , ))k cki j Value E i j   (3) 

 

This update rule has two roles. First, we can 

dynamically evaluate the preference of vertexes with 

function ψκ. The second role is that it gives us the 

information when all edges have been covered, or 

more precisely, if the total sum of edge weights in 

Gk is 0 then all edges are covered. Now we can 

define a dynamic heuristic 

 

( , )
( , )

( )

c
ki j E

jk

i j
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 (4) 

 

In Equation 4 w(j) is the weight of a vertex. Using 

the heuristic defined with ηjk  in Equation 4 we can 

setup the state transition rule for ants: 

 

0

0

0

1 , & arg max

0 , & arg max

,

k

k

k

i ik
i A

k

j i ik
i A

j jk

j iki A

q q j

p q q j

q q







 

 

 

 










 



  






 
(5) 

 

In Equation 5 q0 is the standard parameter that 

specifies the exploitation/exploration rate of 

individual ant searches. that appears in ACO. q is a 

random variable that decides the type of selection on 

each step. Ak is a list of available vertexes. We point 

out that opposite to the TSP transition rule it does 

not depend on the last selected vertex that is why we 

have τi instead of τij. 

      To fully specify an Ant Colony System we still 

have to define a global (when an ant finishes its 

path) and a local (when an ant chooses a new vertex) 

update rules. The role of the global update rule is to 

make paths creating better solutions to become more 

desirable, or in other words, it intensifies 

exploitation.  

 
1

,
( )

i

j V

i V
w j




  


  (6) 

 
(1 )i i ip      

(7) 

 

Equation 6 defines the global update rule. In it Δτι  is 

a quality measure of  solution subset V’ that contains 

vertex i, and with it we define an global update rule 

in Equation 5. This measure is inverse proportional 

to the weight of a solution. Parameter p is used to set 

the influence of newly found solution on the 

pheromone trail.  

     The local update rule purpose is to shuffle 

solutions and to prevent all ants from using very 

strong vertexes. The idea is to make vertexes less 

desirable as more ants visit them. In this way, 

exploration is supported. The formula for the local 

update rule has the standard form  
 

0(1 )i i       (8) 
 

For the value of t0 we take the quality measure of the 

solution acquired with the greedy algorithm when 

we select the vertex with the best ration of vertex 
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degree and weight.  Parameter φ is used to specify 

the strength of the local update rule.     

 

 

4 Variations of ACO for MWVCP 
There are different methods of improving ACO like 

certain types of hybridizations. Standard 

hybridizations are the combination of the basic 

algorithm with a local search [15] or some genetic 

algorithm [16]. These hybridizations are effective in 

increasing the efficiency of ACO but are often 

complicated for implementation. The complexity of 

their implementation is due to the fact that to 

separate algorithms need to be developed one for 

ACO and another for the local search or for the 

genetic algorithm.  The other method of improving 

the performance of ACO is the use of different 

variations of the basic algorithm. On TSP different 

variations of ACO gave different quality of results, 

and no variation can be considered the best [7]. That 

is why we have decided to performed a comparative 

assessment of standard variations of ACO on 

MWVCP. The variations mostly differ in the global 

update rule. We present several variations of ACO 

by giving their global update rules. 

     Ant System (AS), is the most basic 

implementation of ACO, in this version of the 

algorithm all ants are equal and leave pheromone. It 

is defined with Equations 9 and 7. In Equation 7 

AntS is the set of all the solutions created by ants in 

the current step of the algorithm. 

  

1
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   Reinforced Ant System (RAS), which is the same 

as Ant system, except that the global best solution is 

reinforced each iteration.  

 

'

1

( )

1

( )

i

gb

k

k

gb i

V Ants

i

j V

V AntS

j V

i V V

w j

w j











  














 (10) 

 

In some variations of this method the iteration best 

solution is also reinforced each iteration. With this 

approach the basic AS is made to be slightly 

greedier.   It is defined with Equations 10 and 7. 

     Elitist Ant System (EAS), In this version of the 

algorithm, individual ants do not automatically leave 

pheromone. In each iterations step of the colony, or 

in other words when all the ant complete their 

solutions, only the global best solution will be used 

to update the  pheromone trail. In this way, the 

search is even more centralized around the global 

best solution.  It is defined with Equations 11 and 7. 

 

1
,

( )
gb

i gb

j V

i V
w j




  


  (11) 

 

     MinMax Ant System (MMAS) is same as the 

Elitist Ant colony System, but with an extra 

constraint that all pheromone values are 

bounded, min max[ , ]i   . We adopt the formulas 

presented in article [17] in which τmax is calculated 

dynamically as new best solutions are found by 

Equation 12, and τmin is calculated at the beginning 

of calculations with Equation 13.  avg is the average 

number of vertexes that are possible to be chosen, 

pbest is the possibility of the best overall solution 

being found and τ0 is the initial value of the 

pheromone trail gotten as the quality measure of the 

greedy algorithm solution.  

 

max

1

(1 )
gb

p
 


  (12) 

  

0

min

(1 )

( 1)

n
best

n
best

p

avg p








 (13) 

 

This variation has two effects that improve the 

effectiveness of EA. First, the pheromone trial will 

not become very strong on some good vertexes and 

making them a part of almost all newly created 

solutions. By giving a lower bound to the 

pheromone trail the potential problem of certain 

parts of the solution being totally excluded from the 

search due to very weak values of pheromone is 

avoided. 

     Rank Based Ant Colony System (RANKAS) 
[18]   in which except the quality we also use the 

rank (R) of found solutions. Rank is defined by the 

quality of the solution compared to solutions found 

by other ants in the same iteration. It is defined with 

Equations 7 and 14: 
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In the implementation of this algorithm, it is 

important how many best solutions will be taken 

into account when updating the pheromone trail. In 

Equation 14 parameter RK is used to define the 

number of best ranked ants who will affect the trail. 

This parameter is user defined. This parameter is 

very important for the effectiveness of this 

algorithm. In its extreme cases when RK is equal to 

0 it is equivalent to EAS. 

 

  

5 Application and Results  
In this section, we present the comparative 

assessment of different variations of ACO. In our 

test, the implementation of an iteration step has been 

done by the use of the following pseudo code. 

 

Reset Graph Info 
Reset Solution for all Ants 
 
 while  (! AllAntsFinished) 
    for All Ants 
       If(Ant Not Finished)      
         begin 
 

           add new vertex A to solution  
           based on   probability 
 

          correct ants covering graph data 
 

          calculate  new heuristic 
 

          local update rule for A 
 

        End If 
     End for 
 End while 
 
  Compute Δτi for variation 
  Compute   τi  
 

     The program for our experiments was written in 

C#, using the framework from article [19]. This 

framework is dot net based and is designed for 

creating windows applications. It is implemented as 

a plug-in system so similar research on the effect of 

different ACO variations can be conducted on other 

problems that could be solved by this method just by 

creating the basic ACO algorithm. We have created 

a plug-in for this system and used existing features 

to conduct our tests. The executable alpha version of 

this software (Fig. 3) and accompanying Microsoft 

Visual Studio project can be downloaded from 

http://mail.phy.bg.ac.yu/~rakaj/home/. All of our 

test have been performed on an Intel(R) 

Core(TM)2Duo CPU E8500 @ 3.16 GHz with 4GB 

of RAM with Microsoft Windows Vista Ultimate 

x64 Edition Version 2007 Service Pack 1.  

     In the tables (1,2,3,4,5,6,7,8,9,10) EAS (Elitist 

Ant Colony System) corresponds to the algorithm 

presented in article [6], in which the efficiency of 

using ant colony optimization on this problem was 

shown. 

 

 
 

 Fig. 3. Graf-Ant software with the plug-in for 

Minimal Weighted Vertex Covering Problem 

 

     We have tested several graphs containing 

different number of edges and vertexes. In each test, 

we have used colonies consisting of 10 ants. The 

exploration rate was q0=0.1, and the influence factor 

of heuristics was   α= 1, evaporation rates where 

φ=0.1, p=0.1. In RANKAS we used RK = 5. For the 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Milan Tuba, Raka Jovanovic

ISSN: 1790-0832 940 Issue 6, Volume 6, June 2009



initial value of the pheromone trail, and  τ0 was 

calculated from the solution gained using the greedy 

algorithm presented in article [3].In MMAS for the 

value of pbest =0.05.   

     For each variation, we conducted 10 separate 

runs. In each test, we set a maximum number of 

possible iterations and compared results obtained up 

to that number of steps. The analysis is done by 

observing the best-found solution, the average 

solution value, dispersion and distribution of 

solutions. The calculation time of each variation of 

ACO is very similar, so we excluded it from the 

analysis instead we use the number of iterations.  

      We generated random problem instances. In 

which weights where randomly selected for vertexes 

from the interval [20, 70]. We used graphs of 25, 50, 

150, 250, 500 vertexes and for each of these sizes, 

we tested two different sets of edges. In the 

algorithm for edge set creation, we would generate n 

edges from each vertex to random vertexes. n was a 

random number between [1, 4] in Tables 1, 3, 5 and 

[1, 10] in Tables 2, 4, 6, 7 and [10-20] in Tables 8, 

10. 

     We first observe the behavior of these methods in 

small problem cases (Tables 1, 2). All ACO 

variations gave the optimal solution, except the two 

most basic AS and RAS. The optimal solution was 

found using a brute force method testing the whole 

solution space. 

 

  Table 1. Number of nodes 25, Number of edges 

71, greedy algorithm solution value 1088, Maximum 

number of iterations 1250 
 

Variation Best 

Value 

Best Value 

Iteration 

Average 

AS 839 696 871.6 

EAS  779 89 834.7 

RAS  787 606 856.3 

RANKAS 779 1120 827.1 

MMAS 779 129 830.6 

 

 

Table 2. Number of nodes 25, Number of edges 

131, greedy algorithm solution value 1135, 

Maximum number of iterations 1250 
 

Variation Best 

Value 

Best Value 

Iteration 

Average 

AS 952 1064 986.7 

EAS  952 21 985.3 

RAS  952 78 994.1 

RANKAS 952 45 957.6 

MMAS 952 34 983.6 

  

For finding the optimal solution, we used a recursive 

method that implements the following pseudo code 
 

OptCover ( startIndex, Connections, Covered,   
       Sum) 
 begin        
 

   if(startIndex >= SizeOfGraph) return;  
 

   if(Sum > BestValue) return;  
 

   if(Covered = SizeOfGraph) 
       begin 
         if (Sum < BestValue) BestValue = Sum; 
         return; 
       end 
  

   Connections1 = Connections; 
   Covered1 = Covered;                   
 

    OptCover( startIndex+1, Connections1,      
                  Covered1, Sum ); 
 

    Connections2 = Connections; 
    Covered2 = Covered; 
 

  UpdateCovering( Connections2,  
                           startIndex, Covered2); 

     Sum1 = Sum + NodeValues[startIndex]; 
 

    OptCover( startIndex + 1,Connections2,  
                     Covered2, Sum1);  
 end 
 
     In larger problem cases, we did not calculate the 

optimal solution due to very long execution time. 

The quality of solution acquired by AS and RAS 

variations was bad in larger problem sizes. In small 

problems in average RANKAS gave the best quality 

of results, but the best solution was found at a higher 

number of iterations than MMAS and EAS.  

     In the medium (Tables 3, 4) and large (Tables 5, 

6, 7, 8, 9, 10) problem cases MMAS and EAS gave 

the best results, with EAS being slightly better. 

 

Table 3. Number of nodes 50, Number of edges 

172, greedy algorithm solution value 2238, 

Maximum number of iterations 2000 

Variation Best 

Value 

Best Value 

Iteration 

Average 

AS 1736 4 1740.1 

EAS  1554 1767 1597.4 

RAS  1716 517 1744.3 

RANKAS 1650 1620 1694.7 

MMAS 1556 235 1589.3 
 

 

     In medium problems RANK preformed slightly 

worse than these variations, but in large cases this 

difference would greatly increase. For problems of 

this size RANK performance was similar to AS and 
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RAS. This could be explained by the very large 

solution space and because of this a need for a more 

focused search. EAS and MMAS have this property 

and because of this give better results. We also wish 

to point out that it is highly possible that if 

significantly longer calculation time were used 

RANKS would have improved its results. We 

believe this is because this variations has a slow 

convergence to optimal solutions but has a lower 

possibility of getting trapped  in local optima.  

 

 

Table 4. Number of nodes 50, Number of edges 

374, greedy algorithm solution value 2238, 

Maximum number of iterations 2000 
 

Variation Best 

Value 

Best Value 

Iteration 

Average 

AS 1861 1329 1918.6 

EAS  1833 298 1876.3 

RAS  1861 127 1885.8 

RANKAS 1833 1583 1872.2 

MMAS 1833 295 1882.2 
 

 

 

Table 5. Number of nodes 150, Number of edges 

562, greedy algorithm solution value 6782, 

Maximum number of iterations 2000 
 

Variation Best 

Value 

Best Value 

Iteration 

Average 

AS 5827 993 5951.2 

EAS  4920 1688 5117.9 

RAS  5760 1476 5912.1 

RANKAS 5694 999 5802.2 

MMAS 5002 1952 5169.2 
 

 

 

Table 6. Number of nodes 150, Number of edges 

1470, greedy algorithm solution value 6834, 

Maximum number of iterations 2000 
 

Variation Best 

Value 

Best Value 

Iteration 

Average 

AS 6303 1606 6354.7 

EAS  5688 1932 5872.5 

RAS  6284 402 6185.8 

RANKAS 6156 624 6230.7 

MMAS 5756 1701 5889.6 

 

 

 

 

Table 7. Number of nodes 250, Number of edges 

970, greedy algorithm solution value 10877, 

Maximum number of iterations 500 
 

Variation Best 

Value 

Best Value 

Iteration 

Average 

AS 9814 370 9961.2 

EAS  8962 458 9259 

RAS  9958 247 10006.4 

RANKAS 9686 111 9761 

MMAS 9106 480 9269.2 

 

 

Table 8. Number of nodes 250, Number of edges 

8399, greedy algorithm solution value 11239, 

Maximum number of iterations 500 
 

Variation Best 

Value 

Best Value 

Iteration 

Average 

AS 10900 364 10968.4 

EAS  10683 441 10747.4 

RAS  10915 3 10957.6 

RANKAS 10882 362 10940.6 

MMAS 10698 328 10763.2 

 

 

Table 9. Number of nodes 500, Number of edges 

18581, greedy algorithm solution value 22395, 

Maximum number of iterations 500 
 

Variation Best 

Value 

Best Value 

Iteration 

Average 

AS 21900 271 21997.6 

EAS  21499 494 21558 

RAS  22014 411 22057.2 

RANKAS 21963 149 22005.4 

MMAS 21462 457 21624 

 

 

Table 10. Number of nodes 500, Number of edges 

50973, greedy algorithm solution value 22626, 

Maximum number of iterations 500 
 

Variation Best 

Value 

Best Value 

Iteration 

Average 

AS 22421 264 22458.8 

EAS  22344 341 22440.4 

RAS  22406 434 22436 

RANKAS 22430 453 22463.6 

MMAS 22410 63 22448.8 
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To better qualify the performance of different 

variations of ACO we also observed the dispersion 

and distribution of solutions obtained by them. As a 

measure of dispersion, we used the standard 

deviation given by the Equation 15  

 

2( )

1

iW W
s

n







 (15) 

 

The results for these properties where very similar 

for all problem cases, because of this we only 

present the data for problems from tables 3 and 6. 

We show the standard deviation in table 11. 

 

 

Table 11. Standard deviation of solutions 
 

Variation Stand. Deviation 

for Table 3 

Stand. Deviation 

for Table 6 

AS 20.7354 22.608 

EAS  47.2912 135.312 

RAS  38.6891 84.3487 

RANKAS 58.5454 58.5454 

MMAS 27.198 37.4019 

 

We first notice that AS and RAS have a small 

deviance, which can be explained by the fact that 

they are trapped in local optima in early steps of the 

algorithm. The better performing variations have 

noticeable greater deviances.  The importance of this 

property is better understood if we observe the 

distribution of the solutions in Fig.  4 and 5. 

     Now we can see the difference in behavior of AS 

and RAS. These two methods give the average 

solution and best solutions of similar quality, but the 

distribution is very different. AS gives us a much 

smaller variety of solutions, than RAS.  

      It is surprising that by reinforcing of the best 

solution the dispersion grows which is opposite to 

the first impression of the effect of focusing the 

search near good solutions. The effect of no or weak 

reinforcement of best iteration solutions and global 

best solution is that, the ants search a wider area 

near the best solutions but when a better solution is 

found, the pheromone trail will not change 

sufficiently.  Because of this, the majority of the ants 

will not move to the area near the newly found best 

solution. This explains the fact that RANKS 

converges to good solutions slower that EAS and 

MMAS but can find better ones. In RANKS the 

reinforcement of the global best is weaker than in 

these two methods, because of this areas around 

each solution are more detailed searched, but it takes 

longer to move to regions around new best solutions.  

 
 

Fig. 4. Distribution of solutions for problem from 

Table 3  AS-filled circles, EAS – empty circles, 

MMAS – filled triangles, RANKAS-empty 

triangles, RAS-filled squares 

 

   

 
 

Fig 5. Distribution of solutions of problem from 

Table 6  AS-filled circles, EAS – empty circles, 

MMAS – filled triangles, RANKAS-empty 

triangles, RAS-filled squares 
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    The last conclusion that we make from the 

analysis of dispersion and distributions is that 

MMAS is a more reliable for acquiring good results 

than EAS. EAS has a greater dispersion than 

MMAS. This means that even if there is a higher 

possibility of getting the best overall solution with 

EAS it is more like to get a good solution with 

MMAS. 

     In practical use, this means if we are going to 

perform a larger number of separate runs to find the 

best solution it is better to use EAS, but in the case 

of a small number of attempts MMAS is a better 

choice.  

 

 

6   Conclusion 
In this paper, we have done an extensive analysis of 

the standard variations of ACO, which are Ant 

System, Reinforced Ant system, Elitist Ant system, 

Min Max Ant System and Rank based Ant System 

on the MWVC problem. To do this we have 

transformed the standard variation formulas to a 

form that could be applied on this problem. We used 

our previously developed framework [19] to create 

software for conducting tests.  Our first observation 

was that the difference in calculation time for all the 

variations was neglect able. We have analyzed 

different aspects of solutions calculated for these 

variations like the best-found solution, average 

solution quality, dispersion and distribution of 

solutions. From our analysis, we came to the 

following conclusions.  

      The two basic algorithms AS and RAS gave 

significantly worst results in all tested cases than the 

other methods and are not a good choice for this 

problem. An overall best variation did not exist but 

it depended on the size of the problem, and the 

available resources. In small problem cases EAS, 

MMAS and RANKS gave good results. RANKS 

gave the best quality of results but it had found them 

in a higher of number iterations than the other two 

methods. In our tests, it has been shown that EAS 

and MMAS gave the best results in large problem 

cases with EAS having slightly better results when 

best solutions and average solution quality were 

compared. When we took into account the 

dispersion and distribution of solutions, we 

concluded that EAS could not be seen as the better 

method than MMAS. This is due to the fact that 

MMAS solutions where less dispersed and because 

of that the method can be considered to be more 

reliable. The choice of which of these two methods 

we shall use depends on our resources if plan to 

conduct a large number of separate runs it is better 

to use EAS, and  if a small number if tests is planed 

MMAS is the better choice. Although RANKS 

preformed worse than EAS and MMAS in our test it 

should not be discarded. By analyzing the tendencies 

in our experiments, we have observed that RANKS 

converges slower than the other two methods but 

can come to better solutions if the calculation time is 

sufficiently long.  

     In further research, we wish to adopt and 

implement the suspicion hybridization for ACO used 

on the TSP[19]. Parallelization of ACO proved to be 

very effective and in some cases even give super 

linear improvement, because of this we wish to 

implement parallel version of ACO on this problem 

and compare the effectiveness of different parallel 

topologies.   
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