
 An Analysis of Different Variations of Ant Colony Optimization

to the Minimum Weight Vertex Cover Problem

 MILAN TUBA RAKA JOVANOVIC

 Faculty of Computer Science Institute of Physics

 Megatrend University Belgrade Belgrade

 Bulevar umetnosti 29, N. Belgrade Pregrevica 118, Zemun

 SERBIA SERBIA

 tubamilan@ptt.rs rakabog@yahoo.com

Abstract: - Ant colony optimization (ACO) has previously been applied to the Minimum Weight Vertex Cover

Problem with very good results. The performance of the ACO algorithm can be improved with the use of

different variations of the basic Ant Colony System algorithm, like the use of Elitism, Rank based approach and

the MinMax system. In this paper, we have made an analysis of effectiveness of these variations applied to the

Minimum Weight Vertex Covering Problem for different problem cases. This analysis is done by the

observation of several properties of acquired solutions by these algorithms like best found solution, average

solution quality, dispersion and distribution of solutions.

Key-Words: - Ant Colony, Minimum Weight Vertex Cover, Optimization Problems, Population Based

Algorithms

1 Introduction
One of the classical graph theory problems is the

Minimal Vertex Cover Problem. The problem is

defined for an undirected graph G = (V, E). V is the

set of vertexes and E is a set of edges. A vertex

covering of a graph is set of vertexes V’V that has

the property that for every edge e(v1,v2)E at least

one of v1,v2 is an element of V’. A minimal vertex

cover is a vertex covering that has a minimal

number of vertexes. In this paper we devote our

attention to an extension of this problem named the

Minimum Weight Vertex Cover Problem (MWVCP)

in which weights are added to the vertexes. The

solution is not the vertex covering with a minimal

number of vertexes but with a minimal sum of

weights.

 A large number of real life problems could be

converted to this form. An example is the optimal

positioning of garbage disposal facilities. Every area

needs to be covered by a garbage disposal facility,

but not all potential positions are equal. It has been

shown that this problem is NP-complete even when

it is restricted to a unit-weighted planar graph with

the maximum vertex degree of three [1]. The vertex

cover is one of the core NP-complete problems that

are frequently used for proof of NP-hardness of

newly established ones. In the same way as for many

other NP-complete problems, finding the optimal

solutions is very time consuming and, in larger

problem cases, even impossible in realistic time.

Because of this, varieties of different methods have

been presented for calculating near optimal

solutions. The first method is a greedy heuristic

approach of collecting the vertex with the smallest

ratio between its weight and degree [2], [3]. Degree

of vertex is the number of edges that have it as a

member. This problem has also been solved by the

use of more complex method genetic algorithms [4].

 Ant colony optimization is a meta-heuristic

inspired by the behavior of ants used for solving

optimization problems. Ant colonies are able to find

the shortest possible path between their nest and a

food source, this is done by the cooperation of the

ants in the colony. Each ant starts from the nest and

walks toward food. It moves until an intersection

where it decides which path it will take. In the

beginning it seems as a random choice but after

some time the majority of ants are using the optimal

path. This is achieved by using pheromone. Each ant

deposits pheromone while walking which marks the

rout taken. The amount of pheromone indicates the

usage of a certain route. Pheromone trail evaporates

as time passes. Due to this a shorter path will have

more of it because it will have less time to evaporate

before it is deposited again. The colony behaves

intelligently because each ant chooses paths that

have more pheromone.

 Dorigo first used the simulations of ant colony

for on the Traveling Salesman Problem and defined

the new meta heuristic [5]. This method has been

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Milan Tuba, Raka Jovanovic

ISSN: 1790-0832 936 Issue 6, Volume 6, June 2009

successfully used on a wide variety of problems

since then. The use of ant colony optimization

(ACO) gave very good results when applied to the

MWVCP. The results acquired by ACO where better

that the ones calculated by genetic algorithms and

local search methods like tabu search, and simulated

annealing [6].

 One of the methods of improving the efficiency of

ACO is the use of different variations of the basic

algorithm. It has been shown that for some problems

variations of ACO gave results of different quality

[7]. Because of this, we have decided to analyze the

implementation details and effect of different Ant

colony optimization algorithms like Ant Colony

system, the use of Elitism, Rank Based Ant colony

systems and the MinMax approach to MWVCP. In

this paper we will compare several different aspects

of performance of these variations.

 This paper is organized as follows. In Section 2

we give an mathematical definition of the MWVCP.

In Section 3 we present the implementation of ACO

for this problem. In Section 4 we show the

implementation details of ACO algorithm variations.

In Section 5, we analyze and compare experimental

results of the use of different variations of ACO on

several problem instances.

2 Mathematical Definition of MWVCP
In this section we define the MWVCP in strict

mathematical terms, through its integer linear

programming form. Linear programming is a

procedure for finding the maximum or minimum of

a linear function where the arguments are subject to

linear constraints. This type of formulation is a very

good guideline for software implementation of

problems. For the MVCP we accept the formulation

that was presented in article [8]:

 Let G = (V, E) be an undirected graph, where

{1,2,.., }

{(,) | , }

V n

E i j i j V

 (1)

V is the set of vertexes and E is the set of edges. Let

m = |E| and n = |V| be the number of edges and

vertexes respectively. Let A = n x m be the vertex-

edge incidence matrix of G. The cells of matrix A

are defined in the following way:

1 ,if edge is incident to vertex

0 ,otherwise
ij

j i
a

 (2)

In addition, we introduce a cost function to the

vertex set, :w V N , which corresponds to the

weights of the initial graph G. With the given

definitions, the MWVCP can now be described by

the following integer linear programming

formulation:

Minimize
1

()
n

i

i

w i x

Subject to
1

1 , 1,..,
n

ij i

i

a x j m

{0,1} , 1,..,ix i n

3 ACO for the MWVCP
The use of ACO has proven to be effective on

various types of problems from Economic Load

Dispatch [9], Scheduling problems [10], even image

processing[11], and its use has been also very

efficient on MWVCP. The MWVCP is in two main

aspects different than most of the problems solved

using ACO. To illustrate this, for comparison we

will use the Traveling Salesman Problem (TSP). In

the TSP our solution is an array of all the cities

appearing in the problem, or in other words the

solution is the permutation of the set of cities. In the

case of MWVCP the solution is a subset of the graph

vertexes set, in which the order is unimportant. In

TSP, our heuristic function is static in the sense that

it represents the distance between cities and does not

change during the calculation of the path. Opposite

to this, for the MWVCP the heuristic function is the

ratio between the weight and the degree of a vertex,

which is dynamic. The degree of a vertex changes as

we add new vertexes to the solution set because

more edges become covered. We wish to point out

that ACO with a dynamic heuristic and a solution

that consists of a subset instead of a permutation

have been also used for solving the set partitioning

[12], maximum independent set [13] and maximum

clique [14] problems.

 These two differences affect the basic algorithm

in two directions. First, ants leave the pheromone

on vertexes instead of on edges and second, we

dynamically update the graph, and with it, the

heuristic function. The first step in solving these

problems is representing the problem in a way that

makes dynamic calculation of the heuristic function

simple.

 Since ants in their search can move from a

vertex to any other vertex, it is natural to use a fully

connected graph Gc(V,Ec) derived from G. In the

articles [6], [5] it is proposed to add weights to

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Milan Tuba, Raka Jovanovic

ISSN: 1790-0832 937 Issue 6, Volume 6, June 2009

edges in the new graph Gc. If an edge exists in G it is

given the weight 1, or 0 if it does not exist in the

original graph. We have adopted this approach,

which is illustrated by Fig.1.

Fig. 1 Expansion to the fully connected graph

As we mentioned before we also have to update this

graph as we add new vertexes to the result set. This

is done using the following rule: when we add

vertex a, weights of all edges in Gc that are

connected to a, are set to 0. This is illustrated by

Fig. 2.

Fig. 2 Adding a vertex to the solution set

Now we can define Gk (V,Eck,) as the state of the

graph after k vertexes have been added to the

solution set, and a corresponding functions in

Equation 3:

(,) ((,))k cki j Value E i j (3)

This update rule has two roles. First, we can

dynamically evaluate the preference of vertexes with

function ψκ. The second role is that it gives us the

information when all edges have been covered, or

more precisely, if the total sum of edge weights in

Gk is 0 then all edges are covered. Now we can

define a dynamic heuristic

(,)
(,)

()

c
ki j E

jk

i j

w j

 (4)

In Equation 4 w(j) is the weight of a vertex. Using

the heuristic defined with ηjk in Equation 4 we can

setup the state transition rule for ants:

0

0

0

1 , & arg max

0 , & arg max

,

k

k

k

i ik
i A

k

j i ik
i A

j jk

j iki A

q q j

p q q j

q q

(5)

In Equation 5 q0 is the standard parameter that

specifies the exploitation/exploration rate of

individual ant searches. that appears in ACO. q is a

random variable that decides the type of selection on

each step. Ak is a list of available vertexes. We point

out that opposite to the TSP transition rule it does

not depend on the last selected vertex that is why we

have τi instead of τij.

 To fully specify an Ant Colony System we still

have to define a global (when an ant finishes its

path) and a local (when an ant chooses a new vertex)

update rules. The role of the global update rule is to

make paths creating better solutions to become more

desirable, or in other words, it intensifies

exploitation.

1

,
()

i

j V

i V
w j

 (6)

(1)i i ip

(7)

Equation 6 defines the global update rule. In it Δτι is

a quality measure of solution subset V’ that contains

vertex i, and with it we define an global update rule

in Equation 5. This measure is inverse proportional

to the weight of a solution. Parameter p is used to set

the influence of newly found solution on the

pheromone trail.

 The local update rule purpose is to shuffle

solutions and to prevent all ants from using very

strong vertexes. The idea is to make vertexes less

desirable as more ants visit them. In this way,

exploration is supported. The formula for the local

update rule has the standard form

0(1)i i (8)

For the value of t0 we take the quality measure of the

solution acquired with the greedy algorithm when

we select the vertex with the best ration of vertex

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Milan Tuba, Raka Jovanovic

ISSN: 1790-0832 938 Issue 6, Volume 6, June 2009

degree and weight. Parameter φ is used to specify

the strength of the local update rule.

4 Variations of ACO for MWVCP
There are different methods of improving ACO like

certain types of hybridizations. Standard

hybridizations are the combination of the basic

algorithm with a local search [15] or some genetic

algorithm [16]. These hybridizations are effective in

increasing the efficiency of ACO but are often

complicated for implementation. The complexity of

their implementation is due to the fact that to

separate algorithms need to be developed one for

ACO and another for the local search or for the

genetic algorithm. The other method of improving

the performance of ACO is the use of different

variations of the basic algorithm. On TSP different

variations of ACO gave different quality of results,

and no variation can be considered the best [7]. That

is why we have decided to performed a comparative

assessment of standard variations of ACO on

MWVCP. The variations mostly differ in the global

update rule. We present several variations of ACO

by giving their global update rules.

 Ant System (AS), is the most basic

implementation of ACO, in this version of the

algorithm all ants are equal and leave pheromone. It

is defined with Equations 9 and 7. In Equation 7

AntS is the set of all the solutions created by ants in

the current step of the algorithm.

1

()

i

k

k

i

V Ants

i V AntS

j V

i V

w j

 (9)

 Reinforced Ant System (RAS), which is the same

as Ant system, except that the global best solution is

reinforced each iteration.

'

1

()

1

()

i

gb

k

k

gb i

V Ants

i

j V

V AntS

j V

i V V

w j

w j

 (10)

In some variations of this method the iteration best

solution is also reinforced each iteration. With this

approach the basic AS is made to be slightly

greedier. It is defined with Equations 10 and 7.

 Elitist Ant System (EAS), In this version of the

algorithm, individual ants do not automatically leave

pheromone. In each iterations step of the colony, or

in other words when all the ant complete their

solutions, only the global best solution will be used

to update the pheromone trail. In this way, the

search is even more centralized around the global

best solution. It is defined with Equations 11 and 7.

1
,

()
gb

i gb

j V

i V
w j

 (11)

 MinMax Ant System (MMAS) is same as the

Elitist Ant colony System, but with an extra

constraint that all pheromone values are

bounded, min max[,]i . We adopt the formulas

presented in article [17] in which τmax is calculated

dynamically as new best solutions are found by

Equation 12, and τmin is calculated at the beginning

of calculations with Equation 13. avg is the average

number of vertexes that are possible to be chosen,

pbest is the possibility of the best overall solution

being found and τ0 is the initial value of the

pheromone trail gotten as the quality measure of the

greedy algorithm solution.

max

1

(1)
gb

p

 (12)

0

min

(1)

(1)

n
best

n
best

p

avg p

 (13)

This variation has two effects that improve the

effectiveness of EA. First, the pheromone trial will

not become very strong on some good vertexes and

making them a part of almost all newly created

solutions. By giving a lower bound to the

pheromone trail the potential problem of certain

parts of the solution being totally excluded from the

search due to very weak values of pheromone is

avoided.

 Rank Based Ant Colony System (RANKAS)
[18] in which except the quality we also use the

rank (R) of found solutions. Rank is defined by the

quality of the solution compared to solutions found

by other ants in the same iteration. It is defined with

Equations 7 and 14:

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Milan Tuba, Raka Jovanovic

ISSN: 1790-0832 939 Issue 6, Volume 6, June 2009

{ | (())

()}

1

()

(()) 1

()

i

gb

k k

gb i

V BRank

i

j V

V BRank j V

BRank V R V RK

V AntS

i V V

w j

RK R V

RK w j

(14)

In the implementation of this algorithm, it is

important how many best solutions will be taken

into account when updating the pheromone trail. In

Equation 14 parameter RK is used to define the

number of best ranked ants who will affect the trail.

This parameter is user defined. This parameter is

very important for the effectiveness of this

algorithm. In its extreme cases when RK is equal to

0 it is equivalent to EAS.

5 Application and Results
In this section, we present the comparative

assessment of different variations of ACO. In our

test, the implementation of an iteration step has been

done by the use of the following pseudo code.

Reset Graph Info
Reset Solution for all Ants

 while (! AllAntsFinished)
 for All Ants
 If(Ant Not Finished)
 begin

 add new vertex A to solution
 based on probability

 correct ants covering graph data

 calculate new heuristic

 local update rule for A

 End If
 End for
 End while

 Compute Δτi for variation
 Compute τi

 The program for our experiments was written in

C#, using the framework from article [19]. This

framework is dot net based and is designed for

creating windows applications. It is implemented as

a plug-in system so similar research on the effect of

different ACO variations can be conducted on other

problems that could be solved by this method just by

creating the basic ACO algorithm. We have created

a plug-in for this system and used existing features

to conduct our tests. The executable alpha version of

this software (Fig. 3) and accompanying Microsoft

Visual Studio project can be downloaded from

http://mail.phy.bg.ac.yu/~rakaj/home/. All of our

test have been performed on an Intel(R)

Core(TM)2Duo CPU E8500 @ 3.16 GHz with 4GB

of RAM with Microsoft Windows Vista Ultimate

x64 Edition Version 2007 Service Pack 1.

 In the tables (1,2,3,4,5,6,7,8,9,10) EAS (Elitist

Ant Colony System) corresponds to the algorithm

presented in article [6], in which the efficiency of

using ant colony optimization on this problem was

shown.

 Fig. 3. Graf-Ant software with the plug-in for

Minimal Weighted Vertex Covering Problem

 We have tested several graphs containing

different number of edges and vertexes. In each test,

we have used colonies consisting of 10 ants. The

exploration rate was q0=0.1, and the influence factor

of heuristics was α= 1, evaporation rates where

φ=0.1, p=0.1. In RANKAS we used RK = 5. For the

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Milan Tuba, Raka Jovanovic

ISSN: 1790-0832 940 Issue 6, Volume 6, June 2009

initial value of the pheromone trail, and τ0 was

calculated from the solution gained using the greedy

algorithm presented in article [3].In MMAS for the

value of pbest =0.05.

 For each variation, we conducted 10 separate

runs. In each test, we set a maximum number of

possible iterations and compared results obtained up

to that number of steps. The analysis is done by

observing the best-found solution, the average

solution value, dispersion and distribution of

solutions. The calculation time of each variation of

ACO is very similar, so we excluded it from the

analysis instead we use the number of iterations.

 We generated random problem instances. In

which weights where randomly selected for vertexes

from the interval [20, 70]. We used graphs of 25, 50,

150, 250, 500 vertexes and for each of these sizes,

we tested two different sets of edges. In the

algorithm for edge set creation, we would generate n

edges from each vertex to random vertexes. n was a

random number between [1, 4] in Tables 1, 3, 5 and

[1, 10] in Tables 2, 4, 6, 7 and [10-20] in Tables 8,

10.

 We first observe the behavior of these methods in

small problem cases (Tables 1, 2). All ACO

variations gave the optimal solution, except the two

most basic AS and RAS. The optimal solution was

found using a brute force method testing the whole

solution space.

 Table 1. Number of nodes 25, Number of edges

71, greedy algorithm solution value 1088, Maximum

number of iterations 1250

Variation Best

Value

Best Value

Iteration

Average

AS 839 696 871.6

EAS 779 89 834.7

RAS 787 606 856.3

RANKAS 779 1120 827.1

MMAS 779 129 830.6

Table 2. Number of nodes 25, Number of edges

131, greedy algorithm solution value 1135,

Maximum number of iterations 1250

Variation Best

Value

Best Value

Iteration

Average

AS 952 1064 986.7

EAS 952 21 985.3

RAS 952 78 994.1

RANKAS 952 45 957.6

MMAS 952 34 983.6

For finding the optimal solution, we used a recursive

method that implements the following pseudo code

OptCover (startIndex, Connections, Covered,
 Sum)
 begin

 if(startIndex >= SizeOfGraph) return;

 if(Sum > BestValue) return;

 if(Covered = SizeOfGraph)
 begin
 if (Sum < BestValue) BestValue = Sum;
 return;
 end

 Connections1 = Connections;
 Covered1 = Covered;

 OptCover(startIndex+1, Connections1,
 Covered1, Sum);

 Connections2 = Connections;
 Covered2 = Covered;

 UpdateCovering(Connections2,
 startIndex, Covered2);

 Sum1 = Sum + NodeValues[startIndex];

 OptCover(startIndex + 1,Connections2,
 Covered2, Sum1);
 end

 In larger problem cases, we did not calculate the

optimal solution due to very long execution time.

The quality of solution acquired by AS and RAS

variations was bad in larger problem sizes. In small

problems in average RANKAS gave the best quality

of results, but the best solution was found at a higher

number of iterations than MMAS and EAS.

 In the medium (Tables 3, 4) and large (Tables 5,

6, 7, 8, 9, 10) problem cases MMAS and EAS gave

the best results, with EAS being slightly better.

Table 3. Number of nodes 50, Number of edges

172, greedy algorithm solution value 2238,

Maximum number of iterations 2000

Variation Best

Value

Best Value

Iteration

Average

AS 1736 4 1740.1

EAS 1554 1767 1597.4

RAS 1716 517 1744.3

RANKAS 1650 1620 1694.7

MMAS 1556 235 1589.3

 In medium problems RANK preformed slightly

worse than these variations, but in large cases this

difference would greatly increase. For problems of

this size RANK performance was similar to AS and

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Milan Tuba, Raka Jovanovic

ISSN: 1790-0832 941 Issue 6, Volume 6, June 2009

RAS. This could be explained by the very large

solution space and because of this a need for a more

focused search. EAS and MMAS have this property

and because of this give better results. We also wish

to point out that it is highly possible that if

significantly longer calculation time were used

RANKS would have improved its results. We

believe this is because this variations has a slow

convergence to optimal solutions but has a lower

possibility of getting trapped in local optima.

Table 4. Number of nodes 50, Number of edges

374, greedy algorithm solution value 2238,

Maximum number of iterations 2000

Variation Best

Value

Best Value

Iteration

Average

AS 1861 1329 1918.6

EAS 1833 298 1876.3

RAS 1861 127 1885.8

RANKAS 1833 1583 1872.2

MMAS 1833 295 1882.2

Table 5. Number of nodes 150, Number of edges

562, greedy algorithm solution value 6782,

Maximum number of iterations 2000

Variation Best

Value

Best Value

Iteration

Average

AS 5827 993 5951.2

EAS 4920 1688 5117.9

RAS 5760 1476 5912.1

RANKAS 5694 999 5802.2

MMAS 5002 1952 5169.2

Table 6. Number of nodes 150, Number of edges

1470, greedy algorithm solution value 6834,

Maximum number of iterations 2000

Variation Best

Value

Best Value

Iteration

Average

AS 6303 1606 6354.7

EAS 5688 1932 5872.5

RAS 6284 402 6185.8

RANKAS 6156 624 6230.7

MMAS 5756 1701 5889.6

Table 7. Number of nodes 250, Number of edges

970, greedy algorithm solution value 10877,

Maximum number of iterations 500

Variation Best

Value

Best Value

Iteration

Average

AS 9814 370 9961.2

EAS 8962 458 9259

RAS 9958 247 10006.4

RANKAS 9686 111 9761

MMAS 9106 480 9269.2

Table 8. Number of nodes 250, Number of edges

8399, greedy algorithm solution value 11239,

Maximum number of iterations 500

Variation Best

Value

Best Value

Iteration

Average

AS 10900 364 10968.4

EAS 10683 441 10747.4

RAS 10915 3 10957.6

RANKAS 10882 362 10940.6

MMAS 10698 328 10763.2

Table 9. Number of nodes 500, Number of edges

18581, greedy algorithm solution value 22395,

Maximum number of iterations 500

Variation Best

Value

Best Value

Iteration

Average

AS 21900 271 21997.6

EAS 21499 494 21558

RAS 22014 411 22057.2

RANKAS 21963 149 22005.4

MMAS 21462 457 21624

Table 10. Number of nodes 500, Number of edges

50973, greedy algorithm solution value 22626,

Maximum number of iterations 500

Variation Best

Value

Best Value

Iteration

Average

AS 22421 264 22458.8

EAS 22344 341 22440.4

RAS 22406 434 22436

RANKAS 22430 453 22463.6

MMAS 22410 63 22448.8

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Milan Tuba, Raka Jovanovic

ISSN: 1790-0832 942 Issue 6, Volume 6, June 2009

To better qualify the performance of different

variations of ACO we also observed the dispersion

and distribution of solutions obtained by them. As a

measure of dispersion, we used the standard

deviation given by the Equation 15

2()

1

iW W
s

n

 (15)

The results for these properties where very similar

for all problem cases, because of this we only

present the data for problems from tables 3 and 6.

We show the standard deviation in table 11.

Table 11. Standard deviation of solutions

Variation Stand. Deviation

for Table 3

Stand. Deviation

for Table 6

AS 20.7354 22.608

EAS 47.2912 135.312

RAS 38.6891 84.3487

RANKAS 58.5454 58.5454

MMAS 27.198 37.4019

We first notice that AS and RAS have a small

deviance, which can be explained by the fact that

they are trapped in local optima in early steps of the

algorithm. The better performing variations have

noticeable greater deviances. The importance of this

property is better understood if we observe the

distribution of the solutions in Fig. 4 and 5.

 Now we can see the difference in behavior of AS

and RAS. These two methods give the average

solution and best solutions of similar quality, but the

distribution is very different. AS gives us a much

smaller variety of solutions, than RAS.

 It is surprising that by reinforcing of the best

solution the dispersion grows which is opposite to

the first impression of the effect of focusing the

search near good solutions. The effect of no or weak

reinforcement of best iteration solutions and global

best solution is that, the ants search a wider area

near the best solutions but when a better solution is

found, the pheromone trail will not change

sufficiently. Because of this, the majority of the ants

will not move to the area near the newly found best

solution. This explains the fact that RANKS

converges to good solutions slower that EAS and

MMAS but can find better ones. In RANKS the

reinforcement of the global best is weaker than in

these two methods, because of this areas around

each solution are more detailed searched, but it takes

longer to move to regions around new best solutions.

Fig. 4. Distribution of solutions for problem from

Table 3 AS-filled circles, EAS – empty circles,

MMAS – filled triangles, RANKAS-empty

triangles, RAS-filled squares

Fig 5. Distribution of solutions of problem from

Table 6 AS-filled circles, EAS – empty circles,

MMAS – filled triangles, RANKAS-empty

triangles, RAS-filled squares

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Milan Tuba, Raka Jovanovic

ISSN: 1790-0832 943 Issue 6, Volume 6, June 2009

 The last conclusion that we make from the

analysis of dispersion and distributions is that

MMAS is a more reliable for acquiring good results

than EAS. EAS has a greater dispersion than

MMAS. This means that even if there is a higher

possibility of getting the best overall solution with

EAS it is more like to get a good solution with

MMAS.

 In practical use, this means if we are going to

perform a larger number of separate runs to find the

best solution it is better to use EAS, but in the case

of a small number of attempts MMAS is a better

choice.

6 Conclusion
In this paper, we have done an extensive analysis of

the standard variations of ACO, which are Ant

System, Reinforced Ant system, Elitist Ant system,

Min Max Ant System and Rank based Ant System

on the MWVC problem. To do this we have

transformed the standard variation formulas to a

form that could be applied on this problem. We used

our previously developed framework [19] to create

software for conducting tests. Our first observation

was that the difference in calculation time for all the

variations was neglect able. We have analyzed

different aspects of solutions calculated for these

variations like the best-found solution, average

solution quality, dispersion and distribution of

solutions. From our analysis, we came to the

following conclusions.

 The two basic algorithms AS and RAS gave

significantly worst results in all tested cases than the

other methods and are not a good choice for this

problem. An overall best variation did not exist but

it depended on the size of the problem, and the

available resources. In small problem cases EAS,

MMAS and RANKS gave good results. RANKS

gave the best quality of results but it had found them

in a higher of number iterations than the other two

methods. In our tests, it has been shown that EAS

and MMAS gave the best results in large problem

cases with EAS having slightly better results when

best solutions and average solution quality were

compared. When we took into account the

dispersion and distribution of solutions, we

concluded that EAS could not be seen as the better

method than MMAS. This is due to the fact that

MMAS solutions where less dispersed and because

of that the method can be considered to be more

reliable. The choice of which of these two methods

we shall use depends on our resources if plan to

conduct a large number of separate runs it is better

to use EAS, and if a small number if tests is planed

MMAS is the better choice. Although RANKS

preformed worse than EAS and MMAS in our test it

should not be discarded. By analyzing the tendencies

in our experiments, we have observed that RANKS

converges slower than the other two methods but

can come to better solutions if the calculation time is

sufficiently long.

 In further research, we wish to adopt and

implement the suspicion hybridization for ACO used

on the TSP[19]. Parallelization of ACO proved to be

very effective and in some cases even give super

linear improvement, because of this we wish to

implement parallel version of ACO on this problem

and compare the effectiveness of different parallel

topologies.

References:

[1] Karp, R.M.. Reducibility Among Combinatorial

Problems. In R.E. Miller and J.W. Theater,

Complexity of Computer Computations, New

York: Plenum Press, 1972

[2] Chvatal, V., A Greedy-Heuristic for the Set

Cover Problem. Mathematics of Operations

Research, Vol.4, 1979, pp. 233–235.

[3] Clarkson, K.L., A Modification of the Greedy

Algorithm for Vertex Cover, Information

Processing Letters, Vol. 16, 1983, pp. 23–25.

[4] Ashok Kumar Gupta, Alok Singh, A Hybrid

Heuristic for the Minimum Weight Vertex Cover

Problem, Asia-Pacific Journal of Operational

Research, 2006, vol. 23, No 2, pp 273-285

[5] Dorigo M, Maniezzo V: Ant Colony system:

Optimization by a colony of cooperating agents,

IEEE Transactions on Systems, Man and

Cybernetics - Part B Vol. 26, No.1, 1996, pp. 29-

41

 [6] Shyong Jian Shyu, Peng-Yeng Yin, Bertrand

M.T. Lin, An Ant Colony Optimization

Algorithm for the Minimum Weight Vertex

Cover Problem, Annals of Operations Research,

Vol.131, 2004, pp. 283–304,

[7] D.Asmar ,A. Elshamli, S. Areibi, A Comparative

Assessment of ACO Algorithms Within a TSP

Environment. In DCDIS: 4th International

Conference on Engineering Applications and

Computational Algorithms, Guelph, Ontario,

Canada , July 2005.

[8] R. Garey and D. Johnson, Computers and

Intractability, A Guide to the Theory of NP-

Completeness W.H. Freeman and Company, San

Francisco, 1979.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Milan Tuba, Raka Jovanovic

ISSN: 1790-0832 944 Issue 6, Volume 6, June 2009

 [9] Vlachos Aristidis, An Ant Colony Optimization

(ACO) algorithm solution to Economic Load

Dispatch (ELD) problem. WSEAS Transactions

On Systems, Vol 5, No 8, pp. 1763 – 1771, 2006

[10] Kolahan, F., Abachizadeh, M., Soheili, S, A

comparison between Ant colony and Tabu search

algorithms for job shop scheduling with

sequence-dependent setups, WSEAS Transac-

tions on Systems, Vol. 12, 2006, pp. 2819-2824

[11] Mastorakis, N.E., Zhuang, X, Image processing

with the artificial swarm intelligence, WSEAS

Transactions on Computers, Vol 4, No. 4, 2005,

pp. 333-341

[12] Broderick Crawford, Carlos Castro, Ant

Colonies using Arc Consistency Techniques for

the Set Partitioning Problem, Professional

Practice in Artificial Intelligence, Springer

Boston, 2006, pp. 295-301

[13] Youmei Li, Zongben Xul, An ant colony

optimization heuristic for solving maximum

independent set problems, Proceedings of the 5th

International Conference on Computational

Intelligence and Multimedia Applications, 2003

pp: 206 – 211

[14] Serge Fenet, Christine Solnon, Searching for

Maximum Cliques with Ant Colony

Optimization, Applications of Evolutionary

Computing, Springer Berlin / Heidelberg, 2003,

pp. 291-302

[15] Y.J Feng, Z.R. Feng, Ant colony system

hybridization with simulated annealing for flow-

shop scheduling problems. WSEAS Transaction

on Business and Economics, Vol. 1, No. 1, 2004,

p. 133-138

[16] Hong-hao Zuo, Fan-lun Xiong, Time Ant

Colony Algorithm with Genetic Algorithms,

Information Acquisition, IEEE International

Conference on Volume , Issue , 20-23 Aug.

2006, pp. 1057 - 1061

[17] T. Stützle et H.H. Hoos, MAX MIN Ant

System, Future Generation Computer Systems,

Vol. 16, 2000, pp. 889-914

[18] B. Bullnheimer, R. F. Hartl, and C Strauss. A

new rank-based version of the ant system: a

computational study, Central European Journal

for Operations Research and Economics, Vol.7

No.1, 1999, p. 25-38,

 [19] Raka Jovanovic, Milan Tuba, Dana Simian,

An Object-Oriented Framework with

Corresponding Graphical User Interface for

Developing Ant Colony Optimization Based

Algorithms, WSEAS Transactions on Computers,

Vol. 7, No. 12, 2008, pp. 1948 – 1957

Acknowledgment: The research was

supported by the Ministry of Science, Republic of

Serbia, Projects no. 144007 and 141031

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Milan Tuba, Raka Jovanovic

ISSN: 1790-0832 945 Issue 6, Volume 6, June 2009

