
An Efficient Ant Colony Optimization Algorithm for
the Blocks Relocation Problem

Raka Jovanovic

Qatar Environment and Energy Research Institute (QEERI), Hamad bin Khalifa

University, PO Box 5825, Doha, Qatar

Milan Tuba

Graduate School of Computer Science, John Naisbitt University, Bulevar umetnosti 29,
Belgrade, Serbia

Stefan Voß1

Institute of Information Systems, University of Hamburg, Von-Melle-Park 5, 20146
Hamburg, Germany

and Escuela de Ingenieria Industrial, Pontificia Universidad Católica de Valparáıso, Chile

Abstract

In this paper we present an ant colony optimization (ACO) algorithm for the Blocks Relocation

Problem (BRP). The method is applied to both versions of the problem most commonly

considered in literature, i.e., the restricted (rBRP) and the unrestricted (uBRP) BRP with

distinct due dates. In case of the uBRP a new heuristic is proposed and incorporated in a

standard greedy algorithm. The performance of the basic greedy approach is enhanced by

extending it to the ACO metaheuristic. In it, a novel approach for defining the pheromone

matrix is proposed. More precisely, it only stores a small amount of information instead of the

complete bay state. Further, we show that the proposed ACO method can easily be adapted

for solving the BRP in which the objective function is related to the crane operation time.

Our computational results show that the proposed approach manages to outperform existing

methods for the BRP.

Keywords: heuristics, maritime shipping, blocks relocation problem, stowage plan,

heuristics, ant colony optimization

Email address: stefan.voss@uni-hamburg.de (Stefan Voß)

Preprint submitted to European Journal of Operational Research September 4, 2018

1. Introduction

In the recent decades an unprecedented growth of international trade has

occurred. The vast majority of it is carried out by the international shipping

industry through container terminals. The main function of these terminals

is to serve as transshipment and temporary storage points, which are used for

unloading containers from very large transport vessels and transferring them to

smaller vessels, vehicles or trains for further distribution, and in the opposite

direction. Due to the enormous amount of goods passing through container

terminals, an increase in efficiency can imply considerable financial savings and a

decrease in energy consumption and consequently positive environmental effects.

One of the main issues at container terminals is the limited space used for

storage. As a consequence, containers are piled up at the container yard in such

a way to increase the space utilization, more precisely by using block stacking

(Kim and Hong, 2006). Inside the port the majority of the energy consumption

is for stacking operations (68 %) and horizontal transport of containers by,

e.g., tractors (30 %) (Wilmsmeier et al., 2014). The loading and unloading

operations are directly related to the stacking and indirectly to the horizontal

container transport. The speed of these operations is also essential for the time

a vessel needs to spend docked, and is a standard measure of efficiency of a

port. Because of this, a significant amount of research has been dedicated to

the problem of minimizing the number of relocations of containers inside the

port. For this practical problem several different models have been developed

like the Blocks Relocation Problem (BRP), the Re-Marshalling Problem (RMP),

i.e. intra-block marshalling, and the Pre-Marshalling Problem (PMP) (Caserta

et al., 2011a; Steenken et al., 2004; Lehnfeld and Knust, 2014).

Recently, a noteworthy research effort has been dedicated to the BRP. The

initial version of the BRP has been adapted in several ways to better represent

the real-world problem. This relates to different objective functions (Lee and

Lee, 2010; Zhu et al., 2010; Hussein and Petering, 2012b; da Silva Firmino

et al., 2016; Schwarze and Voß, 2015), sets of constraints (Caserta et al., 2012;

2

Petering and Hussein, 2013; Expósito-Izquierdo et al., 2014; Zhu et al., 2010),

three dimensional yards (Lee and Lee, 2010), an on-line version (Wan et al.,

2009; Tang et al., 2015; Borjian et al., 2013), existence of uncertainties (Borjian

et al., 2013; Zehendner et al., 2017; Ku and Arthanari, 2016), etc. Although

being more versatile, the basic concept for solving most of these models is taken

from methods developed for the original BRP.

Examples of exact methods using integer programming include Wan et al.

(2009); Caserta et al. (2012); Petering and Hussein (2013); Zehendner et al.

(2015). Other methods for finding optimal solutions are based on branch-and-

bound (Kim and Hong, 2006; Tanaka and Takii, 2016; Zhu et al., 2012) and A*

(Zhu et al., 2012; Expósito-Izquierdo et al., 2014) algorithms. Due to the NP-

hardness of the problem (Caserta et al., 2012) such methods have a limit in the

size of the problem instances that can be solved in time limits deemed practical.

Because of this, a wide range of methods has been developed for finding near

optimal solutions for the BRP and its variations.

In case of the BRP, and the closely related PMP, the use of different greedy

algorithms has proven to be successful (Zhang, 2000; Murty et al., 2005; Wu

and Ting, 2012; Ünlüyurt and Aydın, 2012; Jovanovic et al., 2017; Expósito-

Izquierdo et al., 2012). The performance of these types of approaches has been

improved by incorporating different look-ahead mechanisms (Jovanovic and Voß,

2014; Petering and Hussein, 2013; Caserta et al., 2009; Jin et al., 2015). Alter-

native heuristics include the use of a tree search (Forster and Bortfeldt, 2012)

and a domain-specific knowledge-based algorithm (Expósito-Izquierdo et al.,

2014). Moreover, a wide range of metaheuristics has been applied to the BRP,

including beam-search (Wu and Ting, 2012; Nishi and Konishi, 2010), the cor-

ridor method (Caserta et al., 2011b), genetic algorithms (Hussein and Petering,

2012a), etc.

The ant colony optimization (ACO) (Dorigo and Gambardella, 1997) meta-

heuristic has been successfully applied for optimizing a wide range of port op-

erations. Some examples are the optimization of the container load sequencing

(Lee et al., 2005), the container stacking problem (Ndiaye et al., 2014), load-

3

ing of individual containers (Zhang and Du, 2011), berth allocation (Sun et al.,

2010), etc. In case of problems related to loading/unloading operations of con-

tainers, ACO has only been applied to the PMP (Tus et al., 2015). One of

the main reasons for the lack of research in this direction is the difficulty of

defining the pheromone matrix as the commonly used heuristic functions are

related to different states of the bay whose number is enormous. In Tus et al.

(2015), in case of the PMP, this has been resolved by the dynamic allocation of

the pheromone matrix. One drawback of this approach is the loss of simplic-

ity of implementation of the ACO, which is one of its main advantages. Note

that in many cases the simplicity of implementation of ACO algorithms is also

reflected in the reduced computational complexity; one such example is Sreeja

and Sankar (2015).

In this paper we focus on developing an ACO method that avoids this prob-

lem. To make this possible we use an alternative formulation of the candidate list

that is used in the related greedy algorithms. Further, a new direct heuristic for

the BRP is defined which is suitable for use in the ACO transition rule. Finally,

a novel approach to defining the pheromone matrix is presented. The main idea

is to have the matrix in form of a multidimensional array, having a small number

of dimensions, that only stores a small but important amount of information

about the bay state. We show that ACO using this type of pheromone matrix

can easily be extended to the BRP in which the objective function is related to

the crane operation. Computational experiments show that the proposed ACO

method manages to outperform other advanced methods for solving the BRP

in both the quality of found solutions and the computational cost.

The paper is organized as follows. In Section 2, we give the definition of

the BRP. In the next two sections, we present the greedy algorithms for the

restricted and unrestricted version of the BRP. In Section 5 we give details of

the proposed ACO algorithm. In the next section we show how the proposed

ACO method can be extended to the BRP where the objective function is

related to crane operation time. The following section provides results of our

computational experiments and Section 8 concludes the paper.

4

2. Definition of the BRP

We present the BRP using the standard formulation. In it all containers are

of the same size and the problem setting is as follows.

• The yard bay will be viewed as a two dimensional stacking array with W

stacks and a maximal allowed height (number of tiers) H. Stacks will be

used for the set of all stacks in the yard bay.

• There is a total of N containers in the bay with each container c having

a designated unique due date having a value from 1 to N .

• The initial configuration of the yard bay is known in advance. We use the

notation s(c)/t(c) to indicate the stack/tier of container c in the yard bay.

• Only containers from the top of a stack can be accessed (retrieved or

relocated).

• When a container is retrieved, it is removed from the bay.

• Only the container c with the lowest due date can be retrieved.

• A container can only be relocated on top of other containers or on the

ground (tier 0) of the yard bay.

The objective of the BRP is to minimize the number of relocations needed to

retrieve all the containers from the yard bay. Alternatively, we consider the min-

imization of the crane operation time as an objective. In this paper we consider

two versions of the problem: the restricted BRP (rBRP) and the unrestricted

BRP (uBRP). The uBRP corresponds to the previously given formulation. The

rBRP includes the following additional constraint.

• (RES) The relocation operations (movement of containers within the bay)

are only allowed for containers which are above the target container t (t

has the minimal value of the due date) currently being retrieved, which

means no look-ahead or pre-marshalling. Note that throughout the paper

5

Figure 1: An illustration of the problem setting of the BRP.

we shall be using the notation t to indicate that a container is a target

container.

An illustration of the BRP can be seen in Fig. 1.

3. Outline of the Greedy algorithm for the rBRP

In this section we give an outline of the greedy algorithm for the rBRP with

unique due dates. In it the order of retrieving containers is known in advance.

With the intention of having a simpler notation, as we are solving the BRP with

unique due dates, c will be used for the due date and the container itself. We

use the term target container for the container that is currently being retrieved

(i.e. the one with the lowest due date). As only containers on top of stacks can

be accessed, in some cases the retrieval cannot be performed until obstructing

containers are relocated. Here we use the term obstructing for containers that

are above the target container. In greedy algorithms for the rBRP the only

heuristic h that needs to be defined is used for selecting a relocation stack S for

an obstructing container c.

The basic greedy algorithm for solving the rBRP can be seen in Algorithm

1. The algorithm iteratively retrieves containers one by one. This is done

by first relocating each of the obstructing containers, from the top of the stack

6

Algorithm 1 Pseudocode for the greedy algorithm for rBRP

while Bay not empty do

Select target container t having the minimal due date

while t not on top of stack do

Select relocation stack for obstructing container c based on h

Relocate c to selected stack

end while

Retrieve t

end while

containing the target container, to the stack selected using the heuristic function

h. This procedure is repeated until all the containers are retrieved.

The most commonly used heuristic in container ports is the lowest tier (LT)

heuristic (Zhang, 2000). In LT a container is simply relocated to a stack with

the lowest tier. The idea behind this heuristic is to avoid having stacks with

many containers since this can result in a large number of obstructing ones that

need to be relocated later.

One of the most effective strategies for the rBRP is the MinMax heuristic.

In case of the BRP, a container c is called well-located if there is no container

d with a lower due date below it. Let us use the term “container d is directly

blocking container c” if c < d and c is below d in a yard stack. It is evident that

d will have to be relocated before retrieving c. In relation, we define the function

WellLocated(c) for a container c, which is equal to true if c is well-located (for

the current state of the bay) and false otherwise.

In the MinMax heuristic which was introduced by Caserta et al. (2011b),

situations when a container’s relocation results in it becoming well-located or

not are treated differently. Firstly, it is considered most desirable to well-locate a

container if this is possible. If there are multiple choices where such a relocation

can be done, we choose the stack in which the minimal value of the due date

of a container is the lowest. In this way we avoid wasting slots where other

containers with later due dates can be well-located. In case a container must be

7

relocated to a stack where it is not well-located, the idea is to postpone further

relocation of that container as much as possible.

Formally, we prefer to relocate a container c to a stack S in which the minimal

due date of a container d satisfies c < d, i.e., where it is well-located. In case

of several such stacks, it is preferred to select one that has the lowest value of

the minimal due date of a container. The idea is to preserve slots which are

more valuable in the sense that more containers, having later due dates, can be

well-located. In case c must be relocated to a stack where it is not well-located,

the stack S having the maximal value of the minimal due date of a container

is selected. The reasoning is to postpone the future relocation of a container

as much as possible in the hope that a slot where it can be well-located will

become available.

Let us define the heuristic function MinMax in a convenient way for later

use in the ACO. HS is the highest or maximally occupied (i.e., containing a

container) tier of stack S. Let us note that the symbol ∧ is used for the log-

ical “and” operation. With that we can define the set of candidate stacks for

relocation, Rc (all non-full stacks without c):

Rc = {S | (S ∈ Stacks) ∧ (HS < H) ∧ (S 6= s(c))} (1)

As previously stated, the MinMax heuristic depends on the minimal value

of the due date of a container in the stack. So, let us define a function dd(S)

which is equal to the minimal value of the due date of all containers in stack

S. In case of an empty stack S, we define this value as dd(S) = N + 1 as any

container can be well-located if it is placed on the ground (tier 0):

dd(S) =

 minc∈S c HS > 0

N + 1 HS = 0
(2)

Next, let us define a function dif(c, d) that gives us the desirability, correspond-

ing to our heuristic, of placing container c above container d as follows:

dif(c, d) =

 d− c d > c

2N + 1− d d < c
(3)

8

In Eq. (3) the value of dif(c, d) ranges from 1 to 2N . Note that dif(c, d) ≤ N

indicates that a container c can be well-located above container d and the value

of dif(c, d) tells us how many slots are lost. If dif(c, d) > N then c will not be

well-located if placed above d and the higher the value of d the lower the value

of dif(c, d) will be. We can extend the function dif to stacks as

dif(c, S) = dif(c, dd(S)) (4)

In Eq. (4) dif(c, S) uses the minimal due date of a container in stack S as

the value of a container in dif . Using dif , we can select the relocation stack

such that container c will be relocated to the stack having the minimal value of

dif(c, S) out of all candidate stacks in Rc:

MinMax(c) = arg min
S∈Rc

dif(c, S) (5)

Note that for any state of the bay, a non-empty stack can uniquely be defined

by its container with the minimal due date. Using this function dd(S), empty

stacks are seen differently from non-empty ones, but they cannot be differenti-

ated. Note that such a differentiation is not necessary for this heuristic function.

We exploit this fact to give an alternative formulation of function MinMax(c).

We first define the set

Mc = {d | (d = dd(S)) ∧ (S ∈ Rc)} (6)

representing the set of containers with minimal due dates for all the potential

stacks. Now the method for selecting a relocation stack can be defined as:

MinMax(c) = s(arg min
d∈Mc

dif(c, d)) (7)

4. Greedy algorithm for the uBRP

Contrary to the rBRP, in case of the uBRP we do not know which container

will be relocated at each step. To be more precise, in case of rBRP the container

on top of the stack containing the target container must be relocated/retrieved,

while in case of uBRP any container on top of a stack can be relocated/retrieved

9

next. Next we provide details of the greedy algorithm for the uBRP. The basic

idea of the algorithm will be the same as in Alg. 1, with the difference of a higher

number of candidate relocations. It can be understood as having two parts, the

first is defining the candidate list of potential relocations and the second one is

the heuristic used to select one of them. Two algorithms are defined. In the

first only one relocation of non-well located containers will be considered and in

the second one no such restriction will exist.

4.1. Basic greedy algorithm

In this subsection we define the greedy algorithm in which only relocation of

non-well-containers will be allowed. In this algorithm we use the same heuristic

as in case of the rBRP, but a different list of candidate relocations which will be

defined subsequently. Let us define Tops as the set of all containers that are on

the top of a stack in the bay, and top(S) as the container at the top of stack S.

A relocation is generally defined as an ordered pair α = (S,D) where S is the

source stack and D is the destination stack. In such a relocation we know that

c = top(S) must be relocated, so the relocation can alternatively be defined as

an ordered pair α = (c,D). Now the set of all potential relocations is

C̃ =
⋃

c∈Tops
({c} ×Rc) (8)

Let us make several observations about the set of candidates for relocation,

C̃. First the relocation of the container c = top(s(t)), which is on top of the

stack containing the target container t, is always desirable since as soon as the

target container is not obstructed it can be retrieved. Generally, the relocation

of a well-located container should be avoided since it adds a relocation that is

not necessary for retrieving all the containers. Relocation of non-well-located

containers which are not above the target container is only reasonable if they

are well-located after the relocation. The reason for this is that such relocations

are not necessary for retrieving the target container and might be postponed.

Using these observations we can define an improved restricted list of candi-

dates. Let us start with the following definitions:

10

Wc = {S | S ∈ Rc ∧ dd(S) > c} (9)

Tn = {d | d ∈ Tops ∧ ¬WellLocated(d) ∧ s(d) 6= s(t)} (10)

T = {top(s(t))} ×Rtop(s(t)) (11)

Or =
⋃
c∈Tn

({c} ×Wc) (12)

Cr = T ∪Or (13)

Wc is the set of all stacks to which container c will be well-located after reloca-

tion. The set Tn contains all top containers that are not well-located and not

above the target container. Set T corresponds to all potential relocations for

the rBRP. Or represents the set of all relocations of non-well-located containers

not above the target container to stacks where they are well-located. Finally,

Cr gives the restricted set of candidate relocations for the uBRP.

In case of the uBRP the same heuristic function dif will be used as for

the rBRP. The only difference in the greedy algorithm is in the candidate list

from which the relocation is selected. With α = (c, S) and dif(α) = dif(c, S)

defining the extension of function dif to candidate relocations, the selection

function is as follows (the best relocation among all potential candidates):

MinMax(Bay) = arg min
α∈C

dif(α) (14)

Let us make a few observations regarding this heuristic function. If there

is no chance of well-locating any of the top containers which are not above the

target container it is equivalent to the selection function used in the rBRP. Next,

it always performs a relocation that well-locates a container if such a relocation

exists. Out of all such moves, it performs one leading to the loss of the lowest

number of slots for well-locating containers, in the same way as in the rBRP.

4.2. Extended greedy algorithm

In this subsection we present an extended version of the greedy algorithm

presented in the previous subsection. To be more precise, in the new greedy al-

gorithm the relocation of well-located containers will be allowed in some specific

11

Figure 2: An illustration of a bay state for which a significant decrease in the number of

relocations needed to retrieve all the containers from the bay can be achieved by relocating a

well-located container. Grey containers indicate non-well-located containers. If container 2 is

relocated all the obstructing containers can be well-located. Otherwise, this is not possible.

cases. We first define a list of candidate relocations and later the corresponding

heuristic function. Let us start with a few observations.

A big disadvantage of the greedy algorithm based on the selection function

given in Eq. (14) is that it never relocates well-located containers. Observing

Fig. 2, we can see that in some cases such (look ahead) moves are highly benefi-

cial. However, this type of move automatically adds a relocation to the solution

and all the potential benefits that are immediately acquired, in the sense of

making it possible to well-locate some containers, might occur anyways in later

steps of the algorithm. If we relocate a well-located container c, we know that

dd(s(c)) will increase and it might happen that some containers can now be well-

located in this stack. The idea is to allow such moves only if they are highly

beneficial. We consider such moves “beneficial enough” if the container a ∈ Tn
with the largest due date can be well-located in this stack. Note that there are

many other potentially less strict criteria. From our experience a relocation of a

well-located container is rarely beneficial, so the idea of these criteria is to only

perform them if it is expected that they are highly helpful.

Because of this the case when a non-well-located container can be well-

located will be treated separately from the case when this is not possible. Using

this group of observations we can specify a new set of candidates for the next

relocation in case it is not possible to well-locate a non-well-located container.

12

In the following text, we will use the notation dd(S, h) for the value of the

minimal due date in a stack for the lowest h tiers. Let us start with several

definitions.

imp(c) = dd(s(c), t(c)− 1)− dd(s(c)) (15)

maxn = max
c∈Tn

c (16)

T̂w = Tops \ (Tn ∪ {t}) (17)

Tw = {c | c ∈ T̂w ∧ dd(s(c), t(c)− 1) > maxn} (18)

Ow =
⋃
c∈Tw

({c} ×Rc) (19)

Cw = T ∪Ow (20)

In Eq. (15) imp(c) is defined for a container c and gives the increase of the due

date dd(S), where S = s(c), after the top container is relocated. Eqs. (16), (17),

(18) are used to define the set of top well-located containers whose relocation

makes it possible to well-locate the container with the latest due date among

those that are non-well-located and on the top of a stack. In (16), maxn is

the maximal due date of all the stack top containers. T̂w represents the set

well-located containers on the top of a stack not including the target container

t. Tw is the set of well-located containers for which relocation is considered

based on the previously mentioned constraints. Eq. (19) defines the set Ow

of all candidate relocations for well-located stack tops. Finally, Cw represents

the complete set of candidate relocations which also contains relocations of the

container obstructing the target container.

The next step is to define a new heuristic function that can evaluate the

desirability of relocating well-located containers and ones obstructing the target

container. The idea is that we wish to get a large number of new slots if a

relocation of a well-located container is performed. Such a heuristic should

have a preference for relocating well-located containers that stay well-located

after relocation if additional slots are gained. It should also give us some method

to compare the desirability of relocations of well-located and non-well-located

containers. Note that the only relocation of a non-well-located container being

13

considered is that of the container above the target container.

A heuristic function satisfying these constraints can be defined:

dife(c, S) =

 N + dif(c, S)− imp(c) WellLocated(c)

dif(c, S) otherwise
(21)

In case of relocating the container obstructing the target one, the value of the

heuristic function will be dif(c, S). In case c is well-located we need to extend

the logic of function dif to the new setting. Its value will be a sum of N (since an

additional relocation is added to the solutions) and the value of dif(c, S). This

is reduced by the number of new slots gained by removing the top container from

stack S. Note that dif can be seen as a restriction of dife to non-well-located

containers. Eq. (21) is given such that it can be easily used in ACO.

Finally, we can define the corrected selection function, which considers both

well-located and non-well-located containers, as

NR =
⋃

c∈Tn∪{s(top(t))}

Wc (22)

Ĉ =

 Cw NR = ∅

Cr NR 6= ∅
(23)

MinMaxc(Bay) = arg min
α∈Ĉ

dife(α) (24)

In Eq. 22, we define NR as the set of all non-well-located containers that can

be well-located. The set Ĉ, defined in Eq. 23, is used to specify the candidate set

of relocations depending on the fact if it is possible to well-located a non-well-

located container or not. In Eq. (24), MinMaxc(Bay) can be understood as

a correction of the MinMax selection function, that can also select relocations

of well-located containers if the mentioned criteria are satisfied. This correction

is achieved by using the extended heuristic function dife and the appropriate

candidate set.

5. Application of ACO to the BRP

Next we present an ACO approach for solving the BRP, based on the greedy

algorithms from the previous sections. In many contexts, ACO is best under-

14

stood as an “intelligent” randomization of a greedy algorithm. The “smart”

behavior of ACO comes from experience gained by previously generated solu-

tions, which is stored in a pheromone matrix. The idea is to have a colony

of n artificial ants. Each ant generates a solution by expanding a partial one

through iterations as in the greedy algorithm. The difference comes from the

use of a probabilistic transition rule, instead of the heuristic function, to decide

how to expand the partial solution. As previously stated, the pheromone matrix

stores the experience gathered by the artificial ants. This is achieved through

the application of global and local update rules. The former are applied after

all n ants in the colony have generated a solution and the goal is to reinforce

the selection of elements inside the best found solution or in some variations

of good solutions. The local update is performed after an ant has applied the

transition rule, with the objective of diversifying the exploration of the solution

space by avoiding the selection of the same elements of the solution by all the

ants. In the following subsections the definition of the pheromone matrix, the

transition rule, the local and global update rules, and implementation details

for the proposed ACO algorithm for the BRP are given.

5.1. Pheromone Matrix

When defining the pheromone matrix for the BRP, the initial idea is to con-

nect it to the state of the bay (see Tus et al. (2015) in case of the PMP). This

type of matrix has several drawbacks due to the enormous number of poten-

tial states of the bay. In case of Tus et al. (2015), this problem is avoided by

dynamically allocating only pheromone values for the encountered bay states.

Although this resolves the issue of memory usage, new ones occur like the extra

computational cost of accessing values in the pheromone matrix. The other

drawback of such an approach is the increased complexity of the implementa-

tion. It can be argued that one of greatest appeals of ACO is the simplicity

in extending a greedy algorithm to this metaheuristic. In the general case the

pheromone matrix τ is a multidimensional array which is simply updated based

on the elements that have been used to expand the partial solution.

15

In the proposed approach we attempt to maintain this simplicity while max-

imizing the amount of information that the pheromone matrix contains. Let us

analyse how such a matrix in case of the BRP can be defined. Let us first note

that the pheromone matrix in ACO is generally closely related to the heuristic

function itself. This function, in case of both rBRP and uBRP, is used to eval-

uate which potential candidate of the form (c, S), where c is a container and S

is a stack, is most desirable for expanding the solution. So it is natural that the

pheromone matrix τ has elements of the form τcS . From the previous discussion

we have seen that for a specific bay state a stack S is uniquely defined by the

container dd(S). On the other hand, we can say that dd(S) provides us with

additional information about the state of stack S. Because of this instead of

the pheromone matrix having the form τcS we use one whose elements have the

form τcd, where c is the container being relocated and d = dd(S).

In case of the BRP it is common that some containers are moved multiple

times. The problem of using a pheromone matrix with the form τcd is that it

considers all moves the same. On the other hand, during the execution of the

greedy algorithm, that is used as a base for ACO, tracking how many times a

container is relocated is trivial. Because of this we extend the pheromone matrix

to τcdn where the additional index n indicates how many times a container

has been moved. The information contained in the pheromone matrix can be

significantly increased by including the information about the current target

container t. This is due to the fact that it is reasonable to expect that the state

of the bay is significantly different after the retrieval of several containers.

Information contained in the pheromone matrix with the form τcdnt makes

it possible to fully reconstruct a solution. The fact that such a pheromone

matrix does not distinguish between all the different states of the bay, can even

be beneficial in the learning process of the colony. To be more precise, several

states of the bay correspond to the same value τcdnt but in many cases, from

a practical point of view, they are the same for the problem being solved. By

using the proposed approach, experience is gained jointly for all of them.

Let us summarize the definition of the pheromone matrix τcdnt:

16

• t is the current target container, c is the container being relocated. t, c =

1..N

• d is used to identify the destination stack using its container with the

minimal due date. This definition has to be extended to differentiate

between different empty stacks. So for non-empty stacks d = dd∗(S) =

dd(S), and for empty stacks d = dd∗(S) = N + i(S), where i(S) is the

index of the stack. d = 1..(N +W)

• n corresponds to the number of times the container c has been moved.

n = 0..MaxMoves

5.2. Transition Rule

In ACO it is convenient to have a larger value of the heuristic function for

more desirable elements, so we define the following functions:

α = (c, S) (25)

f(c, d) =
1

1 + dife(c, d)
(26)

f(c, S) = f(c, dd(S)) (27)

f(α) = f(c, S) (28)

Let us note again that dife(c, d) is equal to dif(c, d) in case of a non-well-

located container c. In Eqs. (27), (28) f(c, S) (f(α)) give us the extension of

the function f to stacks (candidates) where the value of the minimal due date

in the stack is used as the value of the container d.

In the formulation of the transition rule we assume that the number of times

a container c has been previously relocated is known. The notation mc is used

to give this number. Further, at each step of the algorithm the target container

t is also known. As previously stated, in an ACO algorithm the selection of the

next expansion of the partial solution is done based on the heuristic function

and experience stored in the pheromone matrix. Let us define the function g(α)

which contains this information as the product of the heuristic function f and

17

the corresponding pheromone value:

d = dd∗(S) (29)

g(α) = f(α)τcdmct (30)

Using g(α) we can define the transition of ACO in the standard way:

select =

 arg max
α∈C

g(α) q < q0

prob q ≥ q0
(31)

In Eq. (31) select gives the selected relocation, where parameter q0 is used

to define the exploitation/exploration rate. Connected to it, q ∈ (0, 1) is a

random variable which specifies whether the next relocation is to be selected

deterministically or non-deterministically. In case of the former (q < q0), we

simply select the relocation α with the maximal value of g(α). Otherwise (q ≥

q0), the probability distribution for selecting a relocation is given as follows.

prob(α) =
g(α)∑
δ∈C g(δ)

(32)

Eq. (32) states that the probability of selecting α is proportional to g(α) and

inversely proportional to the sum of all g(δ) for all the candidate relocations δ.

Let us note that the transition rule in case of rBRP, and uBRP using heuristics

defined in Eqs. (14), (24) will only differ in the candidate list. More precisely,

in case of rBRP C is equal to T from Eq. (11). In case the uBRP is solved using

the heuristic function that allows the relocation of well-located containers, the

candidate list C is equal to Ĉ for Eq. (23). Otherwise, if such relocations are

not allowed, the candidate list will be the set Cr from Eq. (13).

5.3. Global and Local Update Rules

The next component of the ACO method that needs to be defined is the

local and global update rule. To achieve this we first define a measure of quality

for a solution S using the following equation:

val(S) =
1

|S| − LB + 1
(33)

18

In Eq. (33) LB is a lower bound for the solution (number of relocations) of

the BRP from the initial state of the bay. In case of the rBRP we use the lower

bound proposed by Zhu et al. (2012). In case of uBRP we use the total number

of containers that are not well-located in the bay. The quality of the solution is

inversely proportional to the difference between the number of relocations in the

solution |S| and the lower bound. The addition of one is used to avoid division

by zero.

Before specifying the global and local update rules, the used structure of a

solution for the BRP will be pointed out. In the standard formulation the solu-

tion consists of an array of pairs source/destination stack (S,D). As previously

stated the pheromone matrix depends on a 4-tuple (c, d,mc, t), which directly

defines a source/destination pair based on the state of the bay. Because of this

we assume that the complete/partial solution S is an array of such 4-tuples.

The goal of the global update rule is to intensify the exploration around

high quality solutions. The proposed ACO algorithm is based on the ant colony

system (ACS) (Dorigo and Gambardella, 1997), in which only the best found

solution deposits pheromone after each iteration of the colony. This update is

formally defined using the following equations:

∆τ = val(Sbest) (34)

τcdmct = (1− p)τcdmct + p∆τ , ∀(c, d,mc, t) ∈ Sbest (35)

In Eq. (35) Sbest is used to note the current best found solution. ∆τ is used

to specify the quality of the solution Sbest based on function val. Parameter

p ∈ (0, 1) is used to specify the influence of the global update rule. Note that

Eq. (35) only effects the values of pheromone τcdmct for (cdmct) ∈ Sbest.

As previously mentioned the local update rule is applied after individual

ants perform the transition rule. In our implementation the local update rule

is applied after an ant i has generated a solution Si using

τcdmct = ϕτcdmct , ∀(c, d,mc, t) ∈ Si (36)

where ϕ ∈ (0, 1) is used to specify the influence of the local update rule.

19

5.4. Implementation

Next we present the implementation details of the ACO method for the BRP.

The first step is choosing the initialization value for the pheromone matrix.

τ0 =
1

W
val(Sg) (37)

The initialization value τ0 is calculated based on the quality of the solution Sg
found using the greedy algorithm based on the corresponding heuristic function.

There are several ACO variants, out of which, in the majority of cases, the

MAX-MIN ant system (MMAS) (Stützle and Hoos, 2000) achieves the best

performance. Some comparisons of ACO variations can be seen in Tuba and

Jovanovic (2009) and Shishvan and Sattarvand (2015). It is an extension of

the ACS in which limits are given to the minimal and maximal value of the

pheromone. In the case of our ACO implementation for the BRP we only use a

limit for the minimal value of the pheromone τmin:

τmin =
1

W 2
val(Sbest) (38)

With the goal of having a more comprehensive understanding of the proposed

method, it is presented in the form of a pseudo-code given in Alg. 2. The ACO

algorithm has the same form for both rBRP and uBRP with the difference being

which equation is used for selecting the list of relocation candidates, as discussed

in Subsection 5.2. In the method the first step is finding a solution using the

appropriate greedy algorithm. Next, a lower bound LB is calculated based on

the initial state of the bay. Using these two values the pheromone matrix τ is

initialized. The main loop performs iterations of the ant colony until a stopping

criterion is reached. At each iteration the n ants generate a solution one by one.

This is done first by clearing the solution S, resetting the container relocation

counter M and other auxiliary structures. Next, containers are retrieved one by

one. At each step a target container is selected and relocations are performed

until it is at the top of the stack and retrieved. This is done by first calculating

the candidate list using one of the Eqs. (11), (13) and (23), depending on which

version of the problem is being solved. The best relocation α is selected using

20

Algorithm 2 Pseudo-code for the ACO algorithm for the BRP.

Generate solution Sg using the greedy algorithm

Calculate LB(Bay)

Initialize the pheromone matrix τ based on Sg
while (Not Stopping Criteria) do

for n ants do

Clear Solution S

Reset array for tracking the number of relocations M

Reset auxiliary structures

while Bay not empty do

Select Container target t having the minimal due date

while t not on top of stack do

Calculate candidate list C

Select best relocation α ∈ C based on transition rule

S.Add(α.c, dd∗(α.S),M [α.c], t)

Apply relocation α to Bay

Update auxiliary structures

if |S|+ LB(Bay) ≥ |Sbest| then

valid = false

break double while . Stop generating current solution

end if

end while

end while

Apply local update rule for S

Check if S is valid new best solution

end for

if MaxConst iterations without improvement then

Reinitialize pheromone matrix

end if

Apply global update rule for Sbest

end while

21

the heuristic function. Next, the partial solution is expanded by the 4-tuple

(α.c, dd∗(α.d),M [α.c], t). Finally, the relocation α is applied to the bay; the

array M and other auxiliary structures are updated.

The next step in the inner loop is to check, based on the lower bound for the

current bay state, if the partial solution can potentially be used to generate a

solution better than the current best Sbest. If this is not possible, the generation

of a solution is aborted. After a solution is generated or the generation is

aborted the local update rule is applied for the solution S, even if it is partial.

It is important to note that the early termination of solution generation has two

purposes. The first, less important, is the decrease in computational cost. The

second, more important, is not wasting the information stored in the pheromone

matrix for generating unnecessary low quality solutions. For each ant we check

if it has generated a new best solution. After all the ants have generated their

solutions, the global update rule is applied. Finally, at each iteration of the

colony we check if stagnation of the algorithms has occurred and if so, the

pheromone matrix is reinitialized.

Note that due to the pheromone matrix having four dimensions the proposed

method can have a high memory cost. The size of the pheromone matrix is

approximately N3 times the maximal allowed number of relocations. In case of

problem instances having up to a 100 containers the ACO algorithm uses around

50 megabytes of RAM. We wish to point out that the vast majority of elements

in the pheromone matrix are not used. As a consequence the memory usage

can be significantly decreased if dynamic allocation of the pheromone matrix is

implemented. Though, for solving the standardly used problem instances this

was not necessary.

6. Application of ACO to alternative objectives

In this section we present a simple approach for applying the proposed ACO

method to the BRP with alternative objective functions. To be more precise, we

focus on the application of the proposed approach to the rBRP in case where the

22

objective is to minimize the working time of the crane. The main incentive for

this extension is that previous research has shown that there is a close relation

between the solutions of the rBRP in case the objective function is the number of

relocations or the crane working time (Schwarze and Voß, 2015). The idea is to

simply substitute the new objective function in the generation of the pheromone

matrix but use the same heuristic function as in the basic problem.

We use two types of objectives in case of crane working times. In the first,

there is a time cost for moving the crane between stacks ts and a constant time

effort tpp for the pick-up/place-down of a container. In the new setting it is

considered that all containers, in the retrieval, are moved to stack 0. Now we

can define, as in Schwarze and Voß (2015), the following cost function:

α = (c, S) (39)

costf (α) =

 2tss(c) + tpp Retrieval

2ts|s(c)− S)|+ tpp Relocation
(40)

Eq. (40) gives the cost of operations in the rBRP. When the operation is retriev-

ing container c, we consider the cost to be equal to the sum of the pick-up/place-

down time and the time for the crane to move from the “retrieval” stack 0 to

the current stack s(c) of the container being retrieved, and back. In case of

a relocation operation, since we are solving the rBRP, the crane will go from

the current stack of container c to the destination stack S and back. Note that

this is an approximation to the total movement of the crane, standardly used

in literature, and not exact. To be more precise, the described movement is not

exact in case the target container is changed or the last container is retrieved.

In the second objective the time of the pick-up/place-down is not fixed but

dependent on the number of tiers the container crosses. In this setting we will

assume there is a constant time tr needed for a container to cross one tier. In

Schwarze and Voß (2015), it is assumed that the container goes from its current

tier to a maximal one hmax, then moves to the destination stack S to its new

top tier H∗S . At retrieval, it is assumed that the “retrieval” stack has a height

23

hout. For such a setting the cost function has the following form:

costv(c) =

 2tss(c) + tr(2hmax − t(c)− hout) Retrieval

2ts|s(c)− S|+ tr(2hmax − t(c)−H∗S) Relocation
(41)

Now, the objective function can be defined for solution S as

Of (S) = sumα∈Scostf (α) (42)

Ov(S) = sumα∈Scostv(α) (43)

Eqs. (42),(43) simply state that the objective is equal to the sum of costs of all

operations in the solution S. Note that in the new formulation the solution also

contains the relocation operations.

To be able to define an efficient algorithm it is also important to define a

lower bound for the new objectives. They will be used in defining the function

for evaluating the quality of a solution similar to Eq. (33). In case of a fixed

pick-up/place-down time we use the following lower bound:

LBf =
∑
c∈Bay

(tpp + 2s(c)ts) +
∑
c∈NW

(tpp + ts) (44)

The value of LBf for Of has two parts. The first, corresponding to the first

term in Eq. (44), is equal to the time of retrieving all the containers from their

current location. The second is related to the additional cost resulting from

necessary relocations. Again we use the number of non-well-located containers

as the number of necessary relocations. For each such relocation, the additional

cost is equal to the time needed to move the crane one stack, and perform one

pick-up/place-down operation. In Eq. (44), the notation NW is used for the set

of all non-well-located containers in the bay.

In case of Ov we can define a similar lower bound LBv:

LBv =
∑
c∈Bay

((2hmax − t(c)− hout)tr + 2s(c)ts) +
∑
c∈NW

(2tr + ts) (45)

The first term of Eq. (45) is related to the cost of retrieving all the containers

from their current locations. The second term refers to the minimal additional

24

cost of relocating the container. It is equal to the time needed to move the crane

one stack, and to move a container over two tiers.

Finally, the proposed ACO method can be extended to the rBRP with the

objective function based on the crane working time. Let us define the new

quality functions val

valf (S) =
1

Of (S)− LBf + 1
(46)

valv(S) =
1

Ov(S)− LBv + 1
(47)

The values of functions valf , valv will be used in the definition of the global up-

date rule and the initial value of the pheromone trail. Note that LBf , LBv, Of

and Ov will also be used in checking if a current partial solution can potentially

generate a new best solution in Alg. 2.

7. Computational Experiments

In this section we present the results of our computational experiments used

to evaluate the performance of the proposed ACO. All the algorithms have been

implemented in C# using Microsoft Visual Studio 2015. The calculations have

been done on a machine with Intel(R) Core(TM) i7-2630 QM CPU 2.00 Ghz,

4GB of DDR3-1333 RAM, running on Microsoft Windows 7 Home Premium 64-

bit. The evaluation for both rBRP and uBRP uses the standardly applied data

sets initially presented in Caserta et al. (2009). In it, each problem instance has

an initial bay (T × S), having T tiers and S stacks, with a total of T times S

containers. The used data set contains a wide range of problem sizes ranging

from 3×3 to 10×10. For each bay size there are 40 different randomly generated

problem instances.

In all the computational experiments we use the standard values of the ACO

parameters (Dorigo and Gambardella, 1997). The parameters for specifying the

influence of the global and local update rules have the values p = 0.1 and

ϕ = 0.9; q0 = 0.9 is used for the exploitation/exploration rate in the transition

rule. The colony has n = 10 artificial ants. The stopping criterion in case of

25

Table 1: Comparison of the average solution quality for different methods in case Hmax =

T + 2. The following notation is used for competing methods: the corridor method (CM)

(Caserta et al., 2011b; Caserta, 2017), the proposed ACO method and optimal solutions

acquired using A* (OPT)(Expósito-Izquierdo et al., 2014).

CM ACO OPT T X S CM ACO OPT

T X S sol time[s] sol time[s]

3 X 3 5.00 5.00 <0.01 5.00 5 X 4 15.42 15.42 <0.01 15.28

3 X 4 6.18 6.18 <0.01 6.18 5 X 5 18.88 18.95 <0.01 18.65

3 X 5 7.02 7.02 <0.01 7.02 5 X 6 22.18 22.15 0.01 21.95

3 X 6 8.40 8.40 <0.01 8.40 5 X 7 24.25 24.33 0.02 22.08

3 X 7 9.28 9.28 <0.01 9.28 5 X 8 27.75 27.73 0.01 -

3 X 8 10.65 10.65 <0.01 10.65 5 X 9 30.58 30.50 0.02 -

4 X 4 10.20 10.20 <0.01 10.20 5 X 10 33.40 33.40 0.03 -

4 X 5 12.95 12.95 <0.01 12.95 6 X 6 31.05 31.05 0.06 -

4 X 6 14.02 14.02 <0.01 14.00 6 X 10 46.10 45.93 0.09 -

4 X 7 16.12 16.12 <0.01 16.12 10 X 6 79.95 79.50 0.63 -

10 X 10 115.60 113.45 1.70 -

the rBRP (uBRP) is 5000 (1000) iterations of the colony. The criterion for

stagnation of the algorithm is that MaxConst = 100 iterations of the colony

have been executed without any improvement of the best solution. In defining

the pheromone matrix the maximal number of relocations of a container is

MaxMoves = 10.

In the following subsections we first evaluate the performance of the pro-

posed ACO method for the rBRP and later for the proposed greedy and ACO

algorithms for the uBRP and for alternative objectives.

7.1. Evaluation of ACO for rBRP

In the first group of our computational experiments we analyze the perfor-

mance of the proposed method for rBRP. The ACO method has been evaluated

in the case when the maximal allowed tier is limited to Hmax = T + 2. The

comparison has been done to the corridor method (CM) proposed in Caserta

et al. (2011b) and with the optimal solutions acquired using the A* algorithm

(Expósito-Izquierdo et al., 2014). In case of the CM, the original code has been

26

Table 2: Comparison of the average solution quality for LA-N and the proposed greedy

algorithm with the constraint that well-located containers cannot be relocated (Gre-N) and in

case there is no such restriction (Gre-C). The values for LA-N have been taken from Petering

and Hussein (2013).

T X S LA-N Gre-N Gre-C T X S LA-N Gre-N Gre-C

3 X 3 5.10 5.10 5.10 5 X 4 15.80 15.72 15.58

3 X 4 6.30 6.25 6.20 5 X 5 19.70 19.32 19.12

3 X 5 7.00 6.92 6.92 5 X 6 22.60 22.18 21.95

3 X 6 8.40 8.45 8.35 5 X 7 24.80 24.18 23.50

3 X 7 9.20 9.22 9.22 5 X 8 27.80 27.52 27.00

3 X 8 10.60 10.70 10.50 5 X 9 30.70 30.18 29.78

4 X 4 10.40 10.22 10.30 5 X 10 33.50 32.62 31.92

4 X 5 13.00 12.92 12.68 6 X 6 32.60 31.82 31.12

4 X 6 14.00 14.05 13.98 6 X 10 46.80 45.30 44.52

4 X 7 16.40 16.20 15.80 10 X 6 85.00 85.18 82.75

10 X 10 119.50 113.82 111.22

updated and run on a modern day machine. The code and the results can

be found at Caserta (2017). As in the original paper on CM, a time limit of

60 seconds for each problem instance has been used for finding solutions. It

is important to point out that the results are better than the ones presented

in Caserta et al. (2011b). The main reason for this is due to the nature of the

method for which longer execution times or the same execution times on a faster

computer make it possible to explore a greater area of the solution space. A

detailed explanation can be found in Caserta (2017). The summarized results

of the performed computational experiments can be seen in Table 1. The re-

sults in this table represent the average values for 40 problem instances of the

same size. From these results, it is evident that both methods have a very good

performance. ACO manages to achieve better average solution quality in case

of 6 problem sizes, while being worse in only 2 cases. We wish to point out that

the improvement of the ACO method, compared to the CM, is most significant

in case of the largest problem instances.

27

7.2. Comparison of simple greedy algorithms for uBRP

In the second group of tests we evaluate the performance of the proposed

greedy algorithm for the uBRP by comparing it to the LA-N method from

Petering and Hussein (2013) on the same group of data sets. We have chosen to

compare to this method due to the fact that it is also a direct greedy heuristic.

As in the proposed approach, LA-N does not include any type of tree search or

backtracking. Further, it only defines a list of potential candidate relocations

and chooses one based on a simple heuristic. Due to the ease of implementation

of such algorithms, they are often used in the development of more complex

methods or for acquiring upper bounds. The maximal allowed tier Hmax was

the same as in Petering and Hussein (2013) and had the value Hmax = 2T − 1.

Once more we compare the average quality of solutions for each test size. In this

comparison we do not include computational times since both types of greedy

algorithms are very fast. The summarized results are given in Table 2.

In this table we show the average quality of solutions for the two proposed

greedy algorithms, one with the constraint that well-located containers cannot

be relocated (Gre-N) and the second one where there is no such restriction (Gre-

C). In case of LA-N we have used the best results presented in Petering and

Hussein (2013). The method Gre-C had the best performance. In only one of the

21 tested sizes it had a worse average solution quality than LA-N, and in this case

it was only slightly worse, 9.22 to 9.20. On the other hand, it managed to get

better results for 19 problem sizes. The improvement was generally significant,

frequently being around 3− 5%. Gre-N in general performed better than LN-S

but the improvement was less significant, and it had a worse performance for

several sizes. This indicated that an effective greedy method for uBRP must

consider the relocation of well-located containers.

7.3. Comparison of advanced approaches for uBRP

In our next group of tests we compare the performance of ACO with state-of-

the-art methods for finding high quality solutions for the uBRP. To be more pre-

cise, we compare our method to the domain-specific knowledge-based heuristic

28

Table 3: Comparison of the average computational cost and solution quality for different

methods in case Hmax = ∞. For the ACO algorithm with the constraint that well-located

containers cannot be relocated we use the notation ACO-N and ACO-C in case there is no

such restriction. The computations have been performed on different machines.

T X S Time[s] Avg Solution

FB EXP ACO-N ACO-C Gre-C FB EXP ACO-N ACO-C OPT

3 X 3 <0.1 0.01 <0.01 <0.01 5.00 4.95 4.95 4.95 4.95 4.95

3 X 4 <0.1 0.01 <0.01 <0.01 6.15 6.05 6.02 6.10 6.02 6.02

3 X 5 <0.1 0.01 <0.01 <0.01 6.88 6.85 6.88 6.88 6.85 6.85

3 X 6 <0.1 0.02 <0.01 <0.01 8.28 8.28 8.28 8.35 8.28 8.28

3 X 7 <0.1 0.03 <0.01 <0.01 9.15 9.20 9.10 9.18 9.15 9.10

3 X 8 <0.1 0.04 <0.01 <0.01 10.35 10.45 10.38 10.58 10.33 10.30

4 X 4 <0.1 0.02 <0.01 <0.01 10.20 9.90 9.70 9.90 9.75 9.65

4 X 5 <0.1 0.04 <0.01 <0.01 12.63 12.63 12.30 12.63 12.35 12.22

4 X 6 <0.1 0.08 <0.01 <0.01 13.80 13.70 13.38 13.60 13.35 13.22

4 X 7 <0.1 0.12 <0.01 <0.01 15.75 15.78 15.60 15.78 15.40 13.60

5 X 4 <0.1 0.07 0.01 <0.01 15.63 15.00 14.68 15.08 14.78 14.42

5 X 5 <0.1 0.18 0.02 0.02 19.13 18.63 18.02 18.30 17.78 16.84

5 X 6 <0.1 0.29 0.01 0.02 21.95 21.83 21.08 21.48 21.15 16.00

5 X 7 <0.1 0.44 0.01 <0.01 23.38 23.58 23.28 23.53 22.80 18.00

5 X 8 <0.1 0.81 0.05 0.04 26.90 26.73 26.65 26.78 26.18 -

5 X 9 0.1 1.10 0.03 0.02 29.65 29.45 29.40 29.40 28.85 -

5 X 10 0.2 1.63 <0.01 0.01 31.88 31.85 31.70 32.13 31.45 -

6 X 6 0.4 0.73 0.08 0.10 30.95 29.68 28.98 30.13 28.88 -

6 X 10 2.3 3.34 0.06 0.19 44.28 43.60 42.45 43.88 42.50 -

10 X 6 45.5 35.32 0.69 0.91 82.65 75.65 76.02 75.78 72.63 -

10 X 10 60.0 57.62 1.30 2.35 110.30 116.90 104.02 109.13 103.58 -

algorithm (EXP) presented in Expósito-Izquierdo et al. (2014), and the heuris-

tic tree search procedure (FB) presented in Forster and Bortfeldt (2012). The

comparison has been performed on the same group of data sets. The methods

have been compared for Hmax = T + 2,∞. As in the previous subsections, we

compare the average quality of solutions per problem size, and average compu-

tational time. The results of this comparison can be seen in Tables 3, 4. In

these tables we also include the values of optimal solutions acquired using an

A* algorithm from Expósito-Izquierdo et al. (2014). In these tables we include

results for Gre-C and the ACO algorithm based on the greedy algorithm Gre-N

29

Table 4: Comparison of the average computational cost and solution quality for different

methods in case Hmax = T + 2. For the ACO algorithm with the constraint that well-located

containers cannot be relocated we use the notation ACO-N and ACO-C in case there is no

such restriction. The computations have been performed on different machines.

T X S Time[s] Avg Solution

FB EXP ACO-N ACO-C Gre-C FB EXP ACO-N ACO-C OPT

3 X 3 <0.1 <0.01 <0.01 <0.01 5.10 4.98 4.98 4.98 4.98 4.98

3 X 4 <0.1 0.01 <0.01 <0.01 6.20 6.05 6.02 6.10 6.02 6.02

3 X 5 <0.1 0.01 <0.01 <0.01 6.93 6.85 6.88 6.88 6.85 6.85

3 X 6 <0.1 0.02 <0.01 <0.01 8.35 8.28 8.28 8.35 8.28 8.28

3 X 7 <0.1 0.03 <0.01 <0.01 9.23 9.23 9.15 9.18 9.15 9.10

3 X 8 <0.1 0.04 <0.01 <0.01 10.50 10.40 10.38 10.58 10.35 10.30

4 X 4 <0.1 0.02 <0.01 <0.01 10.38 9.93 9.78 10.05 9.83 9.72

4 X 5 <0.1 0.04 <0.01 <0.01 12.98 12.65 12.32 12.65 12.40 12.25

4 X 6 <0.1 0.07 <0.01 <0.01 13.98 13.70 13.35 13.58 13.38 13.22

4 X 7 <0.1 0.11 <0.01 0.01 15.95 15.78 15.48 15.75 15.43 13.60

5 X 4 <0.1 0.08 <0.01 <0.01 16.10 15.52 15.45 15.38 15.05 14.70

5 X 5 <0.1 0.16 0.02 0.01 19.35 18.80 18.68 18.38 17.90 16.88

5 X 6 <0.1 0.30 0.02 0.03 22.35 22.08 21.62 21.83 21.33 16.00

5 X 7 <0.1 0.40 0.04 0.04 24.25 23.58 23.45 23.73 23.00 18.00

5 X 8 <0.1 0.75 0.05 0.05 27.68 27.03 26.45 26.95 26.45 -

5 X 9 0.1 1.10 0.04 0.07 30.63 30.05 29.12 29.83 29.10 -

5 X 10 0.2 1.73 0.04 0.04 32.90 32.25 31.90 32.45 31.68 -

6 X 6 0.4 0.72 0.08 0.12 32.53 31.13 30.40 30.95 29.60 -

6 X 10 2.3 3.96 0.17 0.18 46.20 44.48 44.08 44.68 43.45 -

10 X 6 45.5 38.87 0.83 1.16 89.28 83.03 85.45 81.78 77.55 -

10 X 10 60.0 48.04 1.38 2.80 118.63 125.38 121.50 116.95 110.75 -

(ACO-N) and Gre-C (ACO-C).

From the results in Tables 3, 4 we can see that the ACO-C manages to find

better solutions than EXP and FB in the vast majority of cases. ACO-C always

finds better solutions than FB, except in the case of small instances where both

methods find the optimal solutions. In general ACO-C manages to outperform

EXP, although in a few cases EXP manages to find slightly better results. It is

important to note that the advantage of ACO-C is more pronounced in case of

large problem instances reaching even 10% in case of Hmax = T +2. Let us note

that although Gre-C generally has a worse performance than FB and EXP, it

30

manages to get better results in several problem sizes for Hmax = ∞. ACO-N

overall has a slightly better performance than FB but worse than EXP. This

indicates once more, that the relocation of well-located containers is necessary

for finding high quality solutions for uBRP.

Although the computational times for EXP, FB, ACO-N and ACO-C have

not been acquired on the same machine, the advantage of the proposed ACO

methods is evident. In case of the two largest problem instances the computa-

tional time of ACO-C was between 1.3 and 2.8 seconds, while for FB (EXP) it

was between 45 (35) and 60 (48) seconds. When we compare the computational

time of ACO-N and ACO-C the inclusion of well-located containers for potential

relocations results in an increase in computational time between 50 and 200%.

7.4. Alternative objectives

In our final group of experiments we explore the robustness of the ACO in

the sense of its application to other objective functions. ACO is applied to the

rBRP with objective functions Ov, Of given in Eqs. (42), (43). In case of all

the tests we use Hmax = T + 2. The parameter values for defining the objective

functions are the same as in Schwarze and Voß (2015). To be more precise, the

time needed for the crane to cross one stack is ts = 1.2s. In case of Of two

settings are explored, in the first Of,30 the pick-up/place-down operation has a

high cost tpp = 30s and in the second Of,5 a significantly lower one tpp = 5s.

In case of the objective function Ov, the parameter defining the time needed to

move a container one tier was tr = 7.77s. The height of the retrieval stack was

hout = 1.5s, and the maximal tier had the value hmax = Hmax + 1.

The tests have been performed on the same group of data sets as in the

previous subsections, with the constraint that only problem sizes are used for

which all the optimal solutions are known from Schwarze and Voß (2015). We

compare the average error, in seconds, EACO of the solution acquired using the

ACO algorithm to the known optimal. With the intention of having a better

understanding of the effect of the ACO, as in Schwarze and Voß (2015), we also

consider the value of the objective function Of (Ov) for the optimal solution of

31

the rBRP where the objective function is the number of relocations Or. The

results of this comparison can be seen in Table 5. In it, we present the average

error ER of such solutions for the 40 problem instances of one size.

In this table we did not include computational times since they were very

short. Note that the number of iterations of the ACO algorithm in case of the

objective functions based on the crane operation time was around 5 times higher

than in the case when the objective function is the number of relocations. This

can be explained by the fact that the used heuristic function is designed for

the latter, and as a consequence the convergence speed of the ACO algorithm

is slower in case of the former. This also indicates the strong positive effect of

using the pheromone matrix.

If we observe the performance of the ACO algorithm for the objective func-

tions Of,30, Of,5 we can see the robustness of the approach. In case of Of,30

the largest average error for ACO was only 1.7 seconds, which is less than 0.2%

of relative error. This very good performance is closely related to the fact, as

discussed in Schwarze and Voß (2015), that in only two problem instances the

optimal solution for the objective Of was not the optimal for the objective Or.

The significantly larger value of ER is related to the fact that there are multiple

optimal solutions for each instance and if one is selected at random it may not

be a good solution for Of,30. The proposed ACO approach proves to be effective

in finding the best one out of all such solutions.

In case of Of,5, ACO’s largest error is 3.5 seconds, which is around 0.5%

of relative error. Note that the relation between optimal solutions for the two

objective functions Or and Of,5 is not as strong as in the case of Of,5. To be

more precise, the optimal solution for objective Of,5 is also optimal for Or in

about 55% of the instances. This reflects that ER has a relative error of 5-12%.

A similar behavior can be seen for the objective function Ov. In this case the

largest error of ACO was 20 seconds, and the relative one is slightly more than

1%. From the performance of ACO for Of,5 and Ov we can see that the use of

the pheromone matrix manages, to a large extent, to overcome the problem of

having a relatively poor heuristic function and lower bounds.

32

Table 5: Comparison of the average solution quality for different objective functions in case

Hmax = T + 2.

T X S Of,30 Of,5 Ov

OPT ER EACO OPT ER EACO OPT ER EACO

3 X 3 476.4 2.3 0.0 126.4 2.3 0.0 904.0 16.3 1.8

3 X 4 633.6 7.9 0.1 178.4 8.7 0.0 1187.0 40.2 6.2

3 X 5 789.2 16.3 0.1 236.6 18.3 0.3 1460.8 61.6 6.8

3 X 6 968.2 22.4 0.1 303.2 27.4 0.8 1758.4 89.8 12.4

3 X 7 1137.0 35.8 0.0 375.2 40.7 0.9 2043.4 124.7 18.3

3 X 8 1331.3 43.3 0.3 455.1 53.2 1.9 2362.6 147.2 25.5

4 X 4 911.9 10.1 0.0 255.5 11.5 0.2 1928.1 67.6 10.7

4 X 5 1170.2 19.8 0.0 343.0 23.3 1.3 2424.6 131.6 20.2

4 X 6 1385.4 31.4 0.4 428.5 37.8 2.2 - - -

4 X 7 1647.7 53.0 0.8 532.8 64.8 3.5 - - -

5 X 4 1230.0 16.1 1.7 343.5 17.0 0.6 - - -

It is important to note that the performance of the proposed ACO method

could be significantly improved by developing and using a more efficient heuris-

tic function and lower bounds for the BRP with objective functions based on

crane working times. In this paper we did not focus on this issue since our

main objective was on presenting the ACO method. On the other hand, we

also wanted to show that this approach, even in a simple form that is easy to

implement, can achieve very good results.

7.5. Summary

In this section we have presented results of extensive computational exper-

iments of the proposed greedy and ACO algorithms on the rBRP and uBRP

with different objective functions. Several observations can be made. In case

of all the variations of the BRP the use of ACO proves to be very efficient in

case of both computational cost and solution quality. To be more precise, it

manages to consistently find better or equivalent quality solutions as state-of-

the-art methods in several different settings. In case of large problem instances,

it finds such solutions at a fraction of the time (generally 20-30 times faster)

when compared to competing methods. We have also experienced that the ad-

33

ditional calculations for maintaining and using the pheromone matrix represent

a small part of the overall calculations. This indicates that there is potential of

using the same ACO mechanism with other more complex heuristic methods.

Another observation is that even by using the standard MinMax heuristic,

in case of the greedy algorithm for the uBRP, a significant improvement on the

quality of found solutions can be achieved by simple extending the candidate

list of relocations. We have shown that if relocations of well-located containers

are allowed in some specific cases the quality of found solutions can be further

improved for a reasonable increase in computational cost.

8. Conclusion

In this paper we have presented an ACO method for solving the BRP in

case of distinct due dates. The method has been applied for both the restricted

and unrestricted version of the problem. In developing the ACO algorithm, a

new, simple to implement, heuristic function has been proposed for solving the

uBRP that manages to outperform similar existing approaches. Further, a new

formulation of the standard greedy algorithm for the rBRP is introduced, which

has the advantage that it can be directly applied to the uBRP. The proposed

greedy algorithm has been extended towards ACO. In developing this approach

a novel concept has been introduced for defining the pheromone matrix that only

contains partial information about the problem. Our computational results show

that the proposed ACO algorithm manages to outperform the current state-of-

the-art in both computational cost and quality of found solutions. Further, we

have shown that the proposed ACO algorithm is highly robust in the sense that

it can be extended to alternative objective functions for the BRP.

In the future we plan to extend this work by adapting the proposed ACO

algorithm to the closely related premarshalling problem and to other variations

of the BRP. Another direction of future research is enhancing the performance

of the proposed algorithm by incorporating a multi-colony approach or by in-

corporating a local search, similar to the work in Gambardella et al. (2012).

34

References

Borjian, S., Manshadi, V.H., Barnhart, C., Jaillet, P., 2013. Dynamic stochastic

optimization of relocations in container terminals, in: MIT Working Paper.

Caserta, M., 2017. Blocks relocation problem. URL: https://github.com/

marcocaserta/BRP.

Caserta, M., Schwarze, S., Voß, S., 2009. A new binary description of the blocks

relocation problem and benefits in a look ahead heuristic. Lecture Notes in

Computer Science 5482, 37–48.

Caserta, M., Schwarze, S., Voß, S., 2011a. Container rehandling at maritime

container terminals, in: Böse, J.W. (Ed.), Handbook of Terminal Planning.

Springer New York, pp. 247–269.

Caserta, M., Schwarze, S., Voß, S., 2012. A mathematical formulation and com-

plexity considerations for the blocks relocation problem. European Journal

of Operational Research 219, 96–104.

Caserta, M., Voß, S., Sniedovich, M., 2011b. Applying the corridor method to

a blocks relocation problem. OR Spectrum 33, 915–929.

Dorigo, M., Gambardella, L.M., 1997. Ant colony system: a cooperative learning

approach to the traveling salesman problem. IEEE Transactions on Evolu-

tionary Computation 1, 53–66.

Expósito-Izquierdo, C., Melián-Batista, B., Moreno-Vega, J.M., 2014. A

domain-specific knowledge-based heuristic for the blocks relocation problem.

Advanced Engineering Informatics 28, 327–343.

Expósito-Izquierdo, C., Melián-Batista, B., Moreno-Vega, M., 2012. Pre-

marshalling problem: Heuristic solution method and instances generator. Ex-

pert Systems with Applications 39, 8337–8349.

Forster, F., Bortfeldt, A., 2012. A tree search procedure for the container

relocation problem. Computers & Operations Research 39, 299 – 309.

35

https://github.com/marcocaserta/BRP
https://github.com/marcocaserta/BRP

Gambardella, L., Montemanni, R., Weyland, D., 2012. Coupling ant colony

systems with strong local searches. European Journal of Operational Research

220, 831 – 843.

Hussein, M., Petering, M., 2012a. Genetic algorithm-based simulation opti-

mization of stacking algorithms for yard cranes to reduce fuel consumption

at seaport container transshipment terminals, in: Evolutionary Computation

(CEC), 2012 IEEE Congress on, pp. 1 –8.

Hussein, M.I., Petering, M.E., 2012b. Global retrieval heuristic and genetic al-

gorithm in block relocation problem, in: IIE Annual Conference. Proceedings,

Institute of Industrial and Systems Engineers (IISE). p. 1.

Jin, B., Zhu, W., Lim, A., 2015. Solving the container relocation problem by

an improved greedy look-ahead heuristic. European Journal of Operational

Research 240, 837 – 847.

Jovanovic, R., Tuba, M., Voß, S., 2017. A multi-heuristic approach for solv-

ing the pre-marshalling problem. Central European Journal of Operations

Research 25, 1–28.

Jovanovic, R., Voß, S., 2014. A chain heuristic for the blocks relocation problem.

Computers & Industrial Engineering 75, 79–86.

Kim, K.H., Hong, G.P., 2006. A heuristic rule for relocating blocks. Computers

& Operations Research 33, 940 – 954.

Ku, D., Arthanari, T.S., 2016. Container relocation problem with time windows

for container departure. European Journal of Operational Research 252, 1031

– 1039.

Lee, Y., Kang, J., Ryu, K., Kim, K., 2005. Optimization of container load

sequencing by a hybrid of ant colony optimization and tabu search. Lecture

Notes in Computer Science 3611, 433–433.

36

Lee, Y., Lee, Y.J., 2010. A heuristic for retrieving containers from a yard.

Computers & Operations Research 37, 1139–1147.

Lehnfeld, J., Knust, S., 2014. Loading, unloading and premarshalling of stacks

in storage areas: Survey and classification. European Journal of Operational

Research 239, 297–312.

Murty, K., Liu, J., Tseng, M.M., E. Leung, K-K. Lai, W., Chiu, 2005. Hong

Kong international terminals gains elastic capacity using a data-intensive de-

cision support system. Interfaces 35 (1), 61 – 75.

Ndiaye, N.F., Yassine, A., Diarrassouba, I., 2014. A hybrid ant colony and

genetic algorithm to solve the container stacking problem at seaport termi-

nal, in: 2014 International Conference on Advanced Logistics and Transport

(ICALT), pp. 247–252.

Nishi, T., Konishi, M., 2010. An optimisation model and its effective beam

search heuristics for floor-storage warehousing systems. International Journal

of Production Research 48, 1947–1966.

Petering, M.E., Hussein, M.I., 2013. A new mixed integer program and extended

look-ahead heuristic algorithm for the block relocation problem. European

Journal of Operational Research 231, 120–130.

Schwarze, S., Voß, S., 2015. Analysis of alternative objectives for the blocks relo-

cation problem. Working Paper, Institute of Information Systems, University

of Hamburg.

Shishvan, M.S., Sattarvand, J., 2015. Long term production planning of open pit

mines by ant colony optimization. European Journal of Operational Research

240, 825 – 836.

da Silva Firmino, A., de Abreu Silva, R.M., Times, V.C., 2016. An exact

approach for the container retrieval problem to reduce crane’s trajectory, in:

19th International Conference on Intelligent Transportation Systems (ITSC),

IEEE. pp. 933–938.

37

Sreeja, N., Sankar, A., 2015. Ant colony optimization based binary search for

efficient point pattern matching in images. European Journal of Operational

Research 246, 154 – 169.

Steenken, D., Voß, S., Stahlbock, R., 2004. Container terminal operation and

operations research - a classification and literature review. OR Spectrum 26,

3–49.

Stützle, T., Hoos, H.H., 2000. MAX–MIN ant system. Future Generation

Computer Systems 16, 889–914.

Sun, B., Sun, J., Liu, F., Yang, P., Han, M., Feng, M., 2010. On robust discrete

berth allocation based on ant colony algorithm, in: Proceedings of the 29th

Chinese Control Conference, pp. 1727–1732.

Tanaka, S., Takii, K., 2016. A faster branch-and-bound algorithm for the block

relocation problem. IEEE Transactions on Automation Science and Engineer-

ing 13, 181–190.

Tang, L., Jiang, W., Liu, J., Dong, Y., 2015. Research into container reshuffling

and stacking problems in container terminal yards. IIE Transactions 47, 751–

766.

Tuba, M., Jovanovic, R., 2009. An analysis of different variations of ant colony

optimization to the minimum weight vertex cover problem. WSEAS Trans-

actions on Information Science and Applications 6, 936–945.

Tus, A., Rendl, A., Raidl, G.R., 2015. Metaheuristics for the two-dimensional

container pre-marshalling problem, in: International Conference on Learning

and Intelligent Optimization, Springer. pp. 186–201.

Ünlüyurt, T., Aydın, C., 2012. Improved rehandling strategies for the container

retrieval process. Journal of Advanced Transportation 46, 378–393.

Wan, Y.W., Liu, J., Tsai, P.C., 2009. The assignment of storage locations to

containers for a container stack. Naval Research Logistics (NRL) 56, 699–713.

38

Wilmsmeier, G., Froese, J., Zotz, A., Meyer, A., 2014. Energy consumption and

efficiency: Emerging challenges from reefer trade in South American container

terminals. FAL Bulletin 329.

Wu, K.C., Ting, C.J., 2012. A beam search algorithm for minimizing reshuf-

fle operations at container yards, in: Proceedings of the 2010 International

Conference on Logistics and Maritime Systems, Busan, Korea.

Zehendner, E., Caserta, M., Feillet, D., Schwarze, S., Voß, S., 2015. An improved

mathematical formulation for the blocks relocation problem. European Jour-

nal of Operational Research 245, 415–422.

Zehendner, E., Feillet, D., Jaillet, P., 2017. An algorithm with performance

guarantee for the online container relocation problem. European Journal of

Operational Research 259, 48–62.

Zhang, C., 2000. Resource Planning in Container Storage Yard. Ph.D. thesis.

Department of Industrial Engineering, Hong Kong University of Science and

Technology.

Zhang, D., Du, L., 2011. Hybrid ant colony optimization based on genetic

algorithm for container loading problem, in: 2011 International Conference

of Soft Computing and Pattern Recognition (SoCPaR), pp. 10–14.

Zhu, M., Fan, X., He, Q., 2010. A heuristic approach for transportation planning

optimization in container yard, in: 2010 IEEE International Conference on

Industrial Engineering and Engineering Management (IEEM), pp. 1766–1770.

Zhu, W., Qin, H., Lim, A., Zhang, H., 2012. Iterative deepening A* algorithms

for the container relocation problem. IEEE Transactions on Automation Sci-

ence and Engineering 9, 710–722.

39

	Introduction
	Definition of the BRP
	Outline of the Greedy algorithm for the rBRP
	Greedy algorithm for the uBRP
	Basic greedy algorithm
	Extended greedy algorithm

	Application of ACO to the BRP
	Pheromone Matrix
	Transition Rule
	Global and Local Update Rules
	Implementation

	Application of ACO to alternative objectives
	Computational Experiments
	Evaluation of ACO for rBRP
	Comparison of simple greedy algorithms for uBRP
	Comparison of advanced approaches for uBRP
	Alternative objectives
	Summary

	Conclusion

