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Abstract

In this paper we focus on finding high quality solutions for the problem of

maximum partitioning of graphs with supply and demand (MPGSD). There

is a growing interest for the MPGSD due to its close connection to problems

appearing in the field of electrical distribution systems, especially for the op-

timization of self-adequacy of interconnected microgrids. We propose an ant

colony optimization algorithm for the problem. With the goal of further im-

proving the algorithm we combine it with a previously developed correction

procedure. In our computational experiments we evaluate the performance of

the proposed algorithm on trees, 3-connected graphs, series-parallel graphs and

general graphs. The tests show that the method manages to find optimal solu-

tions for more than 50% of the problem instances, and has an average relative

error of less than 0.5% when compared to known optimal solutions.

Keywords: Ant Colony Optimization, Microgrid, Graph Partitioning,

Demand Vertex, Supply Vertex, Combinatorial Optimization

1. Introduction

In recent years the research in the field of smart grids has had a significant

increase in exploring the concept of interconnected microgrids [1]. The main

reason for this shift is the increasing participation of Distributed Energy Re-
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sources (DER), like wind turbines, solar panels, etc... In practice a microgrid

consist of a cluster of DERs and loads which can be, to a certain extent, con-

trolled autonomously form the rest of the grid. It has been shown that by the

use of microgrids, Photovoltaics (PV) systems can be effectively included into

an existing infrastructure [1]. One of the main advantages of this approach is

the lowering of the interaction between the local production and the national

electric grid, utilizing only a limited number of connection points. This ap-

proach brings significant advantages to the users inside of the microgrid, such

as the increased reliability and the independence of the main grid.

This approach has resulted in novel types of typologies for electrical grids

and new aspects of such systems that should be considered. Some of the most

prominent newly emerged problems are the maximization of self-adequacy [2],

reliability, supply-security [3] and the potential for self-healing [4] of such sys-

tems. In many cases the underlying optimization problems are of a very high

complexity and can not be solved to proven optimality in polynomial time.

Electrical grids are systems of gigantic size, which makes their optimization

very hard from a computational point of view. Luckily, previous research has

shown that for many systems it is not necessary to use highly detailed models;

often simplified graph models can give sufficiently good approximations to the

original problem. The family of graph partitioning problems has proven to be

closely related to power supply and delivery networks [5, 6, 7, 8, 9].

In a system of interconnected microgrids each microgrid is made as inde-

pendent from the rest of the system as possible; this results in many positive

characteristics. Some examples are the lower complexity of the entire grid and

enhanced reliability of each of the microgrids due to the increased resistance

to failures in other parts of the system. The term independent is used for the

case when there is a minimum of power exchange between the connected mi-

crogrids. This property of the system is formally defined as the maximization

of self-adequacy of interconnected microgrids. Recently, research has been con-

ducted in developing algorithms for finding approximate solutions [2] to this

problem. Previous research has also explored the closely related problem of
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efficient decomposition or islanding of large grids into islands with a balanced

generation/load subject to specific constraints [10, 11]. Due to the large com-

plexity and size of electrical grids, when attempting to model and optimize

some global properties, it is frequently convenient to use simplified graph mod-

els. Such models often result in different versions of graph partitioning problems

suitable for specific real life applications. Some examples are having a balanced

partitioning [12], minimizing the number or weight of cuts [13, 14], or by limiting

the number of cuts [15].

The focus of this paper is on the Maximal Partitioning of Graphs with Supply

and Demand (MPGSD). The majority of previous research has been dedicated

to the theoretical aspects of this problem [16, 17, 6, 18]. A significant part of the

published work is focused on solving this problem for specific types of graphs like

trees [17, 6, 18] and series-parallel graphs [16]. A method for finding solutions

with a guarantee of a 2k-approximation for general graphs has been presented

in [9]. Different variations of the original problem have been developed, like a

parametric version [19] and one with additional capacity constraints [20].

In this paper we present an ant colony optimization (ACO) [21] approach for

finding high quality approximate solutions to the MPGSD. ACO has previously

been successfully applied to problems of multiway [22] and balanced [23] graph

partitioning. The same method has also proven to be suitable for the closely

related problems of graph cutting [24] and covering [25, 26] and partitioning of

meshes [27]. The proposed ACO adaptation for our problem of interest is based

on the greedy algorithm presented in [28, 29]. The ACO algorithm is further

improved by combining it with our previously developed correction procedure

[29]. In our tests on trees, 3-connected graphs, series-parallel graphs and gen-

eral graphs, we show that the newly developed method frequently manages to

find optimal solutions and has a small average error when compared to known

optimal solutions.

The paper is organized as follows. In the second section we give the definition

of the MPGSD followed by a section discussing related work. Then we provide

a short outline of a greedy algorithm which is used as a basis for the proposed
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method. Section 5 describes a GRASP algorithm for reasons of comparison. In

the sixth section we present details of our ACO algorithm. In the subsequent

sections we discuss results of our computational experiments and provide some

conclusions.

2. Maximal Partitioning of Graphs With Supply/Demand

The MPGSD is defined for an undirected graph G = (V,E) with a set of

nodes V and a set of edges E. The set of nodes V is split into two disjunct

subsets Vs and Vd. Each node u ∈ Vs will be called a supply vertex and will have

a corresponding positive integer value sup(u). Elements of the second subset

v ∈ Vd will be called demand vertices and will have a corresponding positive

integer value dem(v). The goal is to find a partitioning Π = {S1, S2, .., Sn} of

the graph G that satisfies the following constraints. All the subgraphs in Π

must be connected subgraphs containing only a single distinct supply node. As

a result we have |Vs| = n. Each of the Si must have a supply greater or equal to

its total demand. Each demand vertex can be an element of only one subgraph,

or in other words it can only receive ’power’ from one supply vertex through

the edges of G. For simplicity of notation let as assume that the node vi is the

supply node of subgraph Si.

The goal is to maximize the fulfillment of demands, or more precisely to

maximize the following sum.

D(Π) =
∑

S∈Π

∑

v∈S∩Vd

dem(v) (1)

while the following constraints are satisfied for all Si ∈ Π

∑

v∈Si∩Vd

dem(v) ≤ sup(vi) (2)

Si ∩ Sj = ∅ , i 6= j (3)

Si is connected (4)

An illustration of the MPGSD is given in Figure 1. It has been shown that
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Figure 1: Examples of problem instances for the MPGSD. On the left the square nodes

represent supply nodes and circles demand nodes. Numbers within the nodes correspond to

supply and demand values, respectively. The right side shows the solutions, where the same

color (or connected shaded set) of nodes indicates they are a part of the same partitioning.

the MPGSD is NP-hard even in the case of a graph containing only one supply

node and having a star structure [16].

3. Related work

As previously stated the problem of MPGSD has been widely researched with

a focus on applications in electrical distribution systems. Due to the complexity

of the problem significant effort has been dedicated to finding approximate and

exact solutions for specific types of graphs. It has been shown, by Ito et al. [30],

that the decision problem regarding the existence of a partitioning in which

all the demands are satisfied in a supply/demand graph can be solved in linear

time in the case of trees. In the same paper a pseudo-polynomial-time algorithm

is presented for solving MPGSD in case of trees with integer supply/demand

values. The computational time of this algorithm was O(Fn2) where F =
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min{
∑

v∈Vd
dem(v),

∑

v∈Vs
sup(v)}. This approach is further extended to a

fully polynomial-time approximation scheme with computational cost of O(n5).

A similar method has been developed, by the same authors, for series-parallel

graphs with the possibility of its extension to k-trees [16]. A mixed integer

program for the MPGSD has been presented in the article [31]. In this work it

has been shown that such an approach, in combination with some preprocessing,

is very efficient in case of tree graphs and suitable for general sparse graphs.

The research group of Nishizeki has introduced several variations of the

problem and explored algorithms for finding solutions. In the parametric ver-

sion [19, 32] an additional parameter 0 < r < 1 is introduced. The goal is to

create a partitioning in which all the demands are satisfied, when the demand

values are scaled to r · sup(u). Both polynomial and pseudo-polynomial time

algorithms have been presented for solving this variation in case of trees. A

different direction of expanding the original problem was the addition of capac-

ities to the edges of the graph. The capacity is introduced to limit the flow that

can pass through an edge. For this problem, in case of trees, the authors have

also presented algorithms of polynomial and psedo-polynomial complexity [18].

The concept of flows, for this type of problem, has been further extended to the

problem of spanning distribution in trees and forests of graphs [33, 34]. Another

interesting variation of the MPGSD has been presented in the article [35], in

which the constraint of having only one supply node in each of the subgraphs

has been substituted with a maximal allowed supply in each of them. In this

version of the problem multiple supply nodes are allowed in each subgraph.

An important property of MPGSD is that there is no polynomial-time ap-

proximation scheme (PTAS) for general graphs unless P = NP [16]. Only

limited research has been conducted in developing algorithms for MPGSD in

case of general graphs. In the work of Popa [9], an approximate algorithm for

the problem of interest is given with a guarantee of a 2k-approximation for gen-

eral graphs. In this paper no asymptotic computational cost is given but it is

expected that it is relatively high due to the need of calculating, and maintain-

ing, all the paths in the graph. In our previous work a two stage greedy heuristic
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method for MPGSD has been developed which has an approximate computa-

tional time of |Vd|·(|Vs|+|AvgNumNeighbors(Si)|+AvgNumConnections(u))

[29]. In the same paper a wide range of heuristic functions has been explored and

a correction procedure for improving the acquired solution has been presented.

The computational experiments have shown that this approach can find approxi-

mate solutions having an error of only a few percent compared to known optimal

solutions. This has been done by using different combinations of heuristic func-

tions, for the two stages of the algorithm, and applying the correction procedure

to generate multiple solutions that efficiently explore the solution space. The

computational efficiency of this multi-heuristic approach was demonstrated by

solving problem instances having up to 10 000 nodes within a few minutes.

To the best of our knowledge, until know only deterministic algorithms have

been explored for the MPGSD. In this work we attempt to fill this gap by intro-

ducing a stochastic method for the problem of interest; to be more precise we

develop an ACO algorithm. The goal of such research is to create a method that

can find high quality approximate solutions within a reasonable computational

time even for large scale problem instances. The second issue with current re-

search is the lack of benchmark data and results of computational experiments.

This is addressed by providing an extensive set of problem instances with known

optimal solutions for trees, 3-connected graphs, series-parallel graphs and gen-

eral graphs. We also provide experimental results of applying the proposed ACO

method for this set of data that can be used for comparison.

4. Outline of the Greedy Algorithm

In this section we give a short overview of the greedy algorithm, for which

details can be found in [28], that is used as a base for the ACO method for the

MPGSD. As previously stated, the solution of the problem of interest is a set

of |Π| = n subgraphs where n = |Vs| is the number of supply nodes. In the

initial step of the algorithm we start with n disjunct subgraphs Si, that only

contain one supply node S = {si}. At each of the following steps (iterations)
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of the algorithm one vertex v ∈ Vd is selected and used to expand a selected

subgraph Si. The selection of both v and Si is performed in a way that the

newly generated subgraph satisfies the constraints of being connected, disjunct

and fulfills Eq. 2.

Let us define NV as the set of adjacent vertices to v in G using the following

equation

NV (v) = {u | u ∈ V ∧ (u, v) ∈ E} (5)

The idea is to gradually expand each of the subgraphs Si by adding new

vertices v to them. The set of potential candidates for expansion of subgraph

Si, or in other words vertices that are adjacent to Si, can be defined using the

extension of NV to subgraphs. It is important to note that as the subgraph Si

will be changed in subsequent iterations, the notation Sk
i will be used to specify

the state of subgraph Si at iteration k. Now we can extend the definition of

NV with the following equation.

N̂k
i = NV (Sk

i ) = {u | u ∈ V ∧ ∃(v ∈ Sk
i )(u, v) ∈ E} (6)

It is evident that if the expansion of subgraph Sk
i is done by v ∈ N̂k

i the

newly created subgraph Sk+1

i will be connected, but it is not necessary that

the other constraints will be satisfied. More precisely, the new Sk+1

i need not

satisfy Eq. 2, or there may exist such an Sk+1

j that Sk+1

j ∩Sk+1

i = v for the new

subgraph. This can be avoided if instead of using set N̂k
i , we use a restricted

set of vertices Nk
i that guarantees that the constraints will be satisfied when Sk

i

is expanded using v ∈ Nk
i . We shall first define supki as the available supply for

subgraph Si at iteration k in the following equation.

supki = sup(vi)−
∑

v∈Sk

i
∩Vd

dem(v) (7)

As previously defined we have that in Eq. 7 the node vi is the supply node of

subgraph Si. Using supki given in Eq. 7, Nk
i is defined in the following way.

Nk
i = {u | u ∈ N̂k

i ∧ dem(u) ≤ supki } \
n
⋃

j=1

Sk
j (8)
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Figure 2: An example of the steps in the proposed greedy algorithm for MPGSD. The heuristic

function used for subgraph selection is hs = supk
i
and hn = dem(u) in case of node selection.

Square nodes represent supply nodes and circles demand nodes. Numbers within the nodes

correspond to supply and demand values, respectively. In case of supply nodes the second

number represents the available supply in the subgraph. The same color (or connected shaded

set) of nodes indicates they are a part of the same partition. The dashed lines are used to

indicate the connections to the corrected set of neighbors Nk

i
of a partition.

The sets Nk
i are used to specify the greedy algorithm for the MPGSD in

combination with two heuristic functions. More precisely, at each iteration one

heuristic hs is used to select the subgraph Sk
i most suitable for expansion, and

the second heuristic hv will be used to select the best v ∈ Nk
i to be added to Sk

i .

An extensive analysis of potential heuristics is given in our previous work given

in articles [28, 29]. This procedure will be repeated until it is not possible to

expand any of the subgraphs. An illustration of the proposed greedy method is

given in Figure 2. In this example the heuristic function for subgraph selection

is hs = supki which corresponds to the subgraph with maximal available supply.

The heuristic function hn is equal to dem(u), or in other words the demand

node with the highest demand value.

5. Greedy Randomized Adaptive Search Procedure (GRASP)

One of the standard methods for improving the performance of a greedy

algorithm is its extension to the GRASP [36] metaheuristic. The basic idea
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of this approach is to generate multiple solutions using a randomized greedy

algorithm and further improving them by applying a local search procedure.

In the proposed application of the GRASP metaheuristic to the MPGSD, the

previously presented greedy algorithm is used as a basis. The randomization of

the greedy algorithm has been done for both subgraph and node selection. To

be more specific, the probability of selecting an element for expanding a partial

solution, is proportional to its rank among the top n candidates. Formally the

probability for selecting some node/subgraph i has been calculated using the

following formula.

prob(i) =
rankh(i)
∑

j=1..n j
(9)

In Eq. 9 rankh(i) represents the rank of candidate i based on heuristic function

h.

The GRASP implementation corresponds to the pseudo-code in Algorithm

1.

Algorithm 1 GRASP

while (Not Stopping Criteria) do

Initialize All Si with supply nodes

Π = {S1, S2, .., Sn}

repeat

while (Sum(|Ni|) > 0) do

Randomly Select Si based on rank using hs(Si)

Randomly Select u ∈ Ni based on rank using hn(u, Si)

Add u to Si

Update auxiliary structures

end while

Apply local search to Π

Check if Π is the best found solution

until (NoChange)

end while
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As it can be seen from the pseudocode, the first loop is used to generate

multiple solutions until the stopping criterion is reached. In our implementation

the stopping criterion is a maximal number of generated generated solutions.

The inner loop corresponds to a randomized version of the previously presented

greedy method. The two selections that have been performed using a heuristic

function in the greedy algorithm, are now done using a probabilistic method.

Each such solution is further improved by applying the local search. The

local search is the same as the one previously developed for the MPGSD [29].

The final step is simply a comparison if the newly generated solution is the best

found.

6. Application of Ant Colony Optimization

In this section we present an ACO approach for solving the MPGSD, based

on the greedy algorithm from Section 4. The general idea of ACO algorithms is

to perform an ”intelligent” randomization of an appropriate greedy algorithm

for the problem of interest. There are several variations of ACO, out of which the

Ant Colony System [37] is most commonly used. In it the ”intelligence” comes

from experience gained by previously generated solutions, which is stored in a

pheromone matrix. In practice, a colony of n artificial ants generates solutions

using a probabilistic algorithm based on a heuristic function and the pheromone

matrix. As in the case of the greedy algorithm, an ant generates a solution by

expanding a partial one through several steps. The difference is that instead

of using a heuristic function it uses a probabilistic transition rule to decide

what is to be added to the partial solution. The pheromone matrix stores the

experience gathered by the artificial ants. This is done by applying a global

and local update rule to the pheromone matrix. The global update rule is used

after all n ants in the colony have generated a solution and it reinforces the

selection of elements inside of the best found solution or in some variations of

good solutions. The local update is performed after an ant has applied the

transition rule, and its purpose is to diversify the search of the solution space
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by avoiding the selection of the same elements of the solution by all of the ants.

Before defining the ACO algorithm for the MPGSD, we will first state some

observations regarding the greedy algorithm and the form of the solution of

the problem. A solution Π of the MPGSD can also be observed as a set of

pairs (s, v), which states that node v is inside subgraph Ss. In this notation

we will include (−1, v) for the case where v is not a member of any subgraph

Ss. From this type of notation we realize that in the algorithm given in the

previous section only the second stage, the selection of node v, directly specifies

the elements of the solution. The purpose of the heuristic in the first stage is to

make it possible to perform a good expansion of the partial solution, which is of

significant importance when only one solution is generated using a deterministic

algorithm. In case of an ACO algorithm this becomes less important since many

solutions are generated and the ”steering” in the direction of good solutions is,

to a large extent, done by the pheromone matrix.

Because of this, in the proposed ACO algorithm the heuristic function at

this stage will be substituted with a random selection from the set of subgraphs

that can be expanded. In this way the ACO mechanism will only be dedicated

to the selection of expansion nodes.

6.1. Algorithm Specification

To specify the ACO for the MPGSD we need to define the transition rule,

global and local update rules. In all of the following equations we will assume

that we have a randomly selected subgraph Ss with index s. We will first define

the transition rule, based on the same heuristic function as in [28], defined in

the following equation.

ηv = hn(v) = dem(v) (10)

The heuristic function ηv given in Eq. 10 states that vertices with high

demand are considered more desirable. The logic behind this is that it gets

harder to satisfy high demands as the algorithm progresses since the available

supply decreases as new vertices are added to the subgraphs. Because of this it

is better to resolve high demands early.
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Using ηv we can define the transition rule for individual ants. This selection

is done using a combination of deterministic and probabilistic steps. First we

need to include the constraint that only vertices from the set Nk
i can be selected.

We specify this constraint using the following equation.

pkv =







0 , v 6∈ Nk
s

probki , v ∈ Nk
s

(11)

In Eq. 11, pkv gives us the probability of selecting node v at step k. As

previously stated we only consider v ∈ Nk
s where s is the selected subgraph, as

a consequence the probability of selecting v /∈ Nk
s is 0. For the nodes that are

elements of Nk
s their selection is done using the following formula.

probkv =



























1 , q < q0 & v = arg max
i∈Nk

s

τisηi

0 , q < q0 & v 6= arg max
i∈Nk

s

τisηi

τvsηv∑
i∈Nk

s

τisηi
, q ≥ q0

(12)

In Eq. 12 probkv gives us the probability of selecting node v at step k. The

values of the pheromone matrix τis correspond to elements of the solution in

the form of a vertex-subgraph pair (i, s). In the same equation parameter q0

is used to define the exploitation/ exploration rate. Connected to it, q ∈ (0, 1)

is a random variable which specifies whether the next selected node will be

deterministic or non-deterministic. In the case of the former q < q0, we simply

select the node v with the maximal value of τisηi, which results in a probability

1. If the selection is non-deterministic (q > q0), the probability distribution for

node selection is given in the last row of Eq. 12.

The next component of the ACO method that needs to be specified is the

global update rule. The proposed ACO algorithm is based on the ant colony

system, in which only the best found solution deposits pheromone after each

iteration of the colony. This update is formally defined using the following

equations

∆τ = V al(Π′) (13)
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τi = (1− p)τvs + p∆τ , ∀(v, s) ∈ Π′ (14)

In Eq. 13 Π′ is used to note the currently best found solution. ∆τ is used to

specify the quality of the solution Π′ using function V al for which we will give

details in the implementation subsection. In Eq. 14, the parameter p ∈ (0, 1) is

used to specify the influence of the global update rule. It is important to point

out that Eq. 14 only effects the values of pheromone τvs for (v, s) ∈ Π′.

As previously mentioned the local update rule is applied after individual

ants perform the transition rule. In our implementation the local update rule is

applied after an ant i has generated a solution Πi using the following formula

τvs = ϕτvs , ∀(v, s) ∈ Πi (15)

In Eq. 15 ϕ ∈ (0, 1) is used to specify the influence of the local update rule.

6.2. Implementation

In this section we give details of the implementation of the proposed ACO

algorithm. The first necessary step is to define a suitable quality function V al

for the generated solutions. This is done by using the following equations.

T =
∑

v∈Vs

sup(v) (16)

V al(Π) =
1

T −D(Π) + 1
(17)

Eq. 17 states that the quality of the solution will be inversely proportional

to the difference of T , the total initially available supply in G and the satisfied

demand D(Π) of partitioning Π. To avoid division by zero, one is added to

this value. Using this measure, the initial value of all the pheromone matrix

elements tvs is set to the value V al(Πg), where Πg is the solution acquired using

the previously outlined greedy algorithm. More precisely, it corresponds to the

method presented in [28], where the node selection heuristic is the maximal

demand and the subgraph selection heuristic is the maximal available supply.
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Algorithm 2 Ant colony optimization

Generate solution Πg using the greedy algorithm

Initialize the pheromone matrix τ with V al(Πg)

while (Maximal number of iterations not reached) do

for all n ants do

Initialize Π = {S1, .., Sn} , Si = {si}

while Π can be expanded do

Randomly select S, where |NV (S)| > 0

Select v for S using transition rule

Π = Π ∪ (v, S)

Update auxiliary structures

end while

Apply local update rule for Π

end for

Apply correction procedure to Π

Apply global update rule for Πbest

end while
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With the goal of having a better presentation of the proposed method, it is

presented in the pseudo-code given in Algrothm 2.

As illustrated in the pseudo-code, the first step is generating a solution using

a greedy algorithm and initializing the pheromone matrix τ . The main loop

performs one iteration for the colony of ants by generating a solution for each of

the n artificial ants. For each of the ants we start with the initial partitioning

Π. At each iteration of the following loop, we randomly select a subgraph S,

and using the transition rule a node v is selected for expansion. After each such

step it is necessary to update the auxiliary structures, presented in [28], that

are used to make the proposed algorithm computationally efficient.

After an ant has generated a solution Π we apply the correction procedure,

presented in [29], which corresponds to a local search to improve its quality.

This is done due to the fact that, in general, ACO algorithms have a problem

with narrowing on local minima. It has been shown that the performance of

such methods can be significantly improved if they are combined with a local

search. For the newly acquired solution we apply the local update rule given

in Eq. 15. After all of the ants in the colony have generated their solutions we

apply the global update rule given in Eq. 14 for the best solution Πbest found

by the algorithm for all the previous iterations.

7. Results

In this section we present the results of the computational experiments used

to evaluate the performance of the proposed ACO methods. We have observed

the behavior of the proposed ACO algorithm, with (ACO-C) and without (ACO)

the use of a correction procedure. The comparison has been done with the

previously presented deterministic greedy algorithm (Gr) and its randomized

version (Gr-R). The goal of these test was to examine the effect of ACO learning

mechanism. Further, both ACO methods have been compared with the GRASP

metaheuristic. All the algorithms have been implemented in C# using Microsoft

Visual Studio 2012. The source code and the executive files have been made
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available at [38]. The calculations have been done on a machine with Intel(R)

Core(TM) i7-2630 QM CPU 2.00 Ghz, 4GB of DDR3-1333 RAM, running on

Microsoft Windows 7 Home Premium 64-bit.

To have an extensive evaluation of the proposed algorithm tests have been

conducted on a wide range of graphs. We have used 24 different graph sizes

having 2-100 supply nodes and 6-2000 demand nodes. For each of the test sizes

40 different problem instances have been generated. With the goal of observing

the potential dependence between the method’s performance and the graph

structure, we have performed tests on trees, 3-connected graphs, series-parallel

graphs and general graphs. A part of these test instances have been used in the

article [29] where specifics of the method for their generation are presented. It

is important to note that the optimal solutions are known for each of the test

instances due to the algorithm used for their generation. We have compared

the average solution quality and the number of found optimal solutions for each

size. All the used problem instances can be downloaded from [38].

For each of the 40 problem instances, inside of one graph size, a single run

of the ACO algorithm has been performed for both versions of the method. In

each of the runs the colony had 10 ants and 150 iterations have been performed.

In practice this means that 1500 solutions have been generated for each test

instance. The parameters for specifying the influence of the global and the

local update rules had the following values p = 0.1 and ϕ = 0.9. We have

used the value q0 = 0.9 to define the exploitation/exploration rate. The chosen

parameters correspond to the commonly used values for the ACO algorithm. In

the later part of this section a detailed sensitivity analysis for these parameters

is presented. In case of Gr-R and GRASP algorithms the same number of

solutions (1500) have been generated. In both cases the randomization has

been done using a probability distribution based on the heuristic functions used

for node/subgraph selection, as presented in Section 5.

The results of the conducted computational experiments are presented in

two groups of tables. In the Tables 1, 3, 5, 7 we compare ACO to GR, and

GR-R for general graphs, tree graphs, 3-connected graphs and series-parallel
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graphs, respectively. In the second group, see Tables 2, 4, 6, 8, we compare the

two ACO methods to the GRASP metaheuristic for the same types of graphs.

The values in these tables represent the average normalized error of the found

solutions compared to the known optimal ones, for each of the used methods.

More precisely, for each of the 40 test instances, for each graph size, the normal-

ized error is calculated by (Optimal − found)/Optimal · 100, and we show the

average values in Tables 1, 2, 3, 4, 5, 6, 7, 8. To have a better comprehension

of the performance we have also included the standard deviation and maximal

errors. The last value included in these tables is the number of found optimal

solutions (hits) for each graph size out of the 40 test instances.

For all types of the tested graphs, there is a very significant improvement

in the quality of found solutions by the simple inclusion of randomization to

Gr. The advantage of Gr-R is most notable in case of the smallest problem

instances, where it frequently manages to find optimal solutions. In case of small

graphs having 2 or 5 supply nodes it manages to slightly out perform ACO. The

reason for this is that the ACO method tends to become trapped in some local

optima and repeatedly generate the same solutions. As discussed in [25], this

is a common problem with ACO implementations which can relatively easily

be avoided by using multiple restarts or some kind of pheromone correction

procedure. In case of the greedy algorithms the average error varies from less

than 1% to 16%, and 0 to 10% in case of Gr and Gr-R, respectively. It is

important to point out that the benefit of the randomization in the greedy

algorithm decreases with the size of the graphs. Overall, the ACO algorithm

significantly outperforms Gr-R having the average error in the range between

0-4%. The advantage of the learning mechanism inside ACO is most notable in

case of the largest graphs.

The results presented in Tables 2, 4, 6, 8 show that the GRASP meta-

heuristic has a very good performance and significantly outperforms Gr-R. The

average error ranges from 0- 8%. This approach has proven to be extremely

effective in case of small graphs (2 or 5 supply nodes) where it manages to find

optimal solutions in almost all the tested cases. The conducted computational
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experiments show that GRASP has a better performance than ACO in all but

the largest problem instances (50, 100 supply nodes). In case of such large

graphs the improvement of GRASP compared to Gr-R is notably smaller than

in case of small graphs. Overall the ACO-C algorithm has a notably better

performance when compared to the other tested methods. The conducted com-

putational experiments show that the inclusion of a local search is essential for

the performance of ACO in case of MPGSD.

It is important to note that there is a difference in performance, when the

average error is observed, of the methods for different types of graphs. The de-

terministic greedy algorithm has the best performance in case of general graphs

and the worst for series-parallel graphs. A similar tendency has been shown for

Gr-R and GRASP, especially in case of large graphs, but with higher quality of

found solutions. For the other types of instances (tree, 3-connected and general

graphs) the increased level of connectivity in a graph improves the performance

of the Gr, Gr-R and GRASP methods. In case of the proposed ACO algorithms

we have an opposite situation. For trees, when the performance was the best,

the ACO method had only twice an average error higher than 1% and never

higher than 2.03%. ACO-C produces even better results with never having an

error greater than 1%, and having an error of less than 0.1% in 19 out of 24

graph sizes.

The results in Tables 1, 3 , 5, 7 show that the Gr and Gr-R only manage

to find optimal solutions in a few cases for the smallest graphs. On the other

hand the ACO-C manages to find the optimal solution for about 50% of the

test instances, while ACO is close to 30%. As in the case of average errors

both ACO methods have a significantly better performance for trees than other

graphs. In case of trees ACO-C has found the optimal solution for 65% of

the test instances, but it would rarely find ones for the largest graphs. It is

interesting to note that the negative effect of the specific structure of series-

parallel graphs on the performance of the Gr-R algorithm is to a large extent

removed by the inclusion of the ACO mechanism. For this type of graphs the

ACO-C managed to find the second highest number of optimal solutions.
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In Table 9 we give the execution times of the computational experiments

given in Tables 2, 4, 6, 8. To be exact, the total computational time for solving

all 40 problem instances of one graph size are presented for ACO and ACO-C.

Our tests have shown that the ACO mechanization (transition, local and global

update rule) was only a minor part of the computational cost compared to the

greedy algorithm. Due to this fact we did not include the computational time

for the greedy method in Table 9, since it is approximately equal to the one of

ACO divided by 1500. The execution times of ACO, has shown a dependence

on the type of the graph. The method had the shortest execution times for trees

and the longest in case of general graphs. In general it would increase with the

connectivity of a graph. The relative increase in calculation time of ACO-C

compared to ACO had a similar behavior, in regards to connectivity, and it had

the range from 1.1 to 3 times.

Due to the stochastic nature of the ACO algorithm, we have also performed

multiple runs of ACO and ACO-C, with different seeds for the random number

generator, on a single problem instance. In case of this type of analysis, for small

problem instances both methods have a very good performance and manage to

find the best solution for the vast majority of runs. The interesting cases are

connected to the – harder to solve – large graph sizes. The behavior of both

algorithms is similar for all tested instances in one problem size, because of

which we believe it is sufficient to give a graphic illustration only for a single

test instance for the different graph types in Figure 3. For all the tested graph

types the ACO-C has a significantly higher speed of convergence. We can also

see that both methods have a notable dependence on the selected seed of the

random number generator since the difference between minimal and maximal

error is 2% and 1% for ACO and ACO-C, respectively.

In our final group of tests we have analyzed the parameter sensitivity of the

proposed ACO method. Due to the fact that there was no significant difference

in the behavior of the ACO algorithm for different types of graphs the illustra-

tion is only given for general ones. For each of the parameters, tests have been

conducted on graphs having different ratios between the number of supply and
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(a) General graph with 50 supply and 250

demand nodes

(b) Tree graph with 50 supply and 1000 de-

mand nodes

(c) 3-connected graph with 50 supply and

250 demand nodes

(d) Series/Parallel graph with 50 supply

and 250 demand nodes

Figure 3: Illustration of the performance of ACO and ACO-C for 20 runs on different types

of graphs. Each of the subgraphs shows the average error for the 20 runs at each iteration on

a single problem instance. The range represents the maximal and minimal error at each step.

demand nodes. The results can be seen in Figures 4, 5, 6 for the parameters

q0, p, ϕ. As previously stated the best performance of the algorithm has been

achieved for p = 0.1, ϕ = 0.9 and q0 = 0.9. Figure 4 shows that the pro-

posed algorithm is highly sensitive to changes in the exploration/exploitation

rate specified by q0. The algorithm was significantly less sensitive to changes

in the values of the other two parameters. Changes to the parameter p had

the least effect on the performance of the proposed method. Although the best

results have been achieved for p = 0.1, small changes in p hardly influenced the

performance of the algorithm. Even in case of p = 0.75 the algorithm managed

21



(a) 25 supply and 75 demand nodes (b) 25 supply and 125 demand nodes

(c) 25 supply and 250 demand nodes (d) 25 supply and 500 demand nodes

Figure 4: Sensitivity of the ACO algorithm to changes in the value of the parameter q0 in

case of general graphs for different graph sizes. The results show the average error of a single

run on each of the 40 problem instances inside of one graph size at each iteration. The values

of the other ACO parameters where p = 0.1 and ϕ = 0.9

to find only slightly worse results than in the best case.

From the performed tests we can conclude that the proposed ACO algorithm

is a very effective method for solving the MPGSD. The tests have also shown

that, as for many others, in the case of the problem of interest the performance

of the ACO algorithm can be significantly improved by adding a local search

method. Finally, the quality of the solutions acquired by the ACO and ACO-C

is to a certain extent dependent on the seed of the random number generator.

Because of this fact, when applying the proposed method it is advisable to

perform multiple runs to get the highest quality of found solutions.

22



(a) 50 supply and 125 demand nodes (b) 50 supply and 250 demand nodes

(c) 50 supply and 500 demand nodes (d) 50 supply and 1000 demand nodes

Figure 5: Sensitivity of the ACO algorithm to changes in the value of the parameter p in case

of general graphs for different graph sizes. The results show the average error of a single run

on each of the 40 problem instances inside of one graph size at each iteration. The values of

the other ACO parameters where q0 = 0.9 and ϕ = 0.9

8. Conclusion

In this paper we have presented an ant colony optimization algorithm for

solving the problem of the maximum partitioning of graphs with supply and

demand. To the best of our knowledge, this is the first time that the ACO

metaheuristic has been applied to this type of problem. The basic ACO algo-

rithm has been combined with a local search to enhance the performance of

the method. Our computational experiments have shown that the proposed

approach managed to find the optimal solutions in more than 50% of the test

problem instances, and had an average relative error of less then 0.5%. The
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(a) 25 supply and 75 demand nodes (b) 25 supply and 125 demand nodes

(c) 25 supply and 250 demand nodes (d) 25 supply and 500 demand nodes

Figure 6: Sensitivity of the ACO algorithm to changes in the value of the parameter ϕ in case

of general graphs for different graph sizes. The results show the average error of a single run

on each of the 40 problem instances inside of one graph size at each iteration.The values of

the other ACO parameters where p = 0.1 and q0 = 0.9

tests have been performed on trees, 3-connected graphs, series-parallel graphs

and general graphs and have shown that the method is most suitable for trees.

In the future we plan to adapt the method to a less constrained and a

stochastic version of the problem. This type of research can prove to be very

beneficial for problems appearing in the field of electrical distribution systems

especially for the optimization of self-adequacy of interconnected microgrids and

other related problems.
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Table 1: Comparison of the basic (Gr) and randomized (Gr-R) greedy algorithms with the

ant colony optimization (ACO) method for general graphs. In case of Gr-R and ACO 1500

solutions have been generated. The best results for each graph size are underlined.

Sup X Dem Avg(Stdev) Max Hits

Gr Gr-R ACO Gr Gr-R ACO Gr Gr-R ACO

2 X 6 7.45(8.71) 0.00(0.00) 0.28(1.77) 46.10 0.00 11.36 40 17 39

2 X 10 5.62(4.39) 0.00(0.00) 0.24(0.60) 23.08 0.00 3.04 40 4 32

2 X 20 1.85(1.11) 0.01(0.03) 0.09(0.13) 4.21 0.22 0.46 39 1 26

2 X 40 0.77(0.50) 0.00(0.00) 0.00(0.00) 1.74 0.00 0.00 40 3 40

5 X 15 10.88(7.77) 0.17(0.51) 0.59(1.31) 38.78 2.66 7.14 34 0 28

5 X 25 7.89(5.99) 0.91(0.56) 0.78(0.77) 34.62 2.14 3.84 0 0 7

5 X 50 3.89(2.62) 0.44(0.21) 0.15(0.13) 10.27 0.91 0.65 1 0 8

5 X 100 2.01(2.54) 0.14(0.07) 0.02(0.03) 13.63 0.40 0.13 0 0 26

10 X 30 11.53(4.44) 1.74(1.55) 0.51(0.82) 23.88 6.35 4.29 1 0 19

10 X 50 7.36(2.79) 2.46(0.63) 1.08(0.45) 14.19 3.94 2.20 0 0 0

10 X 100 3.92(2.44) 1.13(0.29) 0.28(0.14) 13.14 1.80 0.69 0 0 0

10 X 200 2.52(2.81) 0.39(0.09) 0.10(0.05) 12.98 0.60 0.22 0 0 1

25 X 75 12.14(3.16) 5.72(1.34) 1.63(1.08) 19.23 9.61 5.38 0 0 1

25 X 125 8.64(2.07) 5.05(0.83) 1.76(0.58) 13.64 6.64 3.16 0 0 0

25 X 250 4.60(1.49) 2.36(0.42) 0.83(0.19) 8.68 3.62 1.22 0 0 0

25 X 500 2.81(1.37) 1.03(0.46) 0.44(0.07) 6.10 3.12 0.56 0 0 0

50 X 150 12.04(1.86) 8.29(0.84) 2.20(0.78) 15.63 9.79 3.91 0 0 0

50 X 250 8.76(1.34) 6.68(0.92) 2.67(0.47) 10.80 8.72 3.59 0 0 0

50 X 500 4.65(1.28) 3.10(0.45) 1.56(0.23) 7.39 4.31 2.27 0 0 0

50 X 1000 3.07(0.99) 1.73(0.51) 0.73(0.11) 5.97 3.79 0.99 0 0 0

100 X 300 11.75(1.45) 10.42(0.88) 3.69(0.69) 14.61 11.89 6.05 0 0 0

100 X 500 8.77(1.07) 8.06(0.63) 3.93(0.60) 11.65 9.57 6.21 0 0 0

100 X 1000 4.67(0.89) 4.33(0.48) 2.29(0.22) 7.04 5.19 2.71 0 0 0

100 X 2000 3.04(0.73) 2.60(0.63) 1.11(0.22) 4.58 4.68 1.82 0 0 0

30



Table 2: Comparison of the performance of the GRASP, ACO and ACO-C methods for general

graphs. The results are presented for the case when each method has generated 1500 solutions.

The best results for each graph size are underlined.

Sup X Dem Avg(Stdev) Max Hits

GRASP ACO ACO-C GRASP ACO ACO-C GRASP ACO ACO-C

2 X 6 0.00(0.00) 0.28(1.77) 0.00(0.00) 0.00 11.36 0.00 40 39 40

2 X 10 0.00(0.00) 0.24(0.60) 0.00(0.00) 0.00 3.04 0.00 40 32 40

2 X 20 0.00(0.00) 0.09(0.13) 0.00(0.00) 0.00 0.46 0.00 40 26 40

2 X 40 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00 0.00 0.00 40 40 40

5 X 15 0.00(0.00) 0.59(1.31) 0.13(0.44) 0.00 7.14 2.22 40 28 36

5 X 25 0.04(0.12) 0.78(0.77) 0.22(0.29) 0.55 3.84 1.07 35 7 21

5 X 50 0.00(0.00) 0.15(0.13) 0.01(0.03) 0.10 0.65 0.10 38 8 35

5 X 100 0.00(0.00) 0.02(0.03) 0.00(0.00) 0.00 0.13 0.00 40 26 40

10 X 30 0.03(0.14) 0.51(0.82) 0.16(0.40) 0.85 4.29 1.60 37 19 32

10 X 50 0.53(0.33) 1.08(0.45) 0.26(0.26) 1.19 2.20 0.90 4 0 13

10 X 100 0.14(0.06) 0.28(0.14) 0.05(0.05) 0.31 0.69 0.18 3 0 18

10 X 200 0.01(0.01) 0.10(0.05) 0.00(0.00) 0.02 0.22 0.00 31 1 40

25 X 75 1.08(0.57) 1.63(1.08) 0.28(0.29) 2.32 5.38 1.14 0 1 12

25 X 125 1.45(0.35) 1.76(0.58) 0.51(0.31) 2.50 3.16 1.49 0 0 0

25 X 250 0.48(0.10) 0.83(0.19) 0.13(0.06) 0.72 1.22 0.23 0 0 0

25 X 500 0.12(0.04) 0.44(0.07) 0.01(0.02) 0.21 0.56 0.06 0 0 11

50 X 150 2.37(0.61) 2.20(0.78) 0.46(0.40) 3.91 3.91 1.78 0 0 3

50 X 250 2.83(0.34) 2.67(0.47) 0.84(0.22) 3.16 3.59 1.42 0 0 0

50 X 500 1.79(0.21) 1.56(0.23) 0.31(0.07) 0.97 2.27 0.50 0 0 0

50 X 1000 0.93(0.19) 0.73(0.11) 0.06(0.02) 0.70 0.99 0.13 0 0 0

100 X 300 3.78(0.59) 3.69(0.69) 0.90(0.42) 5.22 6.05 2.02 0 0 0

100 X 500 4.06(0.38) 3.93(0.60) 1.42(0.28) 3.96 6.21 2.13 0 0 0

100 X 1000 3.10(0.33) 2.29(0.22) 0.60(0.07) 1.48 2.71 0.74 0 0 0

100 X 2000 1.41(0.43) 1.11(0.22) 0.14(0.04) 1.35 1.82 0.27 0 0 0
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Table 3: Comparison of the basic (Gr) and randomized (Gr-R) greedy algorithms with the ant

colony optimization (ACO) method for tree graphs. In case of Gr-R and ACO 1500 solutions

have been generated. The best results for each graph size are underlined.

Sup X Dem Avg(Stdev) Max Hits

Gr Gr-R ACO Gr Gr-R ACO Gr Gr-R ACO

2 X 6 1.67(5.92) 0.00(0.00) 0.00(0.00) 26.37 0.00 0.00 37 40 40

2 X 10 5.46(8.02) 0.00(0.00) 0.11(0.50) 35.14 0.00 3.08 16 40 37

2 X 20 8.71(9.11) 0.03(0.15) 0.09(0.34) 28.94 0.78 2.13 3 38 35

2 X 40 6.09(7.65) 0.00(0.00) 0.05(0.14) 30.58 0.00 0.57 3 40 34

5 X 15 8.47(8.71) 0.00(0.00) 0.01(0.04) 27.19 0.00 0.27 13 40 39

5 X 25 7.87(6.04) 0.00(0.00) 0.10(0.25) 21.80 0.00 1.11 1 40 33

5 X 50 10.63(6.99) 0.12(0.18) 0.07(0.16) 29.60 0.45 0.89 0 26 28

5 X 100 16.43(11.22) 0.18(0.81) 0.12(0.64) 50.93 5.23 4.09 0 25 30

10 X 30 8.66(6.44) 0.00(0.00) 0.09(0.25) 27.17 0.00 1.13 2 40 34

10 X 50 9.67(5.59) 0.10(0.27) 0.07(0.17) 29.53 1.62 0.70 0 29 31

10 X 100 11.40(6.33) 0.44(0.62) 0.09(0.13) 26.73 3.30 0.53 0 9 19

10 X 200 13.92(6.58) 0.79(1.08) 0.27(1.15) 26.02 7.44 6.71 0 1 23

25 X 75 9.52(4.87) 0.78(0.74) 0.18(0.35) 22.49 3.14 1.44 0 5 26

25 X 125 10.79(3.83) 2.20(1.38 0.15(0.16) 17.29 5.92 0.63 0 0 12

25 X 250 10.68(3.22) 2.94(1.34) 0.29(0.60) 20.23 6.47 2.73 0 0 9

25 X 500 11.64(3.93) 3.65(1.48) 0.48(0.69) 19.37 6.98 2.72 0 0 2

50 X 150 8.66(2.93) 3.09(1.14) 0.15(0.18) 17.04 5.33 0.76 0 0 13

50 X 250 10.20(3.07) 4.69(1.25) 0.31(0.29) 18.72 8.28 1.23 0 0 2

50 X 500 11.92(3.03) 5.72(1.23) 0.44(0.50) 18.84 7.97 2.21 0 0 0

50 X 1000 12.75(2.41) 6.45(1.43) 1.09(0.85) 18.30 9.61 3.61 0 0 0

100 X 300 9.83(1.99) 5.57(0.84) 0.27(0.18) 14.11 8.19 0.81 0 0 2

100 X 500 10.26(1.79) 6.68(1.01) 0.56(0.35) 14.43 8.61 1.62 0 0 0

100 X 1000 11.18(1.82) 7.91(1.19) 1.05(0.51) 14.55 10.59 2.25 0 0 0

100 X 2000 12.07(1.86) 7.98(1.23) 2.03(0.75) 17.49 10.47 3.69 0 0 0
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Table 4: Comparison of the performance of the GRASP, ACO and ACO-C methods for tree

graphs. The results are presented for the case when each method has generated 1500 solutions.

The best results for each graph size are underlined.

Sup X Dem Avg(Stdev) Max Hits

GRASP ACO ACO-C GRASP ACO ACO-C GRASP ACO ACO-C

2 X 6 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00 0.00 0.00 40 40 40

2 X 10 0.00(0.00) 0.11(0.50) 0.02(0.13) 0.00 3.08 0.85 40 37 39

2 X 20 0.02(0.10) 0.09(0.34) 0.01(0.07) 0.62 2.13 0.43 38 35 39

2 X 40 0.00(0.00) 0.05(0.14) 0.00(0.00) 0.00 0.57 0.00 40 34 40

5 X 15 0.00(0.00) 0.01(0.04) 0.00(0.00) 0.00 0.27 0.00 40 39 40

5 X 25 0.00(0.00) 0.10(0.25) 0.07(0.29) 0.00 1.11 1.49 40 33 37

5 X 50 0.00(0.00) 0.07(0.16) 0.04(0.15) 0.00 0.89 0.89 40 28 35

5 X 100 0.00(0.01) 0.12(0.64) 0.00(0.00) 0.05 4.09 0.00 39 30 40

10 X 30 0.00(0.00) 0.09(0.25) 0.01(0.06) 0.00 1.13 0.37 40 34 39

10 X 50 0.01(0.04) 0.07(0.17) 0.07(0.21) 0.26 0.70 1.08 38 31 34

10 X 100 0.00(0.00) 0.09(0.13) 0.03(0.09) 0.05 0.53 0.48 38 19 33

10 X 200 0.26(0.63) 0.27(1.15) 0.25(1.15) 6.71 6.71 6.71 33 23 37

25 X 75 0.00(0.00) 0.18(0.35) 0.03(0.12) 0.00 1.44 0.73 40 26 36

25 X 125 0.08(0.16) 0.15(0.16) 0.06(0.13) 0.56 0.63 0.47 21 12 27

25 X 250 0.24(0.47) 0.29(0.60) 0.06(0.23) 2.68 2.73 1.31 11 9 30

25 X 500 1.87(1.58) 0.48(0.69) 0.14(0.34) 5.21 2.72 1.27 0 2 30

50 X 150 0.06(0.06) 0.15(0.18) 0.04(0.09) 0.53 0.76 0.46 29 13 30

50 X 250 0.31(0.35) 0.31(0.29) 0.07(0.09) 1.76 1.23 0.39 6 2 17

50 X 500 2.41(1.32) 0.44(0.50) 0.05(0.13) 5.08 2.21 0.79 0 0 11

50 X 1000 4.65(1.25) 1.09(0.85) 0.51(0.60) 7.70 3.61 1.92 0 0 10

100 X 300 0.29(0.21) 0.27(0.18) 0.09(0.15) 0.80 0.81 0.64 5 2 17

100 X 500 2.01(0.93) 0.56(0.35) 0.08(0.06) 4.22 1.62 0.21 0 0 3

100 X 1000 4.94(1.42) 1.05(0.51) 0.18(0.29) 7.60 2.25 1.55 0 0 3

100 X 2000 6.58(1.13) 2.03(0.75) 0.97(0.75) 9.30 3.69 3.99 0 0 0
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Table 5: Comparison of the basic (Gr) and randomized (Gr-R) greedy algorithms with the

ant colony optimization (ACO) method for 3-connected graphs. In case of Gr-R and ACO

1500 solutions have been generated. The best results for each graph size are underlined.

Sup X Dem Avg(Stdev) Max Hits

Gr Gr-R ACO Gr Gr-R ACO Gr Gr-R ACO

2 X 6 7.03(10.06) 0.00(0.00) 0.00(0.00) 44.07 0.00 0.00 22 40 40

2 X 10 6.16(5.59) 0.00(0.00) 0.21(0.53) 29.76 0.00 2.40 3 40 33

2 X 20 2.65(1.56) 0.01(0.04) 0.15(0.21) 9.05 0.23 0.73 0 39 22

2 X 40 1.10(2.50) 0.00(0.00) 0.00(0.00) 16.35 0.00 0.00 2 40 40

5 X 15 9.06(6.78) 0.09(0.38) 0.11(0.32) 30.39 2.27 1.59 4 37 35

5 X 25 8.10(3.76) 0.51(0.48) 0.47(0.44) 16.51 2.05 1.48 1 10 12

5 X 50 4.85(3.88) 0.48(0.22) 0.29(0.20) 13.98 0.91 0.79 0 1 5

5 X 100 1.15(1.19) 0.13(0.06) 0.03(0.05) 6.86 0.27 0.22 0 1 25

10 X 30 11.60(5.93) 1.12(1.14) 0.35(0.68) 25.42 3.86 2.83 0 11 25

10 X 50 8.97(3.77) 2.48(0.87) 1.14(0.84) 18.29 4.61 4.23 0 0 0

10 X 100 4.47(2.35) 1.25(0.23) 0.34(0.19) 9.66 1.74 0.90 0 0 0

10 X 200 1.73(1.88) 0.39(0.07) 0.09(0.04) 7.70 0.56 0.21 0 0 1

25 X 75 10.71(2.55) 5.58(1.29 0.87(0.62) 16.28 9.74 2.33 0 0 6

25 X 125 8.85(1.85) 4.74(0.81 1.52(0.48) 13.34 6.20 2.51 0 0 0

25 X 250 4.62(1.45) 2.37(0.30) 0.80(0.20) 8.77 2.96 1.35 0 0 0

25 X 500 1.83(1.10) 0.73(0.06 0.42(0.07) 5.24 0.85 0.56 0 0 0

50 X 150 11.98(1.90) 8.05(1.08) 1.58(0.62) 16.85 10.55 3.23 0 0 0

50 X 250 9.66(1.60) 6.77(0.79) 2.36(0.53) 14.13 8.42 4.08 0 0 0

50 X 500 4.62(1.04) 3.28(0.40) 1.52(0.21) 6.81 4.44 1.87 0 0 0

50 X 1000 1.67(0.68) 0.99(0.10) 0.69(0.07) 3.24 1.30 0.87 0 0 0

100 X 300 11.87(1.37) 9.93(0.79 2.70(0.66) 15.00 11.51 4.00 0 0 0

100 X 500 9.18(1.34) 8.31(0.62) 3.73(0.47) 13.35 9.35 4.94 0 0 0

100 X 1000 4.82(0.76) 4.33(0.39) 2.25(0.21) 6.38 5.14 2.78 0 0 0

100 X 2000 1.87(0.50) 1.39(0.15) 0.94(0.07) 3.69 1.76 1.06 0 0 0
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Table 6: Comparison of the performance of the GRASP, ACO and ACO-C methods for 3-

connected graphs. The results are presented for the case when each method has generated

1500 solutions. The best results for each graph size are underlined.

Sup X Dem Avg(Stdev) Max Hits

GRASP ACO ACO-C GRASP ACO ACO-C GRASP ACO ACO-C

2 X 6 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00 0.00 0.00 40 40 40

2 X 10 0.00(0.00) 0.21(0.53) 0.12(0.66) 0.00 2.40 4.23 40 33 38

2 X 20 0.00(0.00) 0.15(0.21) 0.02(0.07) 0.00 0.73 0.24 40 22 36

2 X 40 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00 0.00 0.00 40 40 40

5 X 15 0.00(0.00) 0.11(0.32) 0.01(0.05) 0.00 1.59 0.32 40 35 39

5 X 25 0.07(0.19) 0.47(0.44) 0.26(0.40) 0.82 1.48 1.43 34 12 22

5 X 50 0.03(0.05) 0.29(0.20) 0.07(0.08) 0.19 0.79 0.27 27 5 20

5 X 100 0.00(0.00) 0.03(0.05) 0.00(0.00) 0.00 0.22 0.00 40 25 40

10 X 30 0.04(0.27) 0.35(0.68) 0.10(0.34) 1.73 2.83 1.73 39 25 35

10 X 50 0.41(0.27) 1.14(0.84) 0.27(0.29) 1.99 4.23 1.23 3 0 12

10 X 100 0.18(0.08) 0.34(0.19) 0.09(0.08) 0.40 0.90 0.31 1 0 6

10 X 200 0.01(0.01) 0.09(0.04) 0.00(0.01) 0.05 0.21 0.04 37 1 38

25 X 75 0.61(0.42) 0.87(0.62) 0.21(0.31) 1.64 2.33 1.06 5 6 23

25 X 125 1.31(0.36) 1.52(0.48) 0.47(0.22) 2.36 2.51 1.01 0 0 0

25 X 250 0.49(0.08) 0.80(0.20) 0.12(0.06) 0.64 1.35 0.30 0 0 0

25 X 500 0.07(0.02) 0.42(0.07) 0.01(0.01) 0.10 0.56 0.05 0 0 17

50 X 150 1.59(0.59) 1.58(0.62) 0.19(0.22) 3.73 3.23 0.72 0 0 10

50 X 250 2.18(0.34 2.36(0.53) 0.77(0.29) 3.73 4.08 1.55 0 0 0

50 X 500 1.78(0.08) 1.52(0.21) 0.33(0.09) 0.94 1.87 0.54 0 0 0

50 X 1000 0.83(0.02) 0.69(0.07) 0.05(0.01) 0.17 0.87 0.08 0 0 0

100 X 300 3.01(0.45) 2.70(0.66) 0.44(0.29) 4.14 4.00 1.16 0 0 2

100 X 500 3.92(0.60) 3.73(0.47) 1.21(0.30) 3.51 4.94 1.90 0 0 0

100 X 1000 2.41(0.26) 2.25(0.21) 0.58(0.08) 1.16 2.78 0.76 0 0 0

100 X 2000 1.18(0.12) 0.94(0.07) 0.10(0.01) 0.22 1.06 0.12 0 0 0
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Table 7: Comparison of the basic (Gr) and randomized (Gr-R) greedy algorithms with the

ant colony optimization (ACO) method for Series/parallel graphs. In case of Gr-R and ACO

1500 solutions have been generated. The best results for each graph size are underlined.

Sup X Dem Avg(Stdev) Max Hits

Gr Gr-R ACO Gr Gr-R ACO Gr Gr-R ACO

2 X 6 8.94(12.18) 0.00(0.00) 0.00(0.00) 37.82 0.00 0.00 24 40 40

2 X 10 7.00(5.84) 0.00(0.00) 0.10(0.39) 25.85 0.00 1.84 7 40 37

2 X 20 6.80(7.98) 0.10(0.36) 0.14(0.28) 31.28 1.69 1.48 2 35 26

2 X 40 4.28(7.70) 0.00(0.02) 0.04(0.12) 42.28 0.11 0.68 2 39 35

5 X 15 9.77(7.61) 0.00(0.00) 0.12(0.46) 26.52 0.00 2.66 8 40 35

5 X 25 8.37(5.45) 0.31(0.57) 0.26(0.57) 24.72 2.40 2.40 1 26 27

5 X 50 8.39(5.78) 0.43(0.34) 0.24(0.30) 27.61 1.67 1.49 0 5 12

5 X 100 8.98(7.24) 0.43(0.40) 0.09(0.16) 27.79 1.85 0.91 0 2 19

10 X 30 12.30(7.09) 0.30(0.50) 0.22(0.43) 26.86 2.07 2.07 1 24 26

10 X 50 11.97(6.48) 1.46(0.89) 0.38(0.48) 35.05 4.02 2.37 0 1 9

10 X 100 9.05(4.16) 1.53(0.90) 0.42(0.47) 23.06 3.96 2.22 0 0 7

10 X 200 11.40(5.03) 1.50(0.77) 0.27(0.30) 23.70 4.15 1.67 0 0 1

25 X 75 12.82(3.72) 2.93(1.25) 0.30(0.37) 19.35 6.12 1.60 0 0 9

25 X 125 12.20(3.34) 4.64(1.53) 0.60(0.59) 20.71 8.71 2.45 0 0 1

25 X 250 11.80(3.71) 4.20(1.37) 1.01(0.81) 22.43 8.25 4.81 0 0 0

25 X 500 11.65(4.27) 4.56(2.28) 1.18(1.06) 27.93 13.67 5.15 0 0 0

50 X 150 12.05(3.24) 6.09(1.23) 0.63(0.48) 18.73 8.72 1.98 0 0 3

50 X 250 11.63(2.40) 6.85(1.25) 1.19(0.61) 18.63 9.83 3.29 0 0 0

50 X 500 12.01(2.39) 7.31(1.48) 1.59(0.73) 17.19 10.95 4.99 0 0 0

50 X 1000 11.75(2.50) 6.86(1.84) 2.11(1.14) 18.06 12.49 5.47 0 0 0

100 X 300 12.29(1.83) 9.00(1.06) 1.06(0.44) 16.48 10.99 1.94 0 0 0

100 X 500 11.64(1.92) 9.32(1.15) 1.94(0.64) 15.79 12.68 4.26 0 0 0

100 X 1000 11.84(1.83) 9.49(1.33) 2.74(0.72) 16.43 12.62 4.33 0 0 0

100 X 2000 11.52(1.81) 8.79(1.23) 3.09(0.93) 15.12 11.45 5.08 0 0 0
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Table 8: Comparison of the performance of the GRASP, ACO and ACO-C methods for

Series/parallel graphs. The results are presented for the case when each method has generated

1500 solutions. The best results for each graph size are underlined.

Sup X Dem Avg(Stdev) Max Hits

GRASP ACO ACO-C GRASP ACO ACO-C GRASP ACO ACO-C

2 X 6 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00 0.00 0.00 40 40 40

2 X 10 0.00(0.00) 0.10(0.39) 0.08(0.35) 0.00 1.84 1.84 40 37 38

2 X 20 0.03(0.14) 0.14(0.28) 0.08(0.25) 0.85 1.48 1.48 38 26 32

2 X 40 0.00(0.00) 0.04(0.12) 0.00(0.00) 0.00 0.68 0.00 40 35 40

5 X 15 0.00(0.00) 0.12(0.46) 0.02(0.10) 0.00 2.66 0.61 40 35 39

5 X 25 0.00(0.03) 0.31(0.57) 0.09(0.20) 0.19 2.40 1.11 39 26 28

5 X 50 0.01(0.04) 0.24(0.30) 0.04(0.07) 0.19 1.49 0.35 36 12 27

5 X 100 0.05(0.13) 0.09(0.16) 0.03(0.11) 0.95 0.91 0.64 33 19 35

10 X 30 0.03(0.19) 0.22(0.43) 0.04(0.21) 1.20 2.07 1.31 39 26 37

10 X 50 0.09(0.18) 0.38(0.48) 0.06(0.12) 0.88 2.37 0.51 27 9 28

10 X 100 0.14(0.21) 0.42(0.47) 0.10(0.17) 1.05 2.22 0.66 11 7 18

10 X 200 0.14(0.17) 0.27(0.30) 0.04(0.09) 0.89 1.67 0.36 3 1 26

25 X 75 0.15(0.19) 0.30(0.37) 0.10(0.22) 0.75 1.60 0.81 15 9 27

25 X 125 0.58(0.48) 0.60(0.59) 0.08(0.11) 1.84 2.45 0.52 3 1 19

25 X 250 0.83(0.82) 1.01(0.81) 0.20(0.43) 5.41 4.81 2.65 0 0 9

25 X 500 1.98(2.13) 1.18(1.06) 0.44(1.18) 8.48 5.15 6.24 0 0 6

50 X 150 0.70(0.47) 0.63(0.48) 0.08(0.15) 2.02 1.98 0.69 1 3 26

50 X 250 1.80(0.98) 1.19(0.61) 0.23(0.19) 4.52 3.29 0. 74 0 0 3

50 X 500 4.04(1.76) 1.59(0.73) 0.44(0.67) 7.94 4.99 3.48 0 0 0

50 X 1000 5.01(2.12) 2.11(1.14) 0.75(1.03) 11.19 5.47 4.96 0 0 0

100 X 300 2.36(1.17) 1.06(0.44) 0.12(0.16) 5.36 1.94 0.84 0 0 9

100 X 500 5.05(1.39) 1.94(0.64) 0.36(0.21) 7.70 4.26 0.88 0 0 0

100 X 1000 6.96(1.47) 2.74(0.72) 0.83(0.49) 11.04 4.33 2.22 0 0 0

100 X 2000 7.68(1.26) 3.09(0.93) 1.44(0.96) 10.89 5.08 3.71 0 0 0
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Table 9: Comparison of execution times for ACO and ACO-C for different types of graphs.

The total execution time for solving 40 test instances for one graph size is given in seconds.

Both algorithms have performed 150 iterations which is equivalent to the generation of 1500

solutions

Sup X Dem Trees 3-Connected Graphs General Graphs Series-parallel Graphs

ACO ACO-C ACO ACO-C ACO ACO-C ACO ACO-C

2 X 6 0.6 0.7 0.5 0.7 0.6 0.8 0.5 0.6

2 X 10 0.7 1.0 0.8 1.2 0.8 1.2 0.7 1.0

2 X 20 1.4 1.9 1.6 2.5 2.0 2.8 1.5 2.4

2 X 40 3.1 5.7 4.1 7.6 4.9 9.1 3.8 6.5

5 X 15 1.0 1.5 1.2 2.0 1.3 2.2 1.1 2.0

5 X 25 1.7 2.5 2.0 3.5 2.3 3.7 2.0 3.3

5 X 50 3.7 6.0 4.5 8.6 5.3 10.8 4.5 8.2

5 X 100 8.4 16.7 11.1 27.9 13.5 32.4 12.1 26.3

10 X 30 2.3 3.6 2.6 4.4 2.7 4.9 2.7 4.5

10 X 50 3.8 6.0 4.5 7.8 4.7 9.0 4.5 8.4

10 X 100 7.7 13.6 9.7 21.9 11.1 27.1 10.3 23.3

10 X 200 17.6 37.1 23.7 60.2 28.0 70.2 26.1 60.3

25 X 75 6.8 12.1 7.7 15.6 7.9 17.2 7.9 16.6

25 X 125 11.4 20.3 13.1 31.8 14.2 35.1 13.8 32.8

25 X 250 24.0 47.3 29.5 80.3 33.6 93.6 32.2 73.9

25 X 500 55.4 112.1 67.2 165.5 77.8 203.0 74.0 156.9

50 X 150 17.3 36.6 19.3 49.5 19.8 46.1 19.7 51.7

50 X 250 28.4 53.6 32.3 85.5 34.2 97.3 32.8 74.1

50 X 500 58.7 119.7 69.8 202.4 79.4 224.4 74.2 159.6

50 X 1000 131.7 240.1 179.1 470.3 200.9 555.9 187.8 379.0

100 X 300 51.1 121.6 54.8 130.1 56.3 144.4 56.7 129.6

100 X 500 86.1 148.3 97.5 254.7 100.0 274.9 95.9 190.1

100 X 1000 180.9 304.2 220.6 595.0 229.6 659.7 223.7 423.0

100 X 2000 392.8 639.3 531.3 1442.2 596.0 1748.8 512.6 984.3
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