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Abstract

Photovoltaic (PV) cells induce current–voltage (I–V ) characteristics dependent on the PV cell technology, on the thin
film structure and on their eventual flaws during the elaboration process. The operation conditions also have a relevant
impact on electrical curves characterizing these devices. The electrical parameters can be extracted from a PV panel
standard datasheet using the commonly encountered single and double diode equivalent models representing the PV
cell. This was done, in the present paper, at the most fundamental expression of these two models using evolutionary
algorithms implemented in MATLAB (i.e. metaheuristic optimization methods). Four different I–V characteristics were
available for the investigated commercial PV panel. They were fitted separately using the diode models and then taken
as a whole to obtain parameters as physically meaningful as possible for the whole temperature range. The metaheuristic
methods performed well for this problem, especially the cuckoo search algorithm. However, even with a good fitting
of the fundamental behavior of the I–V characteristics, the presented approach may yield optimized solutions not as
physically correct as it was expected. Thus, care must be taken for correctly interpreting the optimization results.

Keywords: Photovoltaics (PV), Evolutionary algorithms, PV cell electrical parameters extraction, Temperature
effects, Particle Swarm Optimization (PSO), Cuckoo search (CS)

1. Introduction

Nowadays, photovoltaic (PV) conversion devices are
major players in industrialized countries towards the pro-
duction of more sustainable energy in their energy mix,
also with possible applications outside the frame of con-
ventional electrical grids. Within the so-called green econ-
omy, projects for PV plants/farms, or the integration of
PV panels into buildings, all have a budget that is sensi-
tive to the electricity output prediction over the life span of
the PV devices. Numerous numerical models are applied
to achieve such estimations by means of the PV panel’s
performance and its mounting geometry, thus making it
possible to establish the PV module operating tempera-
ture as a function of service conditions simulation (see for
example the model of King et al. [1], or of Sánchez Barroso
et al. [2] in this issue).

Using these multi-physics models, the electrical power
outputs are easy to quantify from the solar irradiance
on the PV panels, assuming that the maximum electri-
cal power is extracted from the PV device. Practically, it
should be noted that this assumption is equivalent to a per-
fect operation of the maximum power point tracking device
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URL: http://orcid.org/0000-0002-5519-0513 (Nicolas

Barth), http://orcid.org/0000-0001-8167-1516 (Raka
Jovanovic), http://orcid.org/0000-0002-0353-9234 (Säıd Ahzi)

coupled to the PV inverter. From a theoretical point of
view, establishing the maximum power point (PMax) for
a given model of a PV panel requires certain knowledge
of the current–voltage (I–V ) characteristic of this device.
However, the I–V curve of a given PV panel/module/cell
greatly depends on its temperature, real light irradiance,
and is also a function of the PV cell technology. PV cells,
as the core of this photoconversion process, are indeed
manufactured as multilayered thin films of semiconduc-
tors with complex electronic features and dependence to
the service conditions.

The approach proposed in this article relies on the
extraction of the intrinsic parameters which accurately
describe the experimental I–V curves through the for-
malism of semi-empirical functions of these parameters
(these semi-empirical functions apply well to the PV de-
vices in general). Fundamentally, these semi-empirical re-
lations consider the PV cell as an equivalent electrical cir-
cuit that can be the single-/one-diode model illustrated
in Fig. 1 or the double-/two-diode model represented in
Fig. 2 (see for instance [3, 4]). These two equivalent cir-
cuits are well established concepts that have been used for
decades to extract the parameters of the illuminated PV
cell I–V characteristics. In the eighties, for example, a
Newton-Raphson method was presented to resolve deter-
ministically the one- and two-diode models of different PV
cells [5]. Fitting techniques were exploited ten years ear-
lier on silicon solar cells [6] (even for the two-diode model).
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Our approach aims at finding good solutions using meta-
heuristic methods (implying stochastic schemes) for the
same systems of semi-empirical relations. This method
can be applied to any kind PV cell. Similar techniques,
based on evolutionary algorithms, have been widely ap-
plied to problems in the field with great success [7–17].

It should be noted that the parameters, used to de-
scribe the system, are physically based within their well
established context, using relations of the literature that
are described in section 2. Because of this fact, the opti-
mization methods will only explore parameter values that
are physically viable. To be exact, we will explore domains
for each of them that are equivalent to the ones used in
literature, at least in the order of magnitude.
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Figure 1: One-diode equivalent circuit.

In general, experimental I–V curves are characterized
using common electrical equipments for different fixed tem-
peratures and irradiance conditions [3]. For instance, these
conditions can be defined by the conventional “standard
test conditions” (STC) which imply that the PV cell re-
ceives 1,000 W/m2 of solar irradiance at 25 ◦C (the light
spectrum being of an optical air mass at AM1.5). In a PV
panel datasheet, provided by the manufacturer, details on
the I–V characteristics are easily found at STC but also
at other test conditions with other temperatures. We rely
here on these kinds of data. We may use many experimen-
tal data, but we need at least three sufficiently different
points on each I–V characteristic for fitting purpose. This
requirement is easy to achieve since the datasheet gen-
erally contains reports of the maximum electrical power
point PMax and of the extreme values of the I–V charac-
teristic under solar irradiance (namely, they are ISC the
short circuit (SC) current of the device and VOC its open
circuit (OC) potential/voltage).

Methods with different optimization (i.e. fitting) schemes
and with physically-based parameters settings (e.g. from
measurements) are commonly used in the literature to ap-
proximate the I–V characteristics. At their core, they are
expressed with more or less unknown values of key param-
eters at the given reference temperature TRef , e.g. TRef =
25 ◦C for the STC. As in the case of the method based
on the 5-parameter model proposed by De Soto et al. [18].
The aim of these methods is to use known data, generally
provided by the manufacturer, to extrapolate the electri-
cal performance of the PV devices to other atmospheric
conditions than the STC. The point of these methods is

to make it possible to simulate the electrical behavior in
real service conditions. In their work, De Soto et al. [18]
have shown that, for several types of PV technologies, the
extrapolations can be done using common semi-empirical
relations.

The semi-empirical expressions lying behind this field
(of the extraction of electrical parameters relative to the
PV technologies) are not particularly in focus here by
themselves, but the literature is abundant on the subject.
New developments or emergence of different expressions
are also possible within the field, see for instance the re-
cent improvement proposition related to the temperature
and irradiance relation in Ref. [19], or another proposition
to consider Rs in the one-diode model proportional to the
current with Rs(I) = Rs0 (1 +K × I) [17]. Taking this
concern into consideration, it should be noted neverthe-
less that the proposed approach does not critically depend
on eventual modifications made to the semi-empirical re-
lations used explicitly in section 2.

Here, we will use in the same fundamentals as the afore-
mentioned semi-empirical approaches, but as much as pos-
sible with less relations correlating the parameters (or pa-
rameters anchored to physical measurements). Instead, we
only rely on the optimization techniques to search for the
fundamental physically-based parameters.

At first, we apply this approach to the isothermal I–
V characteristic data given at different TRef using only
a PV panel datasheet. On the other hand, we want to
take into account the temperature dependence of these
parameters with more refined semi-empirical relations and
parameters. This is still achievable within the framework
of optimization techniques by considering the data set of
the different isothermal conditions as a whole anisothermal
set. It should be noted that the same approach could
also be applied to solar irradiance variations (which are
outside the scope of this article). Both approaches were
for example undertaken by Ma et al. [11] using the single
diode model.

The proposed approach takes then into account the
temperature effects. By doing so we can extrapolate judi-
ciously to totally different atmospheric conditions in com-
parison to the STC. This can be done without favoring
the accuracy of only one type of atmospheric conditions
among low, STC, mid-high or higher temperature con-
ditions. This is particularly pertinent for countries like
Qatar, since summer temperatures and solar irradiance
induce a PV cell temperature up to around 70 ◦C. In
this study, we are less focused on very low temperatures
or aerospace conditions but the proposed approach would
remain valid.

2. Electrical modeling of PV panels

PV panels are modular devices assembled by connect-
ing the solar cells in series and parallel following the design
chosen by the manufacturer. We mentioned above the sin-
gle or double diode equivalent circuits, but these models
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are applied mostly at the PV cell level. In our study, we
focus however on using the data from a solar panel (BP
350 U [20]), which is comprised of two strings of PV cells
connected in parallel. Each string for this particular panel
has 36 PV cells connected in series. The PV cell I–V
characteristic can then be directly taken from the panel’s
experimental I–V curves by dividing the current I by 2,
the number of parallel strings, and by dividing the po-
tential U by 36, the number of PV cells in series in each
string [4]. The experimental I–V curves are available in
the datasheet at four different temperatures. There ex-
ist also an alternative to using such experimental data for
testing/validating purposes of these kinds of approaches,
for instance see Ye et al. [7] with their use of synthetic
data points elaborated for frankly different cases of I–V
curves.

Regarding the equivalence used in the framework of the
one- and two-diode models, we assumed here that the elec-
trical parameters are relative to the concerned PV cell’s
total surface area, but it should be noted that the correct
generalized values would be in terms of currents as Ampere
per unit area (A/A), and for the electrical resistances units
of Ω×unit areaA. The scope of this article is to present an
optimization method to be applied to solar cells samples,
solar cells, PV modules/panels/arrays, so this approach is
unconcerned here with the changes in unit or formalism
over the physical grounds of these equivalent circuits.
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Figure 2: Two-diode equivalent circuit.

In the equivalent one- and two-diode circuits, illus-
trated in Figs. 1 and 2, Iph is the photocurrent intensity
generated by the illumination of the solar cell (with a di-
rect proportional relation between illumination and cur-
rent), ID(1 or 2) is/are the dark current passing through
the diode(s). Rs is the common series resistor (in series
on the current generator) and Rp is the common paral-
lel resistor also known as “shunt resistance”. Finally, I
is the current of interest going out of the equivalent elec-
trical model and representing the current of the PV cell,
and U its electric potential or voltage. The resistors have
physical meaning [3], and it can be noticed that without
them we would have Iph = ISC the short circuit current
(by convention, I–V plots are here in the first quadrant).

2.1. One-diode model

The single diode circuit of Fig. 1 implies [3, 4, 21]:

I = Iph − I0 ×

[

exp

(

q (U + I ×Rs)

A× kB × T

)

− 1

]

−
U + I ×Rs

Rp

(1)

where I0 is the diode saturation current, A the diode ide-
ality factor, q the elementary charge, kB the Boltzmann
constant, and T the temperature in K.

Values are usually around [A·]Rs = 0.5 · 10−4 to 2 ·
10−4 Ω ·m2 and [A·]Rp = 0.2 to 2 Ω ·m2 [4]. [A·]Rp for
mass produced crystalline silicon cells, is also reported to
be several times 0.01 Ω·m2 [3].

As for the dark current characteristic, the diode ide-
ality factor A is typically 2 with a saturation current of
I0[/A] = 10−5 to 10−4 A/m2 at 300 K for silicon at
low currents, and A is typically 1 for silicon at high cur-
rents [21].

2.2. Two-diode model

The double diode model relies on two diodes to model
the dark current instead of only one (originally, ID of the
one-diode model). The two diodes have the same thermal
voltage kBT/q but with different ideality factors and sat-
uration currents. Following the circuit presented in Fig. 2,
the current–voltage characteristic becomes:

I = Iph − I0;1 ×

[

exp

(

q (U + I ×Rs)

A1 × kB × T

)

− 1

]

−
U + I ×Rs

Rp

− I0;2 ×

[

exp

(

q (U + I ×Rs)

A2 × kB × T

)

− 1

] (2)

where the I0;i and Ai are the new diode saturation currents
and ideality factors associated with the two dark currents
IDi.

Ideal values for the diodes are A1 = 1 and A2 = 2,
and industrial samples having 16% efficiency were reported
with the estimation of 1 ≤ A1 ≤ 1.5 and 2 ≤ A2 ≤ 5 [17].
Moreover, it can be raised from the literature that many
authors assume the ideal case A1 = 1 & A2 = 2 when they
are considering the two-diode model.

2.3. Subsequent thermal dependence of the parameters

The electrical parameters characterized in PV cells can
be found to be thermal dependent in the literature through
different complementary (semi-)empirical relations. We
expect that these detailed relations will enable us to project
the different experimental isothermal I–V characteristics
into an anisothermal parameter space.

Other scarce cases in the literature deal with truly
anisothermal I–V characteristic points (which are out-
side the scope of the current study). There, experimental
points used to extract electrical parameters are actually
including evolving temperature within them. For exam-
ple, this can be done if they are taken from a parametric
window of atmospheric conditions [10].
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2.3.1. Diode saturation current I0
The thermal dependence of the diode saturation cur-

rent follows an Arrhenius law with the following Boltz-
mann factor [3]:

I0;i(T ) = I00;i × exp

(

−
EA

kB × T

)

(3)

with “; i” being blank, “; 1” or “; 2” depending respectively
on the one- or two-diode models and the diode that is
concerned; EA is the thermal activation energy that we
chose common for both diodes in the two-diode model. For
crystalline silicon solar cells it should be around 1.1 eV.
The temperature-independent pre-factor I00;i[/A] can be
rather high, e.g. 106 A/m2.

Another relation found in the literature, for example
described by Tsai [22] for a single diode equivalence, is the
following and depends on the band gap EG and the ideal-
ity factor which are also fluctuating with the temperature
(see for example Refs. [11, 12, 18] for further details and
neighboring relations):

I0(T )

I0;Ref

=

(

T

TRef

)3

× exp

[

q × EG(T )

kB ×A(T )

(

1

TRef

−
1

T

)]

(4)
where I0;Ref is the diode reverse saturation current at the
reference temperature TRef .

2.3.2. Diode ideality factor A

The ideality factor for the diodes is also temperature-
dependent [3] and is given through the following power
form for example, derived from Ref. [23]:

AN (T ) = A0,Ref ;i

(

T

TRef

)a(i)

(5)

with A0,Ref ;i the pre-factor and a(i) the power exponent.
TRef was chosen at the mean value of all the temperatures
here, i.e. approximately 311 K.

2.3.3. Photocurrent Iph
The photocurrent varies with the following temperature-

and irradiance-dependent form [23]:

Iph =

(

S

SRef

)m

[Iph,Ref + µISC
(T − TRef )] (6)

About Eq. (6), we note that we do not consider other solar
irradiance conditions than STC, so the total absorbed irra-
diance S equals SRef and the coefficientm will not be used.
We also note that Iph,Ref = Iph(25

◦C) is still to be deter-
mined within the sets of parameters, and that we can then
shift linearly this parameter to the other needed tempera-
tures by using the coefficient µISC

. The same translation
of this parameter can be applied after the relations given
by De Soto et al. [18] or by Ma et al. [11], since they pro-
posed very similar expressions containing optical modifier
factors that also have no point in our current applications.

2.3.4. Resistors Rs, Rp

For the series resistor Rs, the temperature dependence
can be described as a positive temperature coefficient type [24]:

Rs(T ) = Rs0 × exp (Bs × T ) (7)

where Rs0 is the condition resistance and Bs is the semi-
conductor material coefficient with Bs > 0.

For the shunt resistor Rp, the temperature dependence
can be described in the negative temperature coefficient
form [25]:

Rp(T ) = Rp0 × exp

(

Bp

T

)

(8)

where Rp0 is the initial condition resistance and Bp is the
semiconductor material coefficient with Bp > 0.

3. Evolutionary algorithms

We obtained from the four experimental isothermal I–
V curves two kinds of data points relevant to the optimiza-
tion techniques: on the one hand, dataoptimT that are sev-
eral spaced points on the isothermal curves to use as objec-
tive points for the evolutionary algorithms (11 points per
isothermal I–V curve). On the other hand, we obtained
also the datacheckT , which are multiple points digitized from
the experimental I–V curves to check the results of the
evolutionary algorithms. For details, please refer to Online
Resource 1??, and see also the spreadsheets containing all
of these points that are available in Online Resource 2??.

It should be noted that for the datasheet of BP350U,
where the value of µISC

was given at 0.065±0.015)%/◦C,
we chose a better estimation at 0.08%/◦C, i.e.≈ 2.54 mA/◦C
at the electrical level of the PV panel. This was done be-
cause the data curves did not seem coherent with the mean
value taken as is. In the current optimization approach,
this value is transformed into a parameter belonging to
the search space in order to be even more accurate for this
crucial effect (the optimization points were however kept
at the value of 0.08%/◦C).

The evolutionary algorithms are managing a popula-
tion of Npop individuals represented by points in a n-
dimensional search space, where n is the number of pa-
rameters to fit the experimental data. Each individual is
a candidate for the optimization of the n parameters. In
practice, the optimization scheme uses evolutionary means
to draw individuals nearer to an idealized zero difference
between the modeled curve and the experimental results
used for fitting purposes. This requires an objective func-
tion to compare the individual between them at each in-
crement of these methods. Then, each individual can be
ranked by this function returning a scalar value. In evo-
lutionary algorithms, the objective function is also called
the fitness function, since the evolutionary process relies
on selection processes similarly to the mechanisms of Na-
ture, e.g. the survival of the fittest, etc.

The fitness function Xfit is a norm set from an individ-
ual to the number of experimental points (used to optimize
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these parameters/individuals). If the method is successful,
the best individual converge after numerous increments
towards the minimum norm possible (global minimum).
Within reasonable computation times, these kinds of opti-
mization techniques allow us to browse vast search spaces
and find good fitting solutions (i.e. global or good local
minimums). Finding of the mathematical optimal solution
with these techniques is in general only guaranteed for infi-
nite computation time. Due to the non-linearity, resulting
from the model definition, of fitness function Xfit given
in Eq. (9), and its dependence on multiple parameters,
it was necessary for some of the methods applied to use
a meta-heuristic approach for minimization (e.g. coupling
the global exploration to a more efficient local exploitation
algorithm that is deterministic).

In this section, we will first describe the evaluation
of the proposed models for single and two-diode systems
given in Eqs. (1) and (2). Afterwards, we will describe
the evolutionary algorithms and/or their parameters we
selected to deal with the extraction of the I–V charac-
teristic parameters for PV cells. After a short review on
similar problems in the field of the PV diode models, the
following algorithms have been applied: particle swarm
optimization (PSO) [7, 9–12, 14–17] and genetic algorithm
(GA) [7–9, 11–14]. In this work, we also explore the suit-
ability of the recent optimization method “cuckoo search”
(CS) for the problem of interest, which was also under-
taken for a one-diode model in Ref. [11].

In a former study, the CS method was also applied
within the PV field. Instead of the current approach on
the extraction of electrical parameters of the PV cells, it
was used for optimization problems regarding the optical
sizing via the electronic properties of multi-junctions and
split spectrum solar cells [26].

Some of the aforementioned studies [12, 14] also con-
tained hybridized metaheuristic approach to research more
efficient ways of optimization. We did the same for CS.
To be exact, the original CS algorithm and its hybridiza-
tion with the Nelder-Mead Simplex method (CS-NMS) [26]
have been compared to the frequently used GA and PSO.
The CS-NMS has been included due to the fact that it
has been designed to find solutions for problems with a
small number of parameters (2–10) and with a low num-
ber of evaluated fitness functions, while the original CS is
a general optimization method.

Both of the diode models have been evaluated for the
4 available temperatures of 0 ◦C , 25 ◦C, 50 ◦C and 75 ◦C.
The computational experiments have been performed for
each and also for all of the temperatures at the same time.
In practice, this means that there were 10 test functions

(8 with the Θ
(i)
T introduced below in Eqs. (13) and (15),

and 2 for each Ξ(i) introduced in Eqs. (17) and (19)).
With the goal of having an extensive comparison of the
methods, 20 separate runs have been performed for each
of the algorithms on the different test functions. The stop-
ping criterion for each of the methods was that 10,000 fit-

ness functions have been evaluated for the 5-parameter
single diode problem that will be introduced below, and
20,000 fitness functions for all the other models.

The computational experiments have been coded us-
ing MATLAB (v. R2013b, MathWorks R©) to implement
the evolutionary algorithms. The tests for the CS al-
gorithm have been performed using the code developed
by Yang [27]. For the CS-NMS, we have used the MAT-
LAB code provided by the authors, which is available on-
line [28].

3.1. General principles and model evaluation

For any given set “E” of NE experimental data points
to fit, the initialization of Npop individuals is done by scat-
tering them randomly over the n-dimensional search space.
We note Θ their coordinates (equals the n parameters) and
Xfit(Θ,E) their fitness function. NE being the size of E,
the generic kth point to fit on the experimental I–V curve
plane is noted [EI

k , E
U
k ]. Moreover, for the dataoptimT in-

troduced in the Online Resource 1??, we chose the first
experimental point as defined by ISC(T ) = (EI

1 , 0) and
the last one by VOC(T ) = (0, EV

NE
). In our optimization

scheme, 9 other points are digitized in between from the
experimental curve (NE = 11 for each temperature).

The parameters of the diode models are hereafter op-
timized for a minimal value of the following chosen fitness
functions:

Xfit(Θ,E) =

NE
∑

i=1

|EI
k − Icalc,k|

1

NE

(9)

For the PV cell parameters extraction field, Siddiqui
and coworkers used the following normalized error expres-
sion, using E = {ISC , PMax, VOC} which covers three
meaningful points generally easy to get from the PV panel
datasheets [12, 29]:

Jfit(Θ,E) =

∣

∣

∣

∣

IPMax,calc − IPMax,exp

IPMax,exp

∣

∣

∣

∣

+

∣

∣

∣

∣

UPMax,calc − UPMax,exp

UPMax,exp

∣

∣

∣

∣

+

∣

∣

∣

∣

ISC,calc − ISC,exp

ISC,exp

∣

∣

∣

∣

+

∣

∣

∣

∣

UOC,calc − UOC,exp

UOC,exp

∣

∣

∣

∣

+ |IOC |+

∣

∣

∣

∣

dP (PMax)

dV

∣

∣

∣

∣

(10)

Ye et al. [7] used an objective function based on the
root mean square error over the [EI

k , E
U
k ] points:

Kfit(Θ,E) =

√

√

√

√

1

N

N
∑

k=1

y2
(

EI
k , E

U
k , Θ

)

(11)
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where:

y
(

EI
k , E

U
k , Θ

)

=
{

I − Iph + ID + IRp (one-diode model)
I − Iph + ID1 + ID2 + IRp (two-diode model)

(12)
Except analytical approaches on the one- or two-diode

models, i.e. parametric Equations (1) or (2), very few au-
thors detail how they solve the parametric equation be-
tween U and I implemented within their fitness function
under such statements as “the model parameters Θ are to
be applied to an experimental point”, or Eq. (12). Other
authors use the formalism of Lambert W function for the
studies undertaken in the field [14, 30], but the complete
mathematical modeling (out of the scope of this paper) is
overlooked here.

For the current approach, we resolved this numerically
by (i)fixing the potential in the parametric curves to the
electrical experimental value EU

k ; (ii)making I vary over
a “I-range” within values in an interval from ≈ −1 A
to ≈ 1 A above the maximum of the experimental current
values for the whole data sets. (iii)The minimum difference
obtained for a “I-resolution” of 10−2 A on the I-range is
then assumed to verify Eqs. (1) or (2) and this value of I
on this mesh is the approximated value of Icalc adequate
for the fitness function Xfit(Θ,E), meaning that this Icalc
is then compared to the experimental currents EI

k .
This simple (but costly) numerical method was chosen

to avoid relying too much on higher level mathematical
solvers or functions, thus allowing easy transpositions of
the algorithms to any language. In a former work using
PSO method for example [15] (re-conducted also here), we
used a better resolution by two orders of magnitude but
with 4 times less experimental points. If the accuracy of
the fitness function is needed, the I-resolution should be
at least of 10−4 A.

Finally, we also investigate better estimates of the fit-
ness function with the data used to verify the proposed
solution (with datacheckT points). We did only this at the
end of the optimization scheme (as overexploitation was
not investigated). The computational cost of the fitness
function is then irrelevant and we refined the I-resolution
by three orders of magnitude compared to the one used
in the optimization scheme. I-range was also reduced to
[−0.05; 1.75] A at the PV cell level.

With these assumptions, we aim in this approach at
keeping a good precision of the modeled curve by taking
numerous and varied dataoptimT points from the experimen-
tal I–V characteristics. With the current fitness function,
we also note that the I–V candidates are optimized during
the process with a more rigorous criterion regarding their
Voc branch (through both more points on this branch, and
by the kind of mathematical norm we apply). This is ap-
propriate here, since we want to evaluate the temperature
effects which are more important on the Voc branch. We
did not undertake in this study a sensitivity analysis of
the method depending on where the optimization points
are more concentrated, e.g. towards the maximum power
point or the branches.

3.1.1. Isothermal optimums, parameters and search space

Using Eq. (1) for the single diode model at different
fixed isothermal conditions, the set of 5 parameters to be
found using evolutionary algorithms is listed in the follow-
ing order:

Θ
(1)
T = {Iph, I0, A,Rs, Rp} (13)

for which the following search space is chosen:

{[1; 2] A, [0; 10−4] A, [0.5; 2.5], [0; 2] Ω, [50; 104] Ω} (14)

Using Eq. (2) for the double diode model, the set be-
comes one of 7 parameters:

Θ
(2)
T = {Iph, I0;1, A1, I0;2, A2, Rs, Rp} (15)

for which the search space is extended to:

{[1; 2] A, [0; 10−4] A, [0.5; 1.5],

[0; 10−4] A, [1.5; 3.5], [0; 2] Ω, [50; 104] Ω}
(16)

As a case study, we reduced also Θ
(1)
T to a much smaller

set in the framework of a previous study [15] concerning
the PSO method applied to the single diode model at STC.
In this study, the reduction of parameters originally relied
on other kinds of well established relations for the pho-
tocurrent Iph, for the diode reverse saturation current I0
and for the ideality factor A. The details of the used re-
lations are explicitly listed in Appendix A. The remain-
ing search space is defined then by only two parameters
{Rs, Rp} that we adapted in the current case study over
{[0; 2] Ω, [0; 104] Ω}. We conduct again this exploratory
study inside the Online Resource 1?? with the present for-
malism. However, we still used the same original three
points of the I–V characteristic (instead of E = dataoptim25 ◦C,
we have here E = {ISC , PMax, VOC})

1.
In other publications concerning similar methods, the

search space are scarcely mentioned. Either way, we can
rely on the physical grounding of the parameters and their

expected value’s range. In the literature concerning Θ
(1)
T ,

we note that Ye et al. [7] searched within the following
space for their experimental parameters extraction study:
{[1; 2] A, [0; 10−4] A, [0; 3.5], [0; 0.05] Ω, [0; 250] Ω}. As for

their two-diode application with Θ
(2)
T , the same authors

searched within the space: {[1; 2] A, [0; 10−4] A, [0; 3.5],
[0; 5× 10−8] A, [0; 2], [0; 0.05] Ω, [0; 250] Ω}.

1It can be noted, for the short case study only, that we used
the Jfit fitness function containing also the derivative at PMax (see
Eq. (A.4). Other noteworthy implementation details are that initial
speeds were chosen at random numbers between 0 and 1. Finally,
we corrected in the current work the value of max(Rp) of the search
space for {Rs, Rp}. In the initial study, the search space was indeed
too reduced, being {[0; 2/36] Ω, [0; 300/36] Ω}. It is now {[0; 2] Ω,
[0; 104] Ω}. The number of Jfit functions evaluated is for this initial
protocol 50,000 for 50 individuals.
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3.1.2. Unique set of multi-T parameters

For anisothermal conditions, the relations chosen to de-
scribe the thermal behavior of all the available I–V curves
optimized at the same time are Eq. (3), and Eqs. (5) to (8).

Adding to these relations Eq. (1) for the single diode
model, we obtain a 10-parameter set to be found, listed
by:

Ξ(1) = {Iph,Ref , µISC
, EA, I00, A0,Ref , a, Rs0, Bs, Rp0, Bp}

(17)
for which the search space is chosen to be:

{[1; 2] A, [1× 10−3; 1.5× 10−3] A/◦C, [0.5; 1.3] eV,

[0; 1011] A, [0.5; 5] at 311 K, [0.4; 1.5],

[0; 1] Ω, [0; 0.1] K−1, [50; 104] Ω, [5; 11]× 102 K}

(18)

Adding instead Eq. (2) for the double diode model, the
set becomes one of 13 parameters listed by:

Ξ(2) = {Iph,Ref , µISC
, EA, I00;1, A0,Ref ;1, a

(1),

I00;2, A0,Ref ;2, a
(2), Rs0, Bs, Rp0, Bp}

(19)

for which the search space is chosen to be:

{[1; 2] A, [1× 10−3; 1.5× 10−3] A/◦C, [0.5; 1.3] eV,

[0; 1011] A, [0.5; 5] at 311 K, [0.4; 1.5],

[0; 109] A, [2.5; 7] at 311 K, [0.4; 1.5],

[0; 1] Ω, [0; 0.1] K−1, [50; 104] Ω, [5; 11]× 102 K}

(20)

It can be noted that in these equations Iph,Ref could
be at any temperature within the ones reported in the
datasheet, given the fact that its range is sufficiently large
to permit all the values foreseen, linked to ISC(0

◦C) up
to ISC(75

◦C).
All the parameter values and physical grounding de-

scribed earlier in section 3.1.1, about the isothermal cases,
should prevail here in the non-isothermal cases.

Concerning the set of parameters Ξ(1), a PSO method
was implemented [10] with real-time data points encom-
passing non-constant temperatures. Simplifications were
applied to {Iph, I0} in order to reduce these parameters to
fixed expressions, eventually through measurements, thus
leading to a 3-parameter/dimensional search. In the PSO
method they propose, {A,Rs, Rp} were searched within
the following search space: {[0; 2], [0; 20] Ω, [10; 200] Ω}.

3.2. Selected evolutionary algorithms and implementation

3.2.1. PSO method

The particle swarm optimization (PSO) belongs to the
nature-inspired optimization techniques and is able to solve
the problems undertaken in this PV field [15]. The PSO
algorithm is described by Eberhart and Shi [31]. For a to-
tal of Niter iterations and for each individual (k), its main
equations are given by Eqs. (21) and (22), following the
flowchart in Fig. 3.

In the present PSO method, with Xfit fitness function,
the current parameters were chosen to be identical to some
of the conditions already tested in Ref. [15] but favoring
the exploration. Npop is 50 for the 5-parameter model, and
200 for the other models. As it was done in this former
study, we do not take into account the size of the time
steps in the following velocity definition, and it can also
be noted that the initialization of the speeds were chosen
at a random number between 0 and 1 (= rand()) times
25% of the search space range for each parameter.

v(k)n = iw × v
(k)
n−1 + rand()× c1

(

p
(k)
best;n−1 − x

(k)
n−1

)

+rand()× c2

(

g
(all)
best;n−1 − x

(k)
n−1

) (21)

with iw the inertia for the particles, chosen to be 0.4 in the
current applications. c1 and c2 are parameters that direct
the convergence of the population towards the best particle

parameters (g
(all)
best ) and also taking into account the local

exploitation with the position of each (k) particle at the

best of their fitness (p
(k)
best). We chose c1 = 2 and c2 = 1.

This velocity is then used to update the position:

x(k)
n = x

(k)
n−1 + v(k)n (22)

using reflective boundary conditions at the limit of the
search space.
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Figure 3: Flowchart for the PSO method [15].

The above-mentioned parameters and Npop, and the
number of applied test functions, are not especially opti-
mized to deal with the current applications of the PSO
algorithm (all of these could be finely tuned to this par-
ticular problem, but this is out of the scope of the study).
All the detailed results of the PSO algorithm are given in
Online Resource 2??.

3.2.2. CS and CS-NMS

Cuckoo search (CS) [32, 33] is a novel optimization
method that has proven its effectiveness on a wide range of
problems [34]. In the recent years, it has gained significant
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popularity due to its simplicity and robustness. It has been
successfully applied to many engineering problems [35]. As
already stated, the original CS algorithm has been also
hybridized with the Nelder-Mead Simplex method (CS-
NMS) [26].

For the sake of completeness we include a short outline
of the original CS algorithm introduced by Yang [32]. This
metaheuristic is inspired by the behavior of some cuckoo
species. Cuckoos do not make nests but hide their eggs
in ones belonging to other host birds (of other species).
The evolutionary process has made it possible for cuckoos
to mimic the shape and color of some specific hosts. This
mimicry is a result of the fact that if a host bird discovers
the intruder eggs are not their own, it will either throw
these eggs or simply abandon its nest and build a new one
at a new location. If the cuckoo eggs manage to hatch, the
cycle is repeated.

This concept has been converted into a population based
meta-heuristic in the following way. Each egg in a nest will
be considered as a solution, and the cuckoo eggs will cor-
respond to the newly generated solutions which will be
highly similar to the original one in the nest. This is done
in the hope that such solutions will potentially be better.
The new solutions will be used to replace the lower quality
nests (solutions). In the simplest form, each nest contains
only a single solution. The CS algorithm uses the following
three idealized rules:

1. Each cuckoo in the colony randomly selects one nest
and creates a single egg (solution) which is similar
to the one that corresponds to the nest.

2. The best solution will be carried to the next genera-
tion.

3. The number of available hosts nests is fixed, and the
egg laid by a cuckoo is discovered by the host bird
with a probability pa. The discovering (discarding)
operation is only done on some set of worst nests.

Based on these rules we can explicitly define the CS al-
gorithm using the following pseudocode:

1: Generate an initial population of Npop host nests;
2: while (t < MaxGeneration) or (stopcriterion) do
3: Get a cuckoo randomly (say, i) and replace its solu-

tion by performing Levy flights;
4: Evaluate its quality/fitness Fi;
5: Choose a nest among Npop (say, j) randomly;
6: if Fi < Fj then

7: Replace j by the new solution;
8: end if

9: A fraction (pa) of the worse nests are abandoned
and new random ones are built;

10: Keep the best solutions/nests;
11: Rank the solutions/nests and find the current best;
12: Pass the current best solutions to the next genera-

tion;
13: end while

Levy flight is of essential importance for the CS al-
gorithm. In practice, it generates a random walk which
obeys a power-law step length distribution with a heavy
tail. It has been shown that the use of Levy flight is much
more effective in exploring the solution space than a simple
random walk. We fixed pa = 25%.

The robustness of the CS algorithm lies in the sense
that only one parameter, the number of nests, needs to be
specified. The number of nests was 25, 20 for CS, CS-NMS
respectively.

3.2.3. GA

The GA has been applied using the built-in MATLAB
function. The parameters for it have been optimized by
literature reference and empirical tests. The population
size was set to 100, 200 out of which 2, 4 were consid-
ered as elitist for problems with 5, or more parameters,
respectively. The crossover fraction was set to 0.8. The
mutation was set by the MATLAB parameter value MU-
TATIONUNIFORM, which correspond to selection rate of
0.01.

4. Results and discussion

The result we present and discuss come from the 20 sep-
arate runs we have done for each of the algorithms and test
functions related to the one- and double diode models, us-
ing the optimization points dataoptimT . The main isother-
mal cases are presented in section 4.1 and the multi-T
cases in section 4.2. The exploratory study of Sánchez
Barroso et al. [15] at STC, reducing the current approach
to a minimalist problem in order to search for Rs and Rp,
was undertaken as a preamble of the results of this section.
This short case study can be found in Online Resource 1??.
The results presented here in the article are all obtained
over vaster dimensional spaces, and for much more exper-
imental data points (all 44 of the dataoptimT points) than
the three points in the short case study (E = {ISC , PMax,
VOC}).

4.1. Optimization of the isothermal I–V curves

Results obtained for the iso-thermal I–V curves are
given in this section (i.e. each temperature taken sepa-
rately in the optimization/fitting scheme).

4.1.1. Global performance of the algorithms

To have a more exhaustive comparison of the methods,
the best, average and standard deviation of the generated
solutions, for each test function, are presented in Table 1.

The first conclusion that can be made from observing
the results given in Table 1 is that the proposed models
have a good correspondence to the experimental data. In
case of the best fitted parameters, the error based on the
measure given in Eq. (9) was between 0.8–2.0 cA per data
point and 0.5–0.9 cA/point, depending on the tempera-
ture, respectively for the single and two-diode models. It
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Table 1: Comparison of performance of PSO, GA, CS and CS-NMS algorithms applied to the single and two-diode models for the experimental
data. Theses values of Xfit(data

optim
T

) are given here as the minimal, average and standard error for each 20-run series, in ×10−2 A per
data point. The unique best values are underlined (i.e. best minimum values and best average, underlining so the efficient methods).

Temperature PSO GA CS CS-NMS
Min Avg(Std) Min Avg(Std) Min Avg(Std) Min Avg(Std)

One-diode (5 parameters, i.e. for each T and for all of the 20-run series of Θ
(1)
T

)

0 ◦C 3.8 17.4(27.4) 2.4 4.9(1.6) 2.7 3.4(0.6) 1.8 4.5(1.4)
25 ◦C 1.7 8.9(5.7) 3.3 7.8(6.5) 2.3 3.0(0.7) 1.5 2.8(0.9)
50 ◦C 2.9 9.7(9.1) 2.7 6.5(6.8) 2.5 3.7(0.3) 2.0 3.6(0.7)
75 ◦C 0.8 8.3(8.4) 1.0 4.7(10.2) 0.8 1.3(0.2) 0.8 1.2(0.3)

Two-diode (7 parameters, i.e. for each T and for all of the 20-run series of Θ
(2)
T

)

0 ◦C 0.5 117.0(60.3) 0.5 22.6(29.7) 0.5 3.3(1.2) 0.5 13.9(26.4)
25 ◦C 0.9 33.0(44.9) 0.9 5.0(7.8) 0.9 1.7(0.8) 0.9 5.0(13.3)
50 ◦C 1.6 5.2(8.5) 1.2 2.6(1.4) 0.7 1.5(0.4) 1.4 2.0(0.3)
75 ◦C 0.6 1.1(0.3) 0.8 1.3(1.0) 0.8 0.9(0.1) 0.6 1.0(0.2)

is interesting to note that the error for the two-diode model
was lower than for the single diode model. This indicates
that the model is more suitable for the data, especially if
we take into account that GA and CS generally have a
weakened performance with an increase in the number of
function parameters.

From the results given in Table 1, it is also evident that
the two CS algorithms have a significantly more reliable
performance than GA or PSO. To be exact, the average
error for CS and CS-NMS is lower than the one of GA or
PSO for all the tested functions. The performance of the
two CS algorithms was dependent on the number of pa-
rameters that needed to be optimized. For functions with 5
parameters, CS-NMS acquired the best results, compared
to the other methods, for both the minimal and average
error in case of all the test functions. In case of 7 parame-
ters, the original CS algorithm managed to have the lowest
average error. The minimal error was similar for all the
four methods, while being most consistent in case of CS.
The advantage of the CS algorithm in case of the model
with 7 parameters is not unexpected since the CS-NMS
was designed to have the best performance for low dimen-
sional problems when a low number of function evaluations
is allowed.

It is important to mention that in case of the GA, con-
trary to the other algorithms, a significant number of tests
was necessary to fine tune the method parameters to be
able to have a good performance.

4.1.2. Optimized 5- or 7-parameter diode models

We present in this section the best results out of the
statistical analysis of the 20-run series of parameters un-
dertaken for the four different isothermal I–V character-
istics. The parameters with a minimum values of the Xfit

fitness functions, i.e. optimized solutions, are given in Ta-
ble 2. They are also illustrated in Fig. 4 for the two-diode
model by superimposing these optimal results to the ex-
perimental data points dataoptimT and datacheckT . Partial
results from this approach, but with only one single run

(among the 20 runs times the number of optimization tech-
niques used), can be found in Online Resource 1??.

One of the parameter sets from these partial results
is found after the end of the optimization scheme with a
series resistor having a 0 Ω value. We will discuss this
particular result in section 4.2.2.

Another interesting feature of the parameters reported
within Online Resource 1??, with the single runs only, is
the fact that several of these optimal parameters have an
ideality factor equals to zero in the double diode model.
This means that the two-diode model has found a better
set of parameters within the framework of the one-diode
model (as the search space allows indeed in our approach
the one-diode model to be included into the two-diode
model). The extended domain search of the two-diode
model does not impact much the best values of the fitness
function found at the end of the optimization methods.
This is also another reason why we found that the error
for the two-diode model was lower than for the single diode
model, adding to the fact that the two-diode model is ap-
parently more adapted to the PV panels I–V characteris-
tic data. This particular case of diode extinction is also
happening for the 50 ◦C best parameter found even after
20 runs in Table 2.

4.2. Optimization over a unique set of multi-T parameters

In this final section, the optimization scheme is dealing
with all of the dataoptimT experimental points at the same
time (the four different temperatures are equi-represented)
and the parameters found can then be applied directly to
any extrapolated temperature relevant to this whole data
set.

4.2.1. Global performance of the algorithms

In Table 3, the performance of the proposed optimiza-
tion methods were reported for the 10- and 13-parameter
one- and two-diode models, respectively. The maximum
values for the fitness functions after the 20 runs were also
added to the other types of performance statistics already
introduced (i.e. minimum, average and standard deviation
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(c) Xfit(Θ
(2)
25 ◦C, dataoptim25 ◦C) = 0.9 cA/point.
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(d) Xfit(Θ
(2)
25 ◦C, datacheck25 ◦C) = 1.7 cA/point.
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(e) Xfit(Θ
(2)
50 ◦C, dataoptim50 ◦C) = 0.7 cA/point.
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(f) Xfit(Θ
(2)
50 ◦C, datacheck50 ◦C) = 1.2 cA/point.
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(g) Xfit(Θ
(2)
75 ◦C, dataoptim75 ◦C) = 0.6 cA/point.
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75 ◦C) = 2.5 cA/point.

Figure 4: Best fit parameters for the isothermal data by the double diode model (i.e. minimum values of Table 1). On the left side are the

confrontations with the data used for the optimization, dataoptim
T

, and on the right side are confrontations with the data points used to verify

the parameters that were found, datacheckT . Values from Tables 1 and 2 are reminded here in the sub-captions.
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Table 2: Best parameters found within each of the 20-run series for the single and double diode models, found by GA, CS and CS-NMS

algorithms, see also Fig. 4 for the double diode models. It should be noted that the corresponding Xfit

(

Θ
(i)
T

, dataoptim
T

)

are the minimum

values reported in Table 1. Rights in the last column, the fitness function results are given for validity purposes for each datacheck
T

set

(values are in ×10−2 A per point, which is the same unit as with the dataoptim
T

sets reported until now). Other units were given within the
parameters’ definitions in section 3.1.1.

One-diode (5 parameters, i.e. Θ
(1)
T

)

T Iph I0 A Rs Rp Xfit(data
check
T

)
0 ◦C 1.554844 6.700408e−07 1.916272 . . . . . . . . . . . . . . . . . . . . . . 6.111809e−03 5.041569e+03 2.5
25 ◦C 1.585061 3.193259e−06 1.796817 . . . . . . . . . . . . . . . . . . . . . . 5.047404e−03 5.226808e+03 2.9
50 ◦C 1.623395 3.223374e−06 1.504602 . . . . . . . . . . . . . . . . . . . . . . 1.080460e−02 1.719762e+03 2.8
75 ◦C 1.653502 1.380656e−05 1.409675 . . . . . . . . . . . . . . . . . . . . . . 9.099002e−03 9.222751e+03 2.6

Two-diode (7 parameters, i.e. Θ
(2)
T

); ‡ are values at the boundary of the search space

T Iph I0;1 A1 I0;1 A2 Rs Rp Xfit(data
check
T

)
0 ◦C 1.552101 5.362084e−09 1.446950 1.743092e−05 3.193308 1.420528e−02 3.640441e+03 1.0
25 ◦C 1.579897 1.815445e−07 1.477021 1.723703e−05 3.201763 1.271318e−02 3.262464e+03 1.7
50 ◦C 1.615102 1.541603e−07 1.221664 0‡ 3.500000‡ 1.818692e−02 1.982817e+03 1.2
75 ◦C 1.653321 7.343167e−06 1.340359 6.672136e−05 2.471391 9.403295e−03 1.145731e+03 2.5

values; each run having its own stochastic minimum fitness
function at the end of its optimization scheme). These re-
sults are coherent with the discussion about the global per-
formance of the algorithms after Table 1. CS is still better
than CS-NMS due to the fact that CS-NMS was designed
for lower dimensionality. GA and PSO performed badly
here, but we highlight the fact that they did not totally
fail with these two more complicated functions here.

4.2.2. Optimized 10- or 13-parameter diode models

The best optimized solution from Table 3 for the 10-
parameter one-diode model was reported in Table 4. We
also reported there the best solution found by CS algo-
rithms which performed better in general for the parame-
ter extraction. In Table 5, we reported the best optimized
solution from Table 3 for the 13-parameter double diode
model. This optimum is also illustrated in Fig. 5. This lat-
ter optimum performed better than the one found for the
single diode model after 20 runs (better performance with
dataoptim and datacheck), even if we are again in the case
reported before with one of the diode current that is re-
moved from the equivalent circuit by a factor at 0 A, thus
reducing the two-diode model into the one-diode model.
It can be noted that this better one-diode compatible pa-
rameter candidate was not found after 20 runs of the single
diode model, however it is not known if this observation
can be generalized for any number of runs undertaken for
the optimization series (for instance, more runs for these
series may help both diode models converge towards the
same optimum).

Nevertheless, the two-diode model performs once again
better than the one-diode model, even with more dimen-
sionality. These optimums can drive at some increment of
the optimization process the extinction of a diode within
the two-diode model (and with our evenly repartitioned
points on the I–V curves, which is perhaps also favoring
by themselves a certain kind of dark current).

Moreover, it should be noted that a one-diode optimum

Table 4: Values of the parameters for the best result of PSO and
of CS that was more consistent. These are 10-parameter sets (Ξ(1))
for the single diode model. ‡ are values at any border of the search
space.

Parameter CS PSO Units

Iph,Ref 1.584000 1.589399 A
µISC

1.500000e−03‡ 1.129952e−03 A/◦C
EA 1.386187e−19 1.717348e−19 J
I00 7.256565e+08 5.803972e+10 A
A0,Ref 1.746305 1.381147 at 311 K
a 0.420093 0.4323318
Rs0 0‡ 1.66969e−2 Ω
Bs 0‡ 8.840109e−6 K−1

Rp0 10,000‡ 9.563144e+3 Ω
Bp 1,100‡ 5.844332e+2 K

Xfit(data
optim) = 8.3 7.9 cA/point

Xfit(data
check) = 9.2 8.7 cA/point

reported in Table 4 presents also Rs0 = 0 Ω, implying
Rs = 0 Ω, which is the best result obtained after 20 runs
for all temperatures as a whole. This was also happening in
the partial results for isothermal cases, detailed in Online
Resource 1??, obtained after only single runs.

After 20 statistical runs, the parameter extraction con-
cerning the four temperatures optimized at the same time
was actually expected to bear more physical meaning than
in the case of the different isothermal curves taken sepa-
rately. Yet, with a zero value series resistor in the optimum
of Table 4, this is contradictory. The physical meaning be-
hind the series resistance is indeed depending on the ohmic
resistance of the silver bus bars collecting the charge car-
riers from the whole solar cell, which is a major source for
Rs [3], and then cannot be zero.

To explain this zero resistor within the optimization
techniques undertaken in this study, we interpret that the
high number of parameters for the diode models induce a
transfer of physical meaning from one equivalent electrical
component to the other. For example, the series resistor
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Table 3: Comparison of performance between PSO, GA, CS and CS-NMS algorithms for parameters of the single and two diode models. The
values give the minimal, average, standard and maximal error in cA/point. The unique best values are underlined.

PSO GA CS CS-NMS

Min Avg(Std) Max
.
.
. Min Avg(Std) Max

.

.

. Min Avg(Std) Max
.
.
. Min Avg(Std) Max

One-diode (10 parameters, i.e. for all Ξ(1))

7.9 26.4(17.4) 60.5
.
.
. 12.0 16.1(3.2) 22.0

.

.

. 8.3 10.7(0.7) 11.6
.
.
. 9.7 11.1(0.8) 12.5

Two-diode (13 parameters, i.e. for all Ξ(2))

13.6 28.6(14.6) 61.9
.
.
. 7.7 22.2(9.0) 46.5

.

.

. 6.6 6.9(0.3) 7.5
.
.
. 6.7 7.5(0.9) 10.1
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(a) Optimization data set, Xfit(Ξ
(2), dataoptim) = 6.6 cA/point.
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(b) Check data set, Xfit(Ξ
(2), datacheck) = 7.6 cA/point.

Figure 5: Results for the best run of the double diode model for fitting parameters over all the temperatures at the same time. Fitness
function values are given in the different sub-captions.

could be transferred to a loss of potential into the diode
dark current. The same behavior could also happen with
the parallel resistor taking high values, thus transferring
the shunt resistance effect towards a loss of generated pho-
tocurrent (we note that this is also apparently happening
for our optimums here).

To mitigate to some extend these trends, the optimiz-
ing scheme should rely on more constrained relations than
the ones found only in the manufacturer datasheet. This
can be done for example by relying on more illumination
conditions in addition to the temperature effect. This can
also be done by extending the I–V model by using it out-
side the first quadrant, relevant for solar power produc-
tion. These propositions of adding more constraints can
be applied without having too much to change within the
theoretical background of the diode models.

Nevertheless, the best parameters reported in this sec-
tion are very accurately describing the experimental anisother-
mal I–V curves behaviors. Thus, they can be used to
predict the electrical response at any temperature. The
observed shifting phenomenon leads to less pertinent val-
ues of the electrical components of the diode equivalent

circuits, but altogether they have a correct behavior rela-
tively to this application. It can be noted that we could
also reverse our approach as it was done for the parameters
in the short case study, i.e. fixing parameters to physical
measurements or/and more empirical relations establish-
ing physically meaningful order of magnitude for the pa-
rameters under study. However, even if by doing so we can
constrain the system to avoid a zero resistor optimum, it
does not imply that the same kind of shifting is prohibited
between the loose parameters (this shift being then also
less evident to highlight).

From the illustration of the best optimum found by the
two-diode models (which could be a one-diode model) in
Fig. 5, it can be noted that the fitting is not well done
around PMax for the highest temperature (75 ◦C). Still,
the fitness function is globally correct for the 75 ◦C I–
V characteristic, evaluated with the multi-T parameters
around 9.0 and 9.4 cA/point respectively for the one- and
two-diode optimums (for the dataoptim75 ◦C points only). If
this kind of apparent misfit is problematic, more points
of dataoptim could be taken near the four different PMax,
or only near this PMax(75

◦C) specifically, in order to try
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Table 5: Values of parameters for the best result found by CS in case
of the 13 parameters Ξ(2) fitting, for double diode model. See also
Fig. 5. ‡ are values at any border of the search space.

Parameter Value Units

Iph,Ref 1.582675 A
µISC

1.487288e−03 A/◦C
EA 1.413473e−19 J
I00;1 9.638854e+08 A
A0;1 1.707615 at 311 K

a(1) 0.4000101
I00;2 0‡ A
A0;2 6.857028 at 311 K

a(2) 0.400000‡

Rs0 7.702958e−03 Ω
Bs 1.338306e−04 K−1

Rp0 10,000‡ Ω
Bp 667.5793 K

Xfit(data
optim) = 6.6 cA/point

Xfit(data
check) = 7.6 cA/point

enhancing the fitting at these maximum power points.

5. Conclusion

Using evolutionary algorithms, the electrical parame-
ter extraction for PV panel current–voltage (I–V ) charac-
teristics is easy to undertake with the one- or two-diode
equivalent circuit formalism.

These models enable us to find good electrical parame-
ters using the experimental standard data available in any
PV panel manufacturer datasheet. It is possible to extract
the diode models parameters for different available isother-
mal I–V characteristics, but it is also possible to take the
curves as a whole set to fit simultaneously, by expressing
explicit thermal-dependence of the diode models.

Taking the whole set of experimental I–V characteris-
tics and the semi-empirical relations we used, the optimum
fitting parameters reported in Table 5 is a set very reliable
to define the thermal-dependence of the electrical response
for this PV device.

However, letting the parameters have too many degrees
of freedom within the search space seems to suppress some
of the physical meaning of these parameters by the op-
timization (fitting) process. Further refinements of the
proposed approach should include more solar irradiance
dependance and/or firmer physical grounding of the diode
models, especially outside the first quadrant such as in
shaded service conditions.

The photocurrent could also come for example directly
from the photon energy distribution with an absorption ef-
ficiency and balanced by other constraints due to common
impediments to the solar conversion. Fixing the photocur-
rent in this way during the optimization scheme applied to
the parameters’ extraction may avoid the observed drift-
ing of counterbalanced electrical components towards non-
physical values authorized within the diode models search
space.

Anyway, the electrical behavior of all these parame-
ters/circuit components, taken together, is what is impor-
tant here, and it allows us to reach the objective of ex-
trapolating I–V curves to a broad range of possible PV
cell operating temperatures.
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Appendix A. Short case study, additional Eqs.

In a previous study [15], we reduced parameters of the
search space of the presented 5-parameter single diode
model. For this particular purpose, the relations listed
below were used to replace some of the 5 mentioned pa-
rameters with the following semi-empirical relations, and
also with eventual measurements. It should be noted that
these expressions are associated to the BP350U PV panel.
The fitness function Jfit at this time is also given below
in Eq. (A.4).

Iph = ISC (A.1)

where ISC is the short circuit current at the cell level (as
the panel has two parallel strings of PV cells, this current
is the half the one of the panel).

I0 =
ISC

exp
(

q×VOC

kB×A×T

)

− 1
(A.2)

where VOC is at the cell level which equals the one at the
panel level but divided by 36 (as the panel has 36 PV cells
in each of the parallel strings); and the ideality factor A is
taken at:

A = 1.025 for polycristalline silicon solar cells (A.3)

Jfit (Rs,Rp, ISC , PMax, VOC) =

∑

Ik∈{ISC ,IPMax
,IVOC

=0}

(Ik − Icalc,k)
2 +

∣

∣

∣

∣

∂Pcalc,Max

∂U

∣

∣

∣

∣

UPMax

(A.4)
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