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In the Blocks Relocation Problem (BRP) one is given a block retrieval sequence and is concerned with
determining a relocation pattern minimizing the total number of moves required to enforce the given
retrieval sequence. The importance of the BRP has been constantly growing in recent years, as a conse-
quence of its close connection with the operations inside of a container terminal. Due to the complexity
of the BRP, a large number of methods has been developed for finding near optimal solutions. These
methods can be divided in two main categories greedy heuristics and more complex methods. The latter
achieve results of higher quality, but at the cost of very long execution times. In many cases, this
increased calculation time is not an option, and the fast heuristic methods need to be used. Greedy heu-
ristic approaches, in general, apply the heuristic based only on the properties of the block that is being
relocated and the current state of the bay. In this paper we propose a new heuristic approach in which
when deciding where to relocate a block we also take into account the properties of the block that will
be moved next. This idea is illustrated by improving the Min–Max heuristic for the BRP. We compare the
new heuristic to several existing methods of this type, and show the effectiveness of our improvements.
The tests have been conducted on a wide range of sizes of container bays, using standard test data sets.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

With the globalization of the world economy, container trans-
port is becoming of great importance. Container terminals are
gigantic logistic centers, that are used for the distribution of con-
tainers. More precisely, they can be seen as temporary storage
points, that make possible unloading operations from very large
transport vessels and loading operations onto smaller vehicles, like
trains or trucks, for further distribution, but also the same process
just in the opposite direction. Due to the fierce competition of the
global market, the efficiency of container terminals is of utmost
importance. One way of improving their productivity is by using
new technologies like automated guided vehicles (AGVs), systems
based on automated lift vehicles (ALVs), more efficient cranes, etc.
(Duinkerken, Dekker, Kurstjens, Ottjes, & Dellaert, 2006; Stahlbock
& Voß, 2008). Increasing the effectiveness of the container terminal
operations can also be done by optimizing the way in which such
operations are carried out using existing equipment.
One of the most important aspects of a storage system is the
time needed for container loading to transport vehicles and ves-
sels. This is due to the fact that the faster the retrieval operations
are completed, the sooner expensive and scarce resources (e.g.,
trucks, staff, cranes, etc.) can be used for new jobs, or in other
words they are used more efficiently. Furthermore, terminals usu-
ally have a limited amount of storage space, which has the conse-
quence that containers are piled up at the container yard in such a
manner to increase the space utilization. Block stacking is the most
common way for container storage at container yards (Kim &
Hong, 2006). The problem with block stacking is that only the
top container can be retrieved from each stack, while containers
often need to be loaded to transport vehicles in a certain order. This
order (approximate) is usually known before the loading process
starts, but it does not generally correspond to the state of the con-
tainer yard (Fig. 1). This means that not only do containers need to
be moved from the container block to the transport vehicle but
they will also have to be relocated within the container block to
make retrieval in the specified order possible. The movement of
containers is time consuming and the number of relocations
should be minimized. There are several approaches to solving this
practical problem which have been formalized in the form of the
Blocks Relocation Problem (BRP), the Re-Marshalling Problem
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Fig. 1. Container bay with 19 containers in five stacks; containers need to be
retrieved in increasing order of their numbering. Image taken from Caserta et al.
(2012).
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(RMP), i.e. intra-block marshalling and the Pre-Marshalling
Problem (PMP) (Caserta, Schwarze, & Voß, 2011a).

The BRP, which we shall consider in this paper, is defined in the
following way. First we will consider the problem setup with
some simplified assumptions as they are consistently used in liter-
ature (Kim & Hong, 2006):

� All blocks (containers) are of the same size.
� The container bay will be viewed as a two dimensional stacking

area, with W stacks, for which a maximal height (number of
tiers) H is given.
� The initial configuration of the container bay and the retrieval

sequence are known in advance (Fig. 1).
� The reshuffle operations (movement of containers within the

bay) are only allowed while a target container needs to be
retrieved, which means no pre-marshalling.
� Only blocks from the top of a stack can be accessed.
� Blocks can only be placed either on top of another block, or on

the ground (tier 0).
� When a block is retrieved, it is removed from the container bay.

The problem is to minimize the number of moves needed for
retrieving a given block sequence.

It has been shown that this problem is NP-hard (Caserta,
Schwarze, & Voß, 2012). There have been several directions for
solving this problem both for finding optimal and approximate
solutions. In their article, Kim and Hong (2006) present a branch
and bound method for finding the optimal solution of the BRP. In
the same article, a heuristic method is presented for finding an
approximate solution. The problem has been presented by a binary
linear programming model, and solved using a heuristic method
(Caserta et al., 2012; Caserta, Schwarze, & Voß, 2009). Another
heuristic approach, in the form of the beam search algorithm, is
given by Wu and Ting (2010). All the presented approximate algo-
rithms are deterministic. Though, it is a well known fact that for
NP-hard problems, in many cases probabilistic algorithms can
achieve results of higher quality for a lower computational time.
A nondeterministic algorithm has been implemented for the BRP
using the corridor method paradigm (Caserta, Voß, & Sniedovich,
2011b). A population based approach is presented in (Hussein &
Petering, 2012) where a variation of the BRP called block relocation
problem with weights (BRP-W) has successfully been solved using
a genetic algorithm. A very interesting version of the BRP is solved
by Lee and Lee (2010) in which more than one bay is considered.
This effectively transforms the initial problem into a three dimen-
sional one which, as a consequence, is of much greater size (the
authors mention considering problem instances with more than
700 containers).
Although the more complex methods can achieve results of
higher quality than greedy heuristics, it is at a high computational
cost. In many real life applications the extra calculation time is not
available and it is necessary to use some fast heuristic approach.
On the other hand heuristics used in greedy algorithms are often
a basis for developing more complex methods. In this article we
present a new approach to using a greedy heuristic for the BRP.
The main idea is to use a heuristic function that is dependent on
properties of more than one block, when deciding where to relo-
cate a single block. We illustrate the effectiveness of this method
by applying the new chain heuristic approach developed in this
paper to the greedy algorithm given in Caserta et al. (2011b). We
also present a simple improvement for the heuristic given in
Caserta et al. (2011b).

We compare the new heuristic approach to several standard
heuristics used on the BRP. We show that the new method
achieves the best results of all the tested methods on some stan-
dard benchmark data sets. We also show that the new approach
has a neglectable effect on the overall calculation time.

This article is organized as follows. In the next section we give
an overview of greedy heuristics for the BRP, and introduce one
simple improvement. In the third section, we explain the concept
of a chain heuristic. In the fourth section we provide a comparison
of different heuristics for the BRP. In the final section we give some
concluding remarks.
2. Related work

There have been several greedy algorithms developed for solv-
ing the BRP. The general idea of this approach is to move a block
that is blocking another block that needs to be retrieved, to a
new stack. This stack is selected among the set of all stacks by
some heuristic function that measures their desirability. Several
different heuristics have been developed, for which we give a short
overview.

The most basic idea for a heuristic is to move the blocking block
to a new stack that has the lowest number of tiers filled with con-
tainers. This approach has also been called the Lowest Position
heuristic (TLP) (Zhang, 2000). It is illustrated by the following
equation:

s� ¼ fTLPðr;BaynÞ ¼ argmini2f1;::;Wgnfsg tðiÞ ð1Þ

In Eq. (1), s is the index of the stack from which the block r is
moved, s� is the index of the stack to which the block will be moved
to, tðiÞ gives us the number of tiers filled with containers for stack i.
The variable Bayn gives the state of the bay at step n, or, in other
words, what are the elements at each stack. We wish to point
out that the value of s is specified by the properties of block r,
and is used as a separate variable simply for convenience. The
effect of using TLP is that all of the stacks will have a similar num-
ber of tiers, so the average number of relocations would stay low.
The idea behind this heuristic is to avoid extreme cases where a
large number of blocks needs to be moved from a stack with many
tiers when a block with high priority is blocked.

Murty et al. (2005) have proposed the Reshuffle Index heuristic
(RI) for the BRP. In this approach, the blocking block will be moved
to the stack in which it blocks the lowest number of blocks. More
precisely, it will be moved to the stack which has the lowest num-
ber of blocks that have a higher priority than the block being
moved. This heuristic can be illustrated by the following equation:

s� ¼ fRIðr;BaynÞ ¼ argmini2f1;::;Wgnfsg RIðr; iÞ ð2Þ

In Eq. (2), RIðr; iÞ gives the number of blocks in stack i that have
a higher priority than r. In this way it is expected that the overall
number of reshuffles is lowered since every time a block is put over



Fig. 2. Illustration of two steps of the Min–Max heuristic.

Fig. 3. Illustration of two steps of the Min–Max heuristic improved with checks for
stacks getting full.
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another with a higher priority, extra reshuffles need to be done. In
the original implementation of this method, if a tie occurs between
stacks, the choice would be made arbitrarily. Wu and Ting present
an improvement of this method by giving more consideration to
how ties are resolved (Wu & Ting, 2010). In the case some stacks
have the same RI, the tie is broken by selecting the stack that has
the lowest maximal priority. In this way new relocations in the
near future are avoided. It is interesting to mention that just by a
different way of resolving ties a significant improvement has been
achieved.

Caserta et al. (2011b) have presented a very efficient heuristic
that only takes into account the maximal priority of a block in each
stack. A very similar heuristic is presented in Ünlüyurt and Aydin
(2012). The proposed heuristic is called the Min–Max heuristic. It
has a different way of choosing the stack to which the block will
be moved to, depending if it creates a new deadlock or not. (When-
ever a pair of blocks is located in the same stack, and the priority of
the lower block is higher than the priority of the upper block, we
say that this pair of blocks forms a deadlock.) It first attempts to
move the block to a stack without creating new deadlocks. If the
block creates no new deadlocks it is moved to the stack that has
the highest maximal priority. In case the block movement has to
create a new deadlock it will be moved to the stack that has the
lowest maximal priority. The idea behind this heuristic is that
stacks with lower values of maximal priorities are more valuable.
This is because a greater number of blocks can be added to that
stack without creating new deadlocks. On the other hand, for
blocks that have low priorities it is best to put them somewhere
where they will be ‘‘out of the way’’ for as long as possible.

We shall present this heuristic in a slightly different form than
given in (Caserta et al., 2011b). First we shall define pðiÞ as the
highest priority of a block in stack i. In case a stack i is empty
pðiÞ ¼ N þ 1, where N represents the lowest priority of a block or
in other words the number of blocks in the initial bay. Next we
define

dði; rÞ ¼ pðiÞ � r ð3Þ

Function dði; rÞ gives us the difference in the maximal priority of
stack i and the priority r of the block being moved. Using function
dði; rÞ we can define the Min–Max heuristic using the following
equation:

s� ¼ fMinMaxðr;BaynÞ ¼
argmini2f1;...;Wgnfsg dði; rÞ; 9dði; rÞ > 0
argmaxi2f1;...;Wgnfsg dði; rÞ; 8dði; rÞ < 0

(

ð4Þ

We wish to mention that in Eq. (4), if dði; rÞ < 0 it means that by
moving block r to stack i a new deadlock is created.

We propose a simple improvement to the Min–Max heuristic by
taking into account if a stack will become filled (maximal level
reached). In the case a new deadlock is being created, the Min–
Max heuristic gives us the stack that has the lowest priority. If
the chosen stack has become filled, we have effectively lost the
possibility of adding new blocks to that stack. The selected stack
can receive blocks with the lowest priority without creating new
deadlocks. This practically means that in this case the Min–Max
heuristic has given us the worst possible solution. In the case of
creating a new deadlock and moving a block to a stack that will
reach the maximal number of tiers, this problem can be avoided
by using a simple correction. In this case, instead of using pðiÞ we
use

p�ðiÞ ¼ �N � pðiÞ ð5Þ

in Eq. (4) when calculating argmaxi2f1;::;Wgnfsgdði; rÞ. The effect of this
modification can be seen in Figs. 2 and 3.
3. Chain heuristic

All the presented greedy heuristic approaches apply the heuris-
tic based only on the block that is being relocated and the current
state of the bay.

More precisely, if at some step n, block rn is being relocated, the
heuristic function depends on the state of the container bay
Bayn, and the properties of the block rn. Let this function be denoted
as f ðrn;BaynÞ. One direction of improving greedy heuristics for the
BRP is by relocating a group of blocks instead of only one. We shall
call this an extended heuristic. It is obvious that the optimal reloca-
tion of a group of k blocks may be better than k consecutive optimal
relocations of one block. The problem is that the number of possible
relocations of a group of k blocks grows exponentially, and it will be
Wk. The calculation time for an algorithm based on an extended
heuristic will be much larger than the basic heuristic. This calcula-
tion time can even come close to the one needed for more complex
methods, if a large value of k is used. This way the main advantage,
the speed, of the heuristic method has been lost and the achieved
results are still not as good as when using more complex methods.
A possible way for improvement and extension is to look ahead
within heuristic search (Duin & Voß, 1999). An interesting look-
ahead approach to the BRP is given by Petering and Hussein
(2013), with their LA-N heuristic. In this method they also take into
account the state of stacks that contain blocks that will be retrieved
after the current block. In the LA-N heuristic they allow blocks from
these stacks also to be relocated, which is a variation of the BRP
since it has some types of pre-marshalling allowed.

In this section we present a new chain heuristic approach that
will have at least some of the advantages of the extended heuristic
but will not suffer from the extreme increase in calculation time.
The idea for this approach comes from the fact that even when using
an extended heuristic it is still just a heuristic that ‘‘guesses’’ what is
a good relocation strategy. The extended heuristics are, in most
cases, defined by some combination (frequently a simple sum) of
the heuristic for single blocks. The desired effect of an extended heu-
ristic is to avoid having blocks, that are relocated earlier, use stacks
that are more suitable for blocks that will be relocated later.

We propose a simple method that can approximate the effect of
an extended heuristic. It is obvious that at every step n, we know
which block rn is being relocated, but we also know block rnþ1

which will be relocated at step nþ 1. Block rnþ1 can be located at
one of the following two locations:

� In the same stack as rn just under it.
� Blocking the next block that needs to be removed.



Fig. 4. Illustration of two steps of the Min–Max heuristic.

1 We assume that the functions within the pseudo-code are somewhat self-
explanatory. For instance, if block i with highest priority is available with no other
block on top, CanRemoveBlock (i) is true and block i can be retrieved according to
RetrieveBlock (i).
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It is important that these two blocks are independent of the
reshuffle operations, except the extreme case that block rn will
have to be moved two times in a row. If we are using a simple heu-
ristic, we first calculate f ðrn;BaynÞ to get the stack where rn will be
relocated. Next, we calculate f ðrnþ1;Baynþ1Þ to see where we should
relocate block rnþ1.

In the case we are using an extended heuristic, we shall calcu-
late feððrn; rnþ1Þ;BaynÞ to see how the two blocks should be relo-
cated. At the next step of the algorithm we shall calculate where
the next two blocks ðrnþ2; rnþ3Þ should be relocated.

In the new greedy method, instead of using a heuristic function
f ðrn;BaynÞ we would use f ððrn; rnþ1Þ;BaynÞ to decide where to
relocate block rn. In the following step we would use
f ððrnþ1; rnþ2Þ;Baynþ1Þ to decide where to relocate block rnþ1. As we
have previously mentioned the goal of an extended heuristic is
to avoid the situation where blocks that are relocated earlier will
use stacks that are more suitable for blocks that are being relocated
later. The new heuristic function only needs to give us an answer to
a simple question of what is better:

� Get the relocation for block rn based on the best value of f for the
current state of the bay Bayn, and then get the relocation for
block rnþ1 using f for the new state of the bay Baynþ1.
� Get the relocation for block rnþ1 based on the best value of f for

the current state of the bay Bayn, and then get the relocation for
block rn based on the current state of the bay Bayn with the con-
straint that the move for rnþ1 will still be possible. The con-
straint is in practice very simple, one can not put block rn on
the stack where rnþ1 has been placed.

It is relatively easy to define f ððrn; rnþ1Þ;BaynÞ, using f ðrn;BaynÞ
and f ðrnþ1;BaynÞ if f corresponds to the Min–Max heuristic. To do
this we will first define an extended version of fMinMax

f �MinMaxðr; se;BaynÞ ¼
argmini2f1;...;Wgnfs;seg dði; rÞ; 9dði; rÞ > 0
argmaxi2f1;...;Wgnfs;seg dði; rÞ; 8dði; rÞ < 0

(

ð6Þ

The extended function f �MinMax, is the same as the original except
that an extra stack se can be excluded during the search for mini-
mal, or maximal values of dði; rÞ.

Next we need to evaluate the desirability of the order of reloca-
tions, or in other words what would be the impact to first relocate
block rn and then rnþ1, or in reverse. We first give the equations
connected with the direct order of relocations

s�D ¼ fMinMaxðrn;BaynÞ; D1 ¼ dðs�D; rnÞ ð7Þ
s��D ¼ fMinMaxðrnþ1;Baynþ1Þ; D2 ¼ dðs��D ; rnþ1Þ ð8Þ

In Eqs. (7), (8), D1 and D2 give the desirability of moving rn and
then rnþ1 using the Min–Max heuristics.

s��R ¼ fMinMaxðrnþ1;BaynÞ; R2 ¼ dðs��R ; rnþ1Þ ð9Þ
s�R ¼ f �MinMaxðrn; s��r ;BaynÞ; R1 ¼ dðs�R; rnÞ ð10Þ

Similar, in Eqs. (9), (10), R1 and R2 give the desirability of mov-
ing rn þ 1 and then rn using the Min–Max heuristics. Finally, Eq.
(11) provides the index s� of the stack to which block rn will be
moved to.

s� ¼
s��R ; ðR2 < D1Þ ^ ðR2;D1 > 0Þ ^ ðR1D2 > 0Þ
s�D; otherwise

�
ð11Þ

As previously mentioned, our goal when using a chain heuristic, is
to decide what is better, to first move rn and then rnþ1 or in reverse
order. Eq. (11) gives an answer to that question. The reverse order
will only be used if an improvement can be achieved, more pre-
cisely if all of the following criteria are satisfied:
� R2;D1 > 0, moves specified by R2;D1 do not create new
deadlocks.
� R1D2 > 0, moves specified by R1;D2 both create deadlocks, or

both of them do not.
� R2 < D1, block rnþ1 is better relocated to stack s��R , then block rn

is relocated to stack s�D

We wish to point out that if Min–Max is used as the basic heu-
ristic, we do not need to calculate the chain heuristic at every step.
Because of the way the Min–Max heuristic has been defined, it is
only possible for block rn to use a stack that is more suitable for
rnþ1 if pðrnÞ < pðrnþ1Þ. On the other hand, the values for
R1;R2;D1;D2 can be calculated jointly in a very efficient way. These
two facts can be exploited when developing software that imple-
ments this method.

The effect of using the chain heuristic is illustrated in Figs. 4 and
5. Let us point out that when using a chain heuristic, the level of
‘‘lookahead’’ can be higher than an extended heuristic of length 2
(or even higher in specific cases). An example of this effect can
be an array of blocks that are in ascending order by priority, that
are being relocated to an empty stack.

For better understanding of the chain heuristic, we give the fol-
lowing pseudo-code1:

i = 1
n = 1
while i < N þ 1 do

if CanRemoveBlock (i) then
RetrieveBlock (i)
i ¼ iþ 1

else
GetBlocks rn; rnþ1 for i
s� ¼ fMinMaxðrn;BaynÞ
if pðrnÞ < pðrnþ1Þ then

Calculate R1;R2;D1;D2

if ðR2 < D1Þ ^ ðR2;D1 > 0Þ _ ðR1D2 > 0Þ then
s� ¼ fMinMaxðrnþ1;BaynÞ

end if
end if
MoveTo (rn; s�)

end if
n ¼ nþ 1

end while
4. Experimental results

In this section we give a comparison of the newly presented
chain heuristic with other heuristic methods. The test data used
in the comparison is taken from Wu and Ting (2010). The test
states of the container bay have been generated using guidelines



Fig. 5. Illustration of two steps of the Min–Max using the chain heuristic approach.

Table 2
The range and standard deviation of the level of improvement for individual problem
instances for small sized bays given in percent of the Chain and Chain F heuristics
compared to the Min–Max heuristic.

Tiers � stacks Chain Chain F

Stacks Imp. Range Stdev. Imp. Range Stdev.

3 � 3 0.00 (0, 0) 0.00 0.26 (0, 20) 10.73

4 0.00 (0, 0) 1.73 �1.20 (�13, 25) 10.68

5 0.00 (0, 0) 0.00 2.05 (�33, 36) 13.51

6 1.34 (0, 22) 4.41 3.64 (�11, 25) 9.39

7 1.87 (�8, 19) 5.03 0.65 (�20, 19) 9.20

8 2.26 (�5, 24) 5.76 3.10 (�18, 31) 9.27

3 � 4 0.00 (0, 0) 0.00 0.00 (0, 0) 0
4 0.19 (0, 8) 1.20 1.27 (�11, 29) 6.18

5 0.56 (�13, 10) 3.54 �1.17 (�25, 39) 10.57

6 0.57 (�7, 17) 3.37 1.20 (�19, 23) 6.59

7 1.35 (�8, 15) 4.41 1.74 (�25, 33) 10.33

8 1.79 (�9, 13) 4.35 1.51 (�31, 30) 13.91

3 � 5 0.00 (0, 0) 0.00 �0.67 (�14, 0) 2.93

4 0.36 (�6, 13) 2.56 �0.18 (�19, 13) 6.13

5 0.54 (�7, 16) 3.35 1.78 (�21, 21) 8.22

6 1.68 (�7, 21) 5.19 0.93 (�21, 24) 10.32

7 2.07 (�9, 20) 5.84 0.75 (�17, 17) 8.78

8 0.95 (�19, 11) 4.96 1.73 (�19, 24) 10.79

3 � 6 0.00 (0, 0) 0.00 �0.32 (�7, 9) 4.95

4 0.61 (�7, 14) 2.82 0.21 (�12, 23) 4.82

5 0.67 (�7, 9) 2.89 0.21 (�7, 14) 5.88

6 0.73 (�11, 11) 3.94 1.00 (�13, 26) 7.89

7 2.51 (�11, 17) 5.91 3.27 (�13, 30) 9.48

8 2.37 (�9, 11) 5.29 3.47 (�13, 18) 7.46
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given in Wan, Liu, and Tsai (2009). In all the generated test cases
the container bay is almost full. We compare the performance for
a wide range of problem sizes, for 3–12 stacks and 3–12 tiers.
For each of the test sizes, 40 different problem instances are con-
sidered. We present the average results for each test size in Tables
1, 3, and 5. In the tables the values for the approaches of Murty
et al., Wu and Ting (their improvement of RI) and beam search
are taken from Wu and Ting (2010). The algorithm of Wu and Ting
is the best heuristic presented in Wu and Ting (2010), and the
original specification of the RI heuristic is given in Murty et al.
(2005). The values for Caserta et al. (Min–Max) correspond to the
heuristic algorithm presented in Caserta et al. (2012), in our imple-
mentation. The values in columns Chain and Chain F show the
effectiveness of the two improvements presented in the previous
section. All of the algorithms have been implemented in C# using
Microsoft Visual Studio 2012. The calculations have been done
on a machine with Intel(R) Core(TM) i7-2630 QM CPU 2.00 GHz,
4 GB of DDR3-1333 RAM, running on Microsoft Windows 7 Home
Premium 64-bit.

In the Tables 1 and 3 we include the values of Wu and Ting’s
beam search as a lower bound for the problem instances. This
The higher level of improvement for the two heuristics has been underlined.

Table 1
Comparison of different heuristics for the BRP on small size instances. Values for Murty et al. Wu/Ting, Beam Search (Wu/Ting) are taken from Wu and Ting (2010). Caserta et al. is
our implementation of the Min–Max algorithm. Chain, Chain F are the Min–Max heuristic combined with only the chain heuristic, or with both improvements. In column ‘Beam
search’ bold italic values are equal to known optimal solutions.

Tiers � stacks Murty et al. Wu/Ting Caserta et al. Chain Chain F Beam search (Wu/Ting)

3 � 3 3.42 3.4 3.42 3.42 3.38 3.38

4 6.10 5.95 5.82 5.82 5.95 5.67

5 9.80 9.45 9.10 9.10 8.70 8.40

6 13.60 13.20 12.97 12.77 12.30 11.50

7 18.10 17.30 16.62 16.25 16.40 15.00

8 24.10 22.90 22.02 21.52 21.20 18.60

3 � 4 5.03 4.92 4.95 4.95 4.95 4.85

4 9.05 8.80 8.75 8.72 8.57 8.43

5 14.50 13.70 13.12 13.02 13.17 12.20

6 19.10 17.90 17.15 17.05 16.92 15.60

7 28.90 27.60 26.37 25.97 25.62 22.60

8 37.90 34.60 33.67 33.05 32.82 27.90

3 � 5 5.90 5.75 5.75 5.75 5.80 5.75

4 12.20 11.80 11.40 11.35 11.40 11.00

5 18.10 17.40 17.07 16.95 16.65 15.60

6 25.60 24.10 23.92 23.52 23.57 21.10

7 36.30 33.70 31.92 31.15 31.42 27.80

8 49.80 44.50 43.07 42.57 42.00 36.40

3 � 6 7.92 7.80 7.72 7.72 7.85 7.65

4 13.20 12.80 12.67 12.55 12.60 12.00

5 22.60 21.40 20.60 20.42 20.52 19.30

6 32.60 30.10 29.02 28.77 28.57 26.10

7 45.50 41.70 40.42 39.22 38.65 34.90

8 57.20 53.90 52.20 50.87 50.25 43.20

Average
Value 21.52 20.19 19.57 19.27 19.13 17.29
100 � X�BS

BS
24.48 16.80 13.20 11.45 10.68 0

The values of the best average solutions have been underlined.



Table 3
Comparison of different heuristics for BRP on medium size instances. Values for Murty et al. Wu/Ting, Beam Search (Wu/Ting) are taken from Wu and Ting (Wu & Ting, 2010).
Caserta et al. is our implementation of the Min–Max algorithm. Chain, Chain F are the Min–Max heuristic combined with only the chain heuristic, or with both improvements. In
column ‘Beam search’ bold italic values are equal to known optimal solutions.

Tiers � stacks Murty et al. Wu/Ting Caserta et al. Chain Chain F Beam search (Wu/Ting)

3 � 7 10.10 9.88 9.02 9.05 9.17 8.95

4 20.10 18.80 16.35 16.45 16.07 15.50

5 30.90 28.30 23.15 22.92 22.70 21.40

6 45.00 41.30 34.40 34.07 34.07 31.00

7 59.80 54.50 45.62 44.92 44.27 39.40

8 76.60 68.70 59.02 57.97 56.32 49.90

3 � 8 11.90 11.70 9.87 9.87 9.75 9.72

4 20.90 20.00 18.72 18.52 18.52 18.00

5 34.70 32.10 27.67 27.37 26.82 25.40

6 50.60 46.50 40.47 39.65 38.90 36.00

7 68.40 61.60 52.10 51.15 50.82 45.10

8 88.90 79.50 66.37 65.12 64.55 57.30

3 � 9 12.40 12.10 11.62 11.60 11.57 11.40

4 24.70 23.60 19.85 19.72 19.87 19.10

5 37.50 35.10 31.00 30.35 30.55 28.70

6 55.70 50.20 44.90 44.50 43.30 40.00

7 76.70 68.80 59.87 57.92 57.35 51.50

8 97.90 87.40 76.32 75.05 73.50 66.00

3 � 10 14.60 14.40 12.02 12.02 11.97 11.90

4 26.20 24.70 23.60 23.32 23.25 22.40

5 41.20 38.50 34.50 33.80 33.45 31.80

6 60.20 54.40 48.80 47.77 47.45 44.00

7 85.10 75.80 65.72 64.37 63.60 57.50

8 111.00 96.70 83.90 82.02 79.35 71.20

Average
Value 48.38 43.94 38.11 37.47 36.96 33.88
100 � X�BS

BS
42.78 29.68 12.51 10.61 9.10 0

The values of the best average solutions have been underlined.
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method has in many cases achieved the optimal solutions. We
would like to mention that a direct comparison between the heu-
ristic methods and the beam search is not of importance due to the
great difference in execution time. In our test we did not include
the calculation times for the heuristics, due to the fact that they
are all very small, as mentioned in Wu and Ting (2010). On the
other hand, from the description of the heuristics it is obvious that
they have a very similar execution time.

We first observe the results for small and medium size
instances. We notice that the Min–Max heuristic gets significantly
better results than Wu/Ting’s. The average number of reshuffle
operations for Wu/Ting’s heuristic are 20.19 and 43.94 compared
to 19.57 and 38.11 achieved by Min–Max, when small and medium
size problem instances are considered, respectively.

Next we analyze the effectiveness of the two improvements to
the original Min–Max heuristic. We can notice that the use of the
chain heuristic approach has improved the basic heuristic’s results
in almost all cases. It has decreased the quality of results, for only 1
of 48 test sizes, and in this case only slightly from 9.02 to 9.05. The
level of improvement is best evaluated when we observe the aver-
age distance (error) from the Beam Search which we consider as a
lower bound for the problem. This error given in percent has been
decreased from 13.20, 12.52 to 11.45, 10.61 for small and medium
sized instances, respectively.

When the combination of both improvements are added to the
Min–Max heuristic, the results are further improved to 10.68, 9.10
when the average error is observed. Note that although the addi-
tion of the checks for stacks becoming filled improves the average
results it has also degraded the quality for some test instances,
when compared to the chain heuristic. This negative effect is most
noticeable in smaller problem cases, especially when there is a low
number of tiers.

To better analyze the effect of the proposed improvements to
the original Min–Max Heuristic we have also included Tables 2, 4
which represent the standard deviation and range for each of the
problem sizes. More precisely we have calculated the improve-
ment in percent corresponding to the number of reshuffle opera-
tions of the Chain and Chain F compared to the original method,
for each of the 40 problem instances inside of one problem size.
There is a slight discrepancy of the results in Tables 2, 4 and 1, 3;
this is due to the fact that in the first pair we show the relative
change for a normalized number of moves and in the second pair
only the number of moves. From these results it is noticeable, that
although the improvements did have an average improvement
compared to the original method in some of the problem instances
they degraded the quality of the solution. This fact is more notice-
able in the case of the Chain F heuristic where both the level of
improvement and degradation are more significant, but overall
the positive effect is greater.

We have also compared the effectiveness of the two improve-
ments for large problem instances having 11–12 stacks with the
maximal number of tiers going up to 12. The results of tests for
large problem instances are given in Table 5. In this table we
compare only the improved heuristics to the one proposed by
Caserta et al. since data for the other methods was not available.
We first notice that the effectiveness of the improved heuristic



Table 4
The range and standard deviation of the level of improvement for individual problem
instances for medium sized bays given in percent of the Chain and Chain F heuristics
compared to the Min–Max heuristic.

Tiers � stacks Chain Chain F

Imp. Range Stdev. Imp. Range Stdev.

3 � 7 �0.23 (�9, 0) 1.42 �1.63 (�18, 11) 5.69
4 �0.56 (�12, 7) 3.08 1.35 (�11, 10) 5.11

5 0.85 (�5, 8) 2.45 1.69 (�12, 15) 5.85

6 0.64 (�11, 11) 4.82 0.35 (�18, 14) 8.05

7 1.56 (�7, 15) 4.12 2.40 (�17, 23) 8.05

8 1.50 (�7, 14) 4.88 3.90 (�15, 16) 7.04

3 � 8 0.00 (0, 0) 0.00 0.99 (�8, 9) 3.24

4 0.83 (0, 16) 2.92 0.83 (0, 16) 2.92

5 1.06 (�6, 12) 3.19 2.61 (�7, 20) 6.90

6 1.94 (�12, 27) 5.54 3.62 (�6, 27) 6.67

7 1.60 (�5, 12) 4.14 2.03 (�7, 19) 7.09

8 1.68 (�9, 14) 4.20 2.37 (�17, 15) 6.74

3 � 9 0.19 (0, 8) 1.20 0.21 (�13, 9) 4.06

4 0.52 (0, 9) 1.95 �0.40 (�14, 10) 5.49

5 1.68 (�4, 18) 4.12 0.77 (�21, 20) 8.08

6 0.72 (�6, 10) 3.11 3.32 (�16, 19) 6.80

7 3.08 (�9, 17) 5.12 4.04 (�6, 13) 5.29

8 1.50 (�12, 9) 3.99 3.40 (�7, 14) 5.96

3 � 10 0.00 (0, 0) 0.00 0.23 (�10, 17) 4.31

4 1.06 (�11, 7) 2.98 1.32 (�9, 14) 4.97

5 1.89 (�5, 11) 3.62 2.99 (�8, 14) 4.53

6 1.98 (�4, 14) 3.78 2.49 (�7, 14) 4.95

7 1.97 (�5, 10) 3.41 2.90 (�9, 23) 6.51

8 2.03 (�13, 11) 5.03 4.96 (�9, 17) 7.36

The higher level of improvement for the two heuristics has been underlined.
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grows with the increasing number of stacks and tiers. When only
the chain heuristic approach is used, the improvement varies
from less than 1% for problems with a low number of tiers, up
Table 5
Comparison of different heuristics for BRP on large problem cases. Caserta et al. is our im
combined with only the chain heuristic, or with both improvements.

Tiers � stacks Caserta et al. Chain

Average

3 � 11 14.37 14.35

4 24.50 24.47

5 37.95 37.52

6 52.60 51.85

7 73.15 71.75

8 93.80 92.47

9 118.07 115.50

10 144.25 139.90

11 167.22 164.77

12 198.10 196.40

3 � 12 15.05 15.07

4 28.12 27.80

5 42.02 42.00

6 58.35 57.15

7 81.25 79.35

8 102.52 99.12

9 125.57 124.10

10 150.05 145.90

11 183.97 180.60

12 220.80 212.32

The values of the best average solutions have been underlined.
to almost 4% for a higher number of tiers. In the tests performed
with large problem instances the combination of improvements
has proven to be very effective. Compared to the chain heuristic
it has degraded the quality of solutions in only one case. It has
achieved a maximal improvement of even more than 8%, and
around 5% on average when compared to Caserta et al.’s
heuristic.
5. Conclusion

In this paper we have presented a new heuristic approach for
solving the BRP. In a vast majority of greedy algorithms, the heuris-
tic is based only on the block that is being relocated and the cur-
rent state of the bay. We introduced a new heuristic approach in
which when deciding where to relocate a single block we also take
into account the properties of the block that will be moved next.
This idea is illustrated by improving the Min–Max heuristic for
the BRP. We also presented a simple improvement for the Min–
Max heuristic by taking into account if a stack will reach a maximal
tier if a block is moved to it.

We compared the new heuristic to several existing methods of
this type on test data of a wide range of sizes. In our tests we have
shown that when our two improvements are added to the Min–
Max heuristic, the new method achieved the best results in almost
all of the tested cases. It is important to point out that the level of
improvement has grown with the size of the container bay. The
improvement is significant, when compared to the basic Min–
Max and has been on average around 5%, reaching even more than
8%, when large problem instances are considered. It is important to
point out that for getting this level of improvement, there was
almost no extra calculation time.

The proposed chain heuristic has clearly shown its advantages
to the basic method. We believe that this concept can also be
successfully used in combination with other heuristics for the
BRP. In the future we plan to develop a more general formulation
of the chain heuristic that could take into account a higher
plementation of the Min–Max algorithm. Chain, Chain F are the Min–Max heuristic

Chain F

Improvement Average Improvement

0.14 14.30 0.49
0.12 24.27 0.94

1.13 37.55 1.05

1.43 51.17 2.72
1.91 69.45 5.06
1.41 90.42 3.60
2.18 111.85 5.27
3.02 134.07 7.06
1.47 158.05 5.48
0.86 187.20 5.50

�0.13 15.05 0.00
1.14 27.52 2.13
0.05 41.52 1.19
2.06 56.37 3.39
2.34 76.90 5.35
3.32 96.95 5.43
1.17 120.72 3.86
2.77 142.55 5.00
1.83 174.97 4.89
3.84 202.70 8.20
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number of following blocks without a significant increase in calcu-
lation time.
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