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Abstract In this paper, we present a method for finding high quality solutions for the
Blocks Relocation Problem with Stowage Plan (BRLP). The interest for this problem
comes from the fact that previous research has shown that a significant amount of
savings can be achieved, if the process of specifying the loading sequence takes into
account both the state of the bay and the stowage plan. In this work, we propose a two
step greedy algorithm for the BRLP. In the first one, a heuristic is used to select the
next container to be loaded into the vessel. In the second step, a new heuristic is used
to relocate obstructing containers. The solutions acquired in this way are improved
using a correction procedure. The idea of the correction procedure is to use a heuristic
approach to recognize undesirable properties of a solution and remove them. Finally,
the method is extended towards the GRASP metaheuristic. Our computational exper-
iments show that the proposed approach manages to significantly outperform existing
methods for the BRLP.

Keywords maritime shipping - blocks relocation problem - stowage plan - heuristics -
GRASP

1 Introduction

In the last several decades, there has been an almost unprecedented increase in inter-
national trade. Close to 90% of it is carried out by the international shipping industry.
The vast majority of it passes through container terminals, gigantic logistic centers,
which serve as transshipment points. Their main purpose is to serve as temporary
storage points, which are used for unloading containers from very large transport
vessels and transferring them to smaller vessels, vehicles or trains for further distri-
bution. This process is also performed in the opposite direction. Due to the enormous
scale of operations at container terminals, an increase in efficiency can produce con-
siderable savings in energy consumption and consequently positive environmental
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effects. Due to the limited amount of storage space at terminals, containers are piled
up at the container yard in such a manner to increase space utilization. This is done
through block stacking (Kim and Hong, 2006), which directly affects the loading and
unloading operations. This relation is formalized using several abstractions like the
Blocks Relocation Problem (BRP), the Re-Marshalling Problem (RMP), i.e. intra-
block marshalling, and the Pre-Marshalling Problem (PMP) (Steenken et al., 2004;
Caserta et al., 2011a; Tanaka and Tierney, 2018).

In recent years, there has been an extensive amount of research dedicated to the
BRP. This is, to a large extent, due to its close relation to the practical problem of
loading containers onto vessels at container terminals. Except for the basic version
of the problem, several variations have been considered. Some examples are the use
of different objective functions (Lee and Lee, 2010; Zhu et al., 2010; Hussein and
Petering, 2012b; Schwarze and VoB, 2015; da Silva Firmino et al., 2016) and sets
of constraints (Zhu et al., 2010; Caserta et al., 2012; Petering and Hussein, 2013;
Expésito-Izquierdo et al., 2014). The BRP has also been explored in a three dimen-
sional setting (Lee and Lee, 2010; Forster and Bortfeldt, 2012). An important ex-
tension of the BRP is the on-line version in which the arrival of containers is also
considered (Wan et al., 2009; Borjian et al., 2013; Tang et al., 2015). In the vast
majority of the published research, the problem inputs are the initial state of the con-
tainer yard and a given loading sequence. The goal of the BRP is usually to minimize
the number of relocation operations (movement of containers) needed to retrieve the
containers in the order of the loading sequence.

In this group of research papers, the relation between the stowage plan and the
loading operations in the yard is disregarded. The stowage plan, or in other words the
location of containers (or groups of containers) in the vessel, represents an essential
part of container transport. Finding a good stowage plan is a complex problem as it
needs to satisfy a wide range of constraints related to vessel stability and strength,
transport of hazardous materials and efficient ship operations during visits to multi-
ple ports (Pacino et al., 2012; Tierney et al., 2014). Generally, in container ports, the
list of containers for discharging and loading to vessels is known in advance. Firstly,
all the containers are unloaded and afterwards, based on the stowage plan, a loading
sequence is determined and the loading process starts. It has been shown that the
loading sequence can significantly affect the handling cost in the yard (Kim and Lee,
2015). In the paper by Ji et al. (2015), the Blocks Relocation Problem with Stowage
Plan (BRLP), an extension of the BRP, is introduced. Note that in Ji et al. (2015),
the problem was called the Block Relocation and Load Problem indicating the estab-
lished abbreviation BRLP. In this version of the problem, the stowage plan is given
as an input instead of the loading sequence. The results in this paper indicate that a
significant amount of savings can be achieved if the process of specifying the loading
sequence takes into account both the state of the yard bay and the stowage plan.

The goal of the BRLP is to minimize the number of movements needed to retrieve
the containers. The difference between the BRLP and the BRP is that there are only
constraints on the loading sequence instead of a fixed one used in the BRP. In the
BRLP, the loading sequence only needs to enable the stowage plan. For example,
if a container is placed below another container in the vessel, the former should be
loaded before the latter, but no such constraints are necessary if they are placed apart.
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In practice, the increased complexity of the BRLP comes from the fact that it is also
necessary to find the optimal loading sequence in addition to finding the optimal
movements of the containers inside the yard. Indeed, the BRP can be viewed as a
special case of the BRLP, as will be explained in the next section. To the best of our
knowledge, in the currently published research, there are still no exact algorithms for
solving the BRLP. Note that existing integer programming formulations for the BRP
(Wan et al., 2009; Caserta et al., 2012; Petering and Hussein, 2013; Zehendner et al.,
2015) can be adapted to the new setting by changing the constraints related to when
the retrieval of a container is allowed.

In this paper, we propose a greedy heuristic approach for the BRLP. Further, we
analyze a new type of blockings that occur in the BRLP. Based on this analysis,
several heuristics are defined. More precisely, we define specific rules for selecting
the container that will be retrieved next and how to relocate the containers above
it. The rules are designed to address specific properties existing in the BRLP. This
type of approach has proven very successful in case of the BRP (Expésito-Izquierdo
et al., 2014; Jovanovic and Vo3, 2014) and the PMP (Expésito-Izquierdo et al., 2012;
Jovanovic et al., 2017).

To enhance the performance of the basic greedy algorithm, a local search, more
precisely a correction procedure is developed. Finally, a basic randomization is in-
cluded and a GRASP algorithm (Feo and Resende, 1995) is implemented. The per-
formed computational experiments show that the proposed approach significantly
outperforms existing methods.

The paper is organized as follows. In Section 2, the problem definition and an
overview of related research are given. In the next section, we give an outline of the
proposed greedy algorithm. The fourth section gives a detailed analysis of different
types of blockings that can occur in the BRLP. In the following section, we analyze
heuristic functions for the BRLP. Further, we give details of the proposed GRASP
algorithm and the correction procedure. Finally, we show the results of the performed
computational experiments.

2 Definition of the BRLP

In this section, we give the definition of the BRLP as in (Ji et al., 2015). In the BRLP,
it is assumed that all the containers are of the same size. The problem settings are as
follows.

— The yard bay is viewed as a two dimensional stacking array with W stacks and a
maximal allowed height (number of tiers) H.

— The vessel bay consists of W stacks. Each of them has a maximal allowed height
(tier) H;}.

— Each container ¢ has a designated location in the vessel bay, specified with a
vessel stack vs(c) and a vessel tier vi(c).

— The initial configuration of the yard bay and the designated locations of containers
in the vessel bay are known in advance. We will use the notation ys(c)/ yt(c) to
indicate the stack/tier in the yard bay of container c.

— Only containers from the top of a stack can be accessed.



When a container is retrieved, it is moved from the yard bay to the vessel bay.

— The relocation operations (movement of containers within the bay) are only al-
lowed while a target container needs to be retrieved. More precisely, only reloca-
tion of containers above the target container is allowed. In case of the BRP, this
version of the problem is commonly called restricted. In practice, it means that no
pre-marshalling (preparatory movement of containers in the yard bay) is allowed.
This is a common method of operations at container terminals.

— Once a container is moved to the vessel bay, it cannot be moved again.

— Containers can only be placed on top of other containers or on the ground (tier 0)

in both the vessel bay and the yard bay.

The objective of the BRLP is to minimize the number of relocation operations
needed to move all the containers from the yard bay to their designated locations
in the vessel bay. The inputs for the problem are the stowage plan and the initial
state of the yard bay. An illustration is shown in Fig. 1. In practice, the BRLP can
be regarded as solving several BRPs in parallel, where each vessel stack gives us a
separate loading list. The BRP can also be viewed as a special case of the BRLP, in
which the vessel bay has only one stack. In case of the BRP, the problem is often
extended to yards having multiple bays, or, in other words, to a three dimensional
setting. Each bay represents a two-dimensional array, and the yard has multiple bays
which correspond to a third dimension. The BRLP can also be extended to this setting
in a similar way.

A2 B3 c4 D4 E3 F2
Al B2 Cc3 D3 E2 F1
B1 Cc2 D2 El
C1 D1
A B C D E F

E2 D3 D2

C1 D5 D1 B1 ca
B3 A2 Cc3 E3 E1l
Al B2 F2 D4 Cc2
1 2 3 4 5

Fig. 1 Top: stowage plan. Bottom: initial state of the yard. If two blocks have the same letter, they are
designated to same vessel stack. The corresponding number represents the designated tier of a container
in the vessel bay.



A GRASP approach for solving the Blocks Relocation Problem with Stowage Plan 5

The problem proposed in Ji et al. (2015) represents an extension of the BRP. It has
been shown that the BRP is NP-hard (Caserta et al., 2012). A wide range of methods
have been developed for solving this problem and its variations. Optimal solutions
for the BRP have been found by solving integer programs (Wan et al., 2009; Caserta
et al., 2012; Petering and Hussein, 2013; Zehendner et al., 2015). Such solutions
have also been found using branch-and-bound (Kim and Hong, 2006; Tanaka and
Takii, 2016; Tanaka and Mizuno, 2018) and A* (Zhu et al., 2012; Expdsito-Izquierdo
et al., 2014) based algorithms. Another group of methods is dedicated to finding
near optimal solutions for the BRP. One part of this research focuses on developing
greedy algorithms and corresponding heuristics (Zhang, 2000; Murty et al., 2005;
Wu and Ting, 2010). It has been shown that the performance of such methods can
be significantly improved by incorporating different types of look-ahead mechanisms
(Jovanovic and VoB3, 2014; Petering and Hussein, 2013; Caserta et al., 2009). Near
optimal solutions for the BRP have been found using a wide range of metaheuristic
methods (i.e., the beam-search (Wu and Ting, 2010; Nishi and Konishi, 2010), the
corridor method (Caserta et al., 2011b) and genetic algorithms (Hussein and Petering,
2012a)).

As previously stated, different variations of the BRP have been considered. In the
restricted version, only containers above the target container (the one currently being
retrieved) can be relocated. There is no such constraint in the unrestricted version.
Note that in case of the BRP with unique due dates, the target container is equivalent
to the container with the lowest value of the due date of all the containers in the bay.
This is the only container that can be retrieved based on the loading list. In case of
the BRLP for each non-filled vessel stack, there is a container that can be retrieved
and is potentially a target container. To avoid this ambiguity, we must select one such
container and consider it the target one.

Several extensions of the BRP have been defined to better reflect the operations
in the container yard. In (Forster and Bortfeldt, 2012; Lin et al., 2015; Unlijyurt and
Aydin, 2012; da Silva Firmino et al., 2016), instead of minimizing the number of relo-
cations of containers, the goal is to minimize the crane operational time. In the work
of Hussein and Petering (2013), weights are added to containers and the objective is
to minimize the fuel consumption. In Zehendner et al. (2017), the BRP is considered
in a setting where only incomplete information regarding the retrieval sequence is
known in advance. Similar extensions of the BRLP, as in the case of the BRP, would
result in more realistic representations of the real-world problem. Note that at least
one optimal solution for the basic version of the BRP, where the objective is to min-
imize the number of relocations, is frequently the same or highly similar to the ones
found for alternative objectives. An extensive analysis of the relation between opti-
mal solutions for different variations of the BRP can be found in Schwarze and Vo3
(2015).

The BRP has also been extended to incorporate a wider range of operations in
container yards. A direct extension is the three dimensional version, where multiple
bays are considered (Ji et al., 2015; Lee and Lee, 2010). In such models, either the
relocation of containers between bays is not allowed or additional costs are given
to such moves. In Guerra-Olivares et al. (2015), the relocation problem employing
reachstacker vehicles as container handling equipment is modeled. It considers the



full layout of the yard in determining how far a container is relocated. An important
stochastic version of the BRP is the dynamic container relocation problem. It jointly
considers the relocation, retrieval and stacking of incoming items (Wan et al., 2009;
Tang et al., 2015). Another direction of extending the BRP is the consideration of
the hinterland transport. In Ku and Arthanari (2016), such a model is developed by
considering truck appointment systems.

3 Outline of the greedy algorithm

In this section, we give an outline of the greedy algorithm for the BRLP. In case
of the restricted BRP, with unique due dates, the order of retrieving containers is
known in advance. Due to the fact that only containers on top of stacks can be ac-
cessed, in some cases, the retrieval cannot be performed until obstructing containers
are relocated. Here, we use the term obstructing for the containers that are above the
container that is being retrieved. In the greedy algorithms for the restricted BRP, the
only heuristic Hy that needs to be defined is the one for selecting a destination yard
stack S for relocating an obstructing container c. As previously stated, the order in
which containers are retrieved is not fully specified; instead, it only needs to satisfy
some constraints in the BRLP. To be more precise, each container needs to be re-
trieved (loaded into the vessel) in such a sequence that all the containers below it (in
the vessel bay) are already retrieved at the time of its retrieval. As a consequence,
in case of the BRLP, a second heuristic H;, is defined for selecting which container
will be retrieved. Pseudocode for the proposed greedy algorithm for the BRLP can
be seen in Algorithm 1.

Algorithm 1 Pseudocode for the greedy algorithm for the BRLP.

while Bay not empty do
Select Container « for retrieval using Hy,
while a not on top of stack do
Select relocation stack for obstructing container b based on Hg
Relocate b to selected stack
end while
Retrieve a
end while

According to Algorithm 1, the greedy algorithm iteratively loads containers into
the vessel. At each step, a container for retrieval is selected using the heuristic func-
tion H;. Next, all the necessary relocations are performed based on Hg. This proce-
dure is repeated until all the containers are loaded into the vessel.

Although some heuristics Hg used for the BRP can be directly extended to the
BRLP, their performance can be enhanced by focusing on specific properties of the
BRLP. The second heuristic function H; has similarities to ones developed for the
PMP and can be improved in a similar way.
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4 Blocking relations in the BRLP

In this section, we analyze the relations between containers in the yard bay and ex-
plain some differences between the BRP and the BRLP. The conclusions of this anal-
ysis are exploited in defining the heuristic functions for the BRLP. We first observe
the relation between due dates in the BRP and designated locations of containers in
the vessel bay in the BRLP. The second part is dedicated to the analyses of container
relocations that increase the number of container relocations needed to retrieve con-
tainers. Further, a method for efficiently recognized such relocations is presented. The
main focus is on different types of blockings that can occur in the BRLP.

4.1 Due date

In case of the BRP, each container ¢ has a due date which is an integer value dd(c).
These values indicate the order in which containers are retrieved. Specifically, we can
only retrieve the container with the lowest value of the due date in the yard bay. In
relation, let us define the current due date for container ¢ as cdd(c) = dd(c)—dd(lr)—1,
where [r is the last retrieved container. In this notation, it is evident that a container
can only be retrieved when cdd(c) = 0.

As previously mentioned in case of the BRLP, there is no specific order in which
containers are retrieved, but such a relation exists among containers inside the same
vessel stack. More precisely, the containers designated to the same vessel stack are
retrieved in the order of their vessel tiers. Let us note that the order in which contain-
ers are retrieved, indicated using a due date, is essential in defining several heuristics
for the BRP. As previously mentioned, the proposed heuristics for the BRLP will
be based on ones used for the BRP. Because of this, with the intention of having a
uniform terminology, we will extend the concept of due dates to the BRLP in the
following way:

vt(c) vs(c) =S
dds (c) = {N +1 vs(c) # S M

In Eq. (1), dds(c) is the due date of a container ¢ related to a vessel stack S. In
case of vs(c) = §, the due date is equal to v#(c). Otherwise, the value of the due
date, related to the vessel stack S, is assumed to be equal to N + 1, where N is the
number of containers in the initial yard bay, since it can be retrieved after all the
containers designated to S. Note, the constraints related to the retrieval of such a
container are independent of containers designated to vessel stack S, so it can also be
retrieved before them. We also define the simplified notation dd(c) = dd,)(c), and
cdd(c) = dd(c) — dd(lr,s)) — 1 where Ir; is the last container loaded to vessel stack
S. Now, as in the case of the BRP, a container ¢ can be retrieved if cdd(c) = 0.

4.2 Blocking and cycles

In case of solving the BRP and defining corresponding heuristics, it is essential to be
able to recognize the relation between containers that result in additional relocations



when retrieving them. Let us call a container ¢ well-located if there is no container
d with a lower due date below it in the yard bay. Otherwise, we say a container c is
not well-located. Let us use the term “container c is directly blocking container d”,
if dd(c) > dd(d) and container d is below container ¢ in the same yard stack. It is
evident that container ¢ will have to be relocated before d can be retrieved. In case of
the BRLP, the same relation is true only if vs(c) = vs(d), as seen in Fig. 2. Now, we
can say a container c is well-located in the BRLP if there is no container d below it
satisfying vs(d) = vs(c) and vt(d) < vt(c). In case such a container d exists below c,
we will say c is directly blocking container d.

The difficulty in the BRLP is that there are other situations when additional re-
locations will be necessary. If we look at Fig. 2, it is evident that the containers
Al1,A2,C1 and C2 cannot be retrieved without additional relocations. In general

. ©

ey - (e2)
A1 C1 B2 @

Fig. 2 An example of a precedence graph for a yard bay. The precedence corresponding to the vessel bay

(relation l>) are grey and to the yard bay (relation i>) are black. The non-well-located container is colored
black.

terms, an additional relocation will occur in case that for retrieving a container a, we
have to previously retrieve/relocate a container b, and prior to retrieving a container
b, we have to retrieve/relocate a container a. It should be pointed out that there may
be some additional containers that also need to be retrieved/relocated between the re-
trieval of containers a and b. To recognize such situations, the concept of precedence
relations and precedence graphs will be introduced.

4.2.1 Precedence graph

From the previous discussion, it is evident that there is an order in which containers
can be accessed inside the yard bay and in which they can be retrieved. This order can
also be observed as a precedence relation between containers. There are two types of
precedence relation. The first one is based on the due dates inside of a vessel stack.
For instance, container A2 cannot be retrieved before container Al is retrieved since
it cannot be placed in the designated location in the vessel bay. Let us define the
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following relation

2

A {T vs(e) = vs(d) A vi(c) < vi(d)
L otherwise

Eq. (2) provides a formulation of the vessel precedence between containers ¢ and
d. A vessel precedence relation exists if containers ¢ and d are designated to the same
vessel stack and the designated location of container c is below that of container d.
The second type of precedence is related to the positions of containers in the yard
stacks, using the following relation.

3)

aSp=1T  ys@=ys®) Ayta) > yi(b)
€L otherwise

Eq. (3), states that a container a is yard precedent to container b if a is above b in
some stack S in the yard bay. We can now define the general precedence relation:

a—b=@>b)Va>b) (4)

Using the relation —, we can define a directed graph G = (V, E), where each element
of the node set V corresponds to a container. An edge (a, b) exists in E if a — b is
true. Let us refer to this type of graph as a precedence graph. An illustration of such
a graph and a corresponding yard bay configuration can be seen in Fig. 2.

4.2.2 Cycles in a precedence graph

As previously stated, an additional relocation will be necessary if for retrieving a
container a, we have to previously retrieve/relocate a container b, and vice versa.
Obviously, such a situation is related to a cycle in the precedence graph. It is worth
mentioning that each such situation can be related to several cycles due to the way
the precedence graph is constructed. To avoid this problem, we introduce the minimal
cycle. A cycle is minimal if it does not have a proper subset of containers that can
form a cycle. Examples of cycles and minimal cycles can be seen in Fig. 3. Let us
prove several properties of minimal n — cycles composed of exactly n containers.

O Q
A1l @ B1 . .

Fig. 3 Examples of cycles and minimal cycles in the precedence graph for corresponding bays. In the

()

A C
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precedence graphs, edges corresponding to the relation L are gray and to the relation — are black. In each
of the corresponding graphs a cycle exists containing all the containers which is not a minimal cycle. In
each of them, the minimal cycles are indicated using the cycle symbol.
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Proposition 1 Two consecutive edges e, and e, in a minimal cycle C, cannot both
correspond to the same type of precedence relation.

Proof Let us assume that edge e; corresponds to vessel precedence x 5 aand e
corresponds to vessel precedence a 5 y. It is impossible that C is a minimal 2-cycle,
or in other words x =y, since vt(a) < v#(x) and v#(x) < vt(a) cannot both be true. In
case x # y, from the definition of the relation l>, it is evident that the relation x — y
will also be satisfied. Consequently, in the minimal cycle C, the two edges x 5 aand

a- y can be substituted with edge x 5 y, which results in a shorter cycle. The same
argument holds true for yard precedence. This contradicts the minimality of C.

Proposition 2 A minimal cycle must have 2n containers.

Proof Let us first prove that if a minimal cycle C contains a container a,, there is at
least one more container a, € C, such that vs(a;) = vs(ay) and one of the edges a; 5

a, or a, Sa | is a part of C. If there were no such container then container a; could
only be connected to other containers in the minimal cycle using yard precedence
relations which contradicts Proposition 1.

Secondly, we can prove that a minimal cycle contains at most two containers
from the same vessel stack. Suppose that a minimal cycle C exists having the form

v
. —>a;— ay — ... > a3 — ...such that vs(a;) = vs(ax) = vs(az) and a; # a, # as.
If a; 4 as is true, then ... — a; 4 a3 — ...is ashorter cycle than C. If a3 2 ay is true,

than the cycle ... — a3 4 a; 4 a, — ... 1is a shorter than C. Now, it can be trivially
shown that a minimal cycle C consist of an array of pairs of containers belonging to
the same vessel stack. Consequently, C has 2n elements. The same argument holds
for yard precedence.

From this proof it is evident that the following stronger property of minimal cycles
is true.

Proposition 3 A minimal 2n-cycle is composed of containers from n distinct vessel
(vard) stacks, and there are exactly two containers in each vessel (yard) stack.

A direct blocking corresponds to a minimal 2-cycle. If the 2-cycle contains con-

tainers a and b then the blocking container a will satisfy a 25 b. The same concept of
blocking containers can be extended to minimal 2n-cycles. For the sake of simplicity,
in the later text, we will use the term 2n-cycle only for minimal ones. A container a
in the 2n-cycle C will be called 2n-blocking if there is a container b € C such that

a5 b and the container b will be called 2n-blocked container. It is evident from the
previous discussion that all the containers in a 2n-cycle are blocking or blocked. It
should be pointed out that the total number of minimal 2n-cycles in G is not equal
to the minimal number of relocations needed to retrieve all the containers. A simple
illustration is given in Fig. 4.
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Fig. 4 An example of two 4-cycles and a corresponding precedence graph. The 4-cycles are
(A1,A2,B1,B3) and (C1,C2, B2, B3). The 4-blocking containers are marked with a dashed line. In the
precedence graph, the irrelevant edges are dotted. It is evident that by relocating container B3 to stack 4
both 4-cycles will be disconnected.

4.3 Relevant 4-cycles

Evaluating if a container a is well-located is trivial: we only need to check if there is a
container b in the same yard stack S below a such that dd, ) (a) > dd,s)(b). On the
other hand, checking if a container a is 2n-blocking is significantly more complex.
More precisely, we need to check if the precedence graph contains a 2n-cycle con-
taining container a. This can be done by using the standard depth first search (DFS)
approach. The problem is that it is computationally expensive. On the other hand, we
can say that direct blocking (2-blocking) is more important than 2n-blocking (n > 2)
since the latter does not necessarily add relocation operations to the solution. Be-
cause of this, in the proposed method, we only check if a container is 2-blocking
or 4-blocking, since this can be done without a substantial increase in computational
cost. From our experience, we have seen that 2n-cycles, where n > 2, are significantly
less frequent. As it will be indicated below, 2n-cycles, where n > 2, can frequently
be avoided using the proposed correction procedure.

Let us first make a few observations regarding 4-cycles. In case a 4-cycle contains
a container a that is not well-located, it will not directly result in adding a relocation
to the solution. This is due to the fact that container a will have to be relocated (in-
dependent of the 4-cycle) and as a consequence the 4-cycle will be disconnected. In
practice, this means that the 4-blocked/blocking container will have to be relocated
before its retrieval/relocation. The situation where the 4-cycle could potentially add
an additional relocation to the solution will never occur in practice.

Let us call a 4-cycle C a relevant 4-cycle if it only contains well-located contain-
ers. Checking if a container c is in a relevant 4-cycle can be done using a DFS to
find cycles of length four in the precedence graph and checking if all the containers
in it are well-located. The DFS starts from container ¢ and has a maximal depth of
five. The number of visited containers in the DFS can be significantly lowered if we
exploit the fact that there are exactly two nodes in a vessel or yard stack inside the
4-cycle.
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5 Heuristics

In this section, we give a detailed analysis of the two types of heuristics used in the
greedy algorithm. The first one is used for selecting a stack to which an obstructing
container will be relocated. The second one is used for selecting the container that
will be retrieved next.

5.1 Relocation heuristics

We first present several relocation heuristics for the BRLP. For the sake of clarity,
we will first state the definition of the heuristic for the BRP and later extend it to the
BRLP.

The most commonly used heuristic in container ports is the lowest tier (LT)
heuristic (Zhang, 2000). In the LT, a container is relocated to a yard stack with the
lowest occupied tier. This heuristic has the same form for the BRP and the BRLP. The
idea behind this is to avoid having stacks with many containers since this can result
in a large number of obstructing containers.

One of the most effective strategies in case of the BRP is the MinMax heuristic. In
it, situations when relocating a container makes it well-located are treated differently,
than in the case it does not. To be more precise, there is a preference to relocate a
container c to a yard stack S, in which the minimal due date of a container d satisfies
dd(c) < dd(d). For simplicity of presentation, we define the due date for a yard stack
in the following way.

N+1 S is an empty stack
min;eg dd(i) otherwise

dd(S) = { &)
Equation (5) states that the due date of a yard stack S is equal to the minimal due
date of a container in S, or dd(S) = N + 1 in case of an empty stack. The notation N
is used for the maximal due date in the yard bay.

In the MinMax heuristic, if there are several destination stacks where a container
¢ becomes well-located, the stack S having the minimal value dd(S) is selected. In
case, container ¢ must be relocated to a stack where it is not well-located, the yard
stack S having the maximal value of dd(S) is selected.

The MinMax heuristic can be naturally extended to the BRLP. In the previous
text, we have described how due dates and the concept of well-located containers
can be adapted to the BRLP by taking into account vessel stacks. The only major
difference in the MinMax heuristics is that we take into account the vessel stack
vs(c) of the container c that is being relocated. Let us assume that we are relocating
a container ¢, we can define the due date for a yard stack S using the following

function:
N+1 S is an empty stack

miNjes ddys(c)(7) otherwise

dad(S,c) = { (6)

Eq. (6) gives the adaptation of the due date for stack S in case of the BRLP by
extending dd with a second parameter corresponding to container ¢ that is being
relocated. In case stack S is empty, the value of d(c, §) is equal to N + 1, where N is
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the number of containers in the initial yard bay. Otherwise, it is equal to the minimal
value of dd, (i) of all containers i € §. Now the MinMax heuristic for the BRLP
can simply be extended from the one for the BRP by substituting the function dd(S)
with dd(S, ¢).

The problem with such a direct extension of the MinMax heuristic to the BRLP
is that a potentially large number of yard stacks will be viewed as equivalent. To
be more precise, for a container ¢, empty stacks and all stacks not containing any
containers with designated vessel stack vs(c) will be considered equally desirable.
An efficient way to avoid this is to use a similar approach as in the Reshuffle Index
heuristic (RI) which was originally proposed for the BRP (Murty et al., 2005). In
this heuristic, there is a preference in selecting stacks with a higher value of the due
date, or the closely related current due date. The logic behind this is to postpone
additional relocations as much as possible, with the hope that the yard bay will come
to a configuration where the container can be well-located. In case of equal values of
the MinMax function for the BRLP, the yard stack having the maximal value of the
current due date cdd(S) will be selected. Here cdd(S) will be equal to the minimal
value of ddc(c) forc € S.

As previously stated, the objective of MinMax is to avoid creation of unnecessary
relocations by always attempting to move a container to a yard stack S where it will
be well-located. As already mentioned, in case of the BRLP, unnecessary relocations
can also be created when a container is relocated to a location where it becomes 4-
blocking. It is important to emphasize that such relocations do not necessarily have to
increase the number of relocations needed to retrieve all the containers. One example
is if the corresponding 4-blocked container is not well-located. Contrary to this, an
additional move is always added to the solution if a container is placed to a location
where it is not well-located.

Taking this into account, we can define a new heuristic function MinMax4CB. As
in the case of MinMax, it will prefer relocating a container to a yard stack where it
will be well-located. The difference is that it will differentiate between such stacks, by
preferring ones were the container will not be 4-blocking. In case when it is necessary
to relocate the container to a yard stack where it creates a direct blocking, it will be
the same as MinMax. Otherwise, when a container is relocated to a yard stack where
it is well-located, as in the case of MinMax, stacks having a small value of the due
date will be preferred but this should be less important than the creation of a 4-cycle.
Formally, we will select the yard stack having the minimal value of the following
function:

dd4ACB(S,c) = dds(S,c) + M - CreatesdCycle(S) (7

In Eq. (7), the parameter M satisfies 1 << M. The function Creates4Cycle(S) is equal
to one if the container ¢ will create a relevant 4-cycle after relocating to yard stack S,
and zero otherwise. This function can be evaluated by applying the method presented
in the above section for the precedence graph corresponding to the updated yard bay.
The only change is that for the stack containing the target container ¢, only containers
below it will be considered in the precedence graph, since the rest will be relocated in
the following steps. An illustration of the precedence graph for an updated yard bay
can be seen in Fig. 5.
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Fig.5 Checking if a relocation of container results in a 4-blocking. The left side shows the initial yard bay
from which the container A1l is retrieved and the obstructing container B2 is relocated to the third stack.
The right side shows the updated bay used in the evaluation and the corresponding precedence graph.

5.2 Retrieval Heuristics

In this section, we present heuristics for determining which container will be selected
for retrieval. As already stated, only a container ¢ having cdd(c) = 0 can be retrieved.
In practice, for each unfilled vessel stack, there will be a container satisfying this
constraint. The idea of the proposed heuristic functions is to select one such container
whose retrieval will require the minimal number of relocation operations.

The simplest approach is to select the container ¢ that has the minimal number of
obstructing (MinB) containers, using the following equation:

MinB = H],, - yi(c) (8)
The logic behind MinB is that when relocating a smaller number of containers there
is a lower probability of creating new unnecessary relocations. In Eq. (8), HST is used
for the current highest occupied tier of stack S in the current yard bay.

This heuristic can be improved if we observe the properties of obstructing con-
tainers. It is preferable to relocate a container that is not well-located to one that is,
since the former will have to be relocated at some step of the algorithm. On the other
hand, if a container is well-located, it may become retrievable after retrieving some
other container. We can define the following heuristic to take this into account:

MinW(c) = M - AboveW L(c) + AboveNW L(c) ©)]

In Eq. (9), M is a predefined constant satisfying 1 <« M. The function MinW(c)
selects the container obstructed with the minimal number of well-located containers.
In case several containers are blocked with an equal number of such containers, the
one having the smallest number of non-well located containers above it is selected.

This type of heuristic can be further improved by taking into account if some
of the well-located containers are 4-blocking. Let us point out once more, that it is
only necessary to relocate one of the containers in a cycle in the precedence graph
G to disconnect it, and as a consequence, it might not be necessary to relocate a
well-located 4-blocking container. Because of this, the extended heuristic function is
defined as follows.

MinWACB(c) = M - AboveWL*(c)+ N - AbovedC Blocking(c) + AboveNWL(c) (10)
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In Eq. (10), N and M are predefined constants satisfying 1 << N < M. The heuristic
states that we first prefer retrieving containers obstructed with the minimal number
of well-located containers (excluding 4-blocking ones), then the minimal number of
relevant 4-blocking ones and finally non-well-located ones.

5.3 GRASP

With the aim of improving the performance of the proposed algorithm, it has been
extended to the GRASP metaheuristic. To achieve this task, a basic randomization
has been added to the greedy algorithm and a local search, based on a correction
procedure, has been developed. In our implementation, in case of both heuristics, we
would randomly select one of the containers or stacks that had the minimal value of
the heuristic function. It is important to note that such situations are very frequent in
case of the BRLP which is not the case for the BRP.

5.3.1 Correction Procedure

In this subsection, we give details of the proposed correction procedure. In general,
greedy algorithms are based on one or more heuristic functions that should guide us
to good solutions. The problem is that such heuristics are often “short sighted”. This
can be avoided by including some look-ahead in the heuristic function. The problem
with this type of approach is that the speed of the greedy algorithms is often lost
due to the significant computational cost of the look-ahead function. Moreover, even
look-ahead heuristics still make “mistakes”. Because of this, in case of the BRP and
the PMP, methods that widen the search space like beam search, A* and different tree
procedures have been developed. Such methods significantly outperform the basic
greedy approach, but at a high increase in the computational cost.

The goal of the proposed correction procedure is to explore a relatively small
number of alternative solutions. We assume that the chosen heuristic function is
“good” and only occasionally makes mistakes. The idea is that such mistakes can
easily be recognized by observing the solution generated using the greedy algorithm.
To be more precise, an additional heuristic will be used to decide if in some iteration
of the algorithm the selected relocation is a “suspicious” one.

We will first present the criterion for recognizing potential mistakes and later
a mechanism for avoiding them. Let us assume that our solution /7 is a list of M
moves of containers within the yard bay, or from the yard bay to the vessel bay.
Each move will have the following properties: Type indicating if it is a retrieval or a
relocation; its index / which indicates the iteration of the move; the container r that
is being retrieved or its retrieval is being made possible. Next, one has to consider the
container m that is being relocated and the corresponding destination yard stack S;
finally, the state of the container after relocation, or in other words if it is well-located
or not.

Through extensive analysis of solutions generated using the greedy algorithm,
we have observed that lower quality solutions often had the same characteristics that
were the source of an increase in the number of relocations. Based on them, we have
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defined the following undesirable properties of a solution, that are computationally
inexpensive to recognize:

— A container ¢ has been relocated at least M), times. The undesirability of this
property comes from the fact that there is a high probability that by initially relo-
cating container ¢ to one of its later locations would have been preferable. In this
way, the total number of relocations in the solution can be decreased by avoiding
intermediate relocations.

— A large number of obstructing containers has to be relocated when a container c,
that has been previously relocated, is being retrieved. In case a solution has this
property, it is highly probable that the initial savings achieved by well-locating
container ¢ have been lost in later steps of the algorithm. Informally, the relocation
of container ¢ has wasted a highly desirable location in the yard bay.

— At the time of relocation a container ¢ has been placed to a yard stack where it is
well-located, and it is relocated again before retrieval. This property of a solution
indicates that the heuristic function did not give “correct” information, and as a
consequence it is reasonable to try alternatives.

Using the following criteria, we can easily recognize suspicious moves, that are a
source of such bad behavior:

— (CMM) M is the first relocation of a container ¢ relocated at least M, times.

— (CMB) M is the last relocation of a container ¢ for which the retrieval process
needed to relocate at least Mg containers.

— (CMS) M is amove at which a container was well-located (including 4-blocking)
and later relocated.

The idea of the correction procedure is to remove the moves having undesirable
properties from a generated solution. It is not possible to simply substitute an undesir-
able move in the solution with a new one since the latter moves may become invalid.
Because of this, all the moves after the substituted one must be regenerated using
the presented greedy algorithm. Consequently, the new solution will have different
moves after the substituted one. Since the new solution is without the “suspicious”
move, there is a potential that it is better than the starting one. This simple proce-
dure can be applied to the same solution using different alternative moves and testing
different undesirable ones.

When implementing this basic idea, there are several things that need to be con-
sidered. First, it is reasonable to avoid testing alternative moves that are clearly “bad”
since this can significantly lower the computational cost. In case an improved solu-
tion has been found, we wish to try correcting it instead of the starting one. Because
of this, the suspicious moves should be tested in the order they occur in the solution.
The correction procedure based on this idea is described in the pseudocode shown in
Alg. 2.

In the proposed algorithm, the main loop iteratively goes through all the moves
in the best solution, starting from the first one. At each iteration, it first checks if the
CurrentMove satisfies any of the three suspicion criteria. In case this is true, several
alternative moves are tested in the inner loop. A new partial solution is set to all the
moves in the BestS olution before the CurrentMove. A new relocation NewMove
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Algorithm 2 Pseudocode for the correction procedure.

Set CurrentMove to beginning of BestSolution
while BestS olution.Length > CurrentMove.l do
Except. Empty()
if SuspiciousS tep(CurrentMove) then
Except.Add(CurrentMove.S)
repeat
CurrentS olution = BestS olution[1..CurrentMove.l — 1]

NewMove = Hgr(CurrentS olution, Except)
CurrentS olution.Add(NewMove)
Complete CurrentS olution using Greedy Algorithm

Except. Add(NewMove.S)
until NextMove.S tate + WellLocated V FoundNewBest
Advance CurrentMove
end if
end while

is selected using the relocation heuristic Hg, based on the partial solution, without
considering the stacks in Except. Except is initially set to the CurrentS olution.S
and later extended with tested stacks. Next, the greedy algorithm is used to complete
the solution. This procedure is repeated until a new best solution is found or until the
NewMove state is not well-located.

With the intention of having a better evaluation of the proposed correction pro-
cedure, we give an estimate of the worst case computational complexity in relation
to the basic greedy approach. For simplicity, let us assume that the computational
cost of each relocation operation in the greedy algorithm is constant and equal to m,
and that the total number of relocations in the solution is N. In the worst case, all
N relocations in the solution are suspicious. For each suspicious move, a maximum
of W — 2 alternative yard stacks can be selected, where the current container ¢ can
be well-located. At the i-th iteration of the main loop, the maximal number of steps
that will be performed, in the reconstruction of the solution, is N — i. From this anal-
ysis, we can conclude that the total computational cost of the correction procedure
is m(W — 2)@. This means that in the worst case, the computational cost of the
correction procedure will be (W — 2)# times as large as the one of the greedy
algorithm.

5.3.2 Implementation

In this subsection, we give implementation details of the proposed algorithm. For the
sake of clarity, we present it the form of pseudocode in Alg. 3. In the main loop of
the algorithm, new solutions are repeatedly generated until the stopping criterion is
satisfied. First, the initialization steps are performed. Consider that for having an effi-
cient implementation, it is necessary to store some calculated values and recalculate
them only when necessary. This is done for the property of being well-located for
containers and the precedence graph.
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Algorithm 3 Pseudocode for the GRASP algorithm.

Initialize random generator
while Not Stopping Criteria do
Initialize Calculations
while Bay not empty do
while Exists container (cdd(c) = 0) do
Retrieve ¢
Sol.Add(c, Retrive)
Update precedence graph
end while
Select Container a for retrieval using Ay,
while a not on top of stack do
Select relocation stack S for obstructing container b based on Hg
Relocate b to S
Sol.Add(b, Relocate, a, S, S tate)
Update WellLocated information for b
Update precedence graph
end while
end while
CorrectionProcedure(S ol)
Check if S ol is new best solution
end while

In the next loop, an initial solution is generated. In it, all the containers without
obstructing containers above them are retrieved, if possible. At this stage, all the
necessary changes are performed on the auxiliary structures. It is important to note
that, although the use of function H; would have the same effect as retrieving first
the non-blocked containers, it would be more computationally expensive than just
checking the value of function cdd(c). After each retrieval, the current move with all
the relevant properties, is added to the current partial solution S ol.

At the next step, the container a for retrieval is selected based on the randomized
version of heuristic function A;. The next loop relocates all obstructing containers
using the randomized function Hg. As before, the auxiliary structures are updated
and the performed move is added to the partial solution S ol.

After a complete solution is generated, the correction procedure is applied to it
and we check if the improved solution is the new best.

6 Computational Experiments

In this section, we present the results of the performed computational experiments.
Two types of evaluations have been done. The method is implemented in C# using
Microsoft Visual Studio 2015. The computations have been done on a machine with
Intel(R) Core(TM) 17-2630 QM CPU 2.00 Ghz, 4GB of DDR3-1333 RAM, running
on Microsoft Windows 7 Home Premium 64-bit.
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6.1 Comparison of GRASP to GA-ILSRS

In our first group of experiments, we compare the proposed GRASP and Greedy algo-
rithm (with correction) (GR-C) to the GA — ILS RS method from Ji et al. (2015). The
comparison has been done on the same problem instances as used in Ji et al. (2015).
The GRASP and GR-C algorithms use the MinW4CB as the retrieval heuristic and
MinMax4CB as the relocation heuristic. As it will be shown in the later subsec-
tions, this was the best performing combination of heuristics. The GA — ILS RS uses
a genetic algorithm for finding the loading sequence. Further, it uses an improved
version of the lowest tier heuristic, which takes into account if containers are being
well-located to retrieve the containers based on the selected loading sequence.

The comparison is performed on the same instances as in the mentioned article
for the case of a single quay crane. The container yards, in the test instances, have
between 34 and 490 containers. In each of the problem instances, the yard consists of
multiple bays and containers cannot be moved from one bay to another. The existence
of multiple bays affects the candidate list (stacks that are being selected for relocation
of an obstructing container) used with the heuristic Hg. It is important to point out that
in case of 4-cycle analysis, used in Hg and H,, the whole yard needs to be considered.

Table 1 Comparison of the performance of the proposed GRASP algorithm with GA-ILSRS

Containers BxSxT GA-ILSRS GR-C GRASP

Min Max Avg Min Max Avg Min Max Avg

34 3Ix6x4 12 18 15.2 8 10 9.3 8 8 8.0
44 3x6x4 1 3 1.8 0 0 0.0 0 0 0.0
58 4x6x4 14 20 17.6 13 14 13.2 13 13 13.0
66 4x6x4 3 5 3.7 0 0 0.0 0 0 0.0
76 4x6x4 7 10 8.3 4 10 6.2 4 4 4.0
88 6x6x4 2 4 2.7 0 0 0.0 0 0 0.0
100 6x6x4 44 50 47.1 22 26 24.3 20 20 20.0
106 6x6x4 40 48 43.9 22 27 25.0 19 21 19.7
118 6x6x4 3 5 3.6 1 1 1.0 1 1 1.0
132 6Xx6x4 54 59 56.4 26 39 29.8 23 25 24.1
218 12x6x4 110 112 111.2 89 95 92 86 88 87.0
303 18 x6x4 151 154 1523 100 110 105.3 92 96 94.2
490 24 x6x4 265 269 2674 229 239 235 222 229 226.1

As in Ji et al. (2015), multiple (10) runs, using different random seeds, are ex-
ecuted on each of the 13 problem instances, for both the GRAS P and the GR-C
algorithm. In the correction procedure, the number of relocations that are considered
suspicious is My, = 2. The number of obstructing containers that is considered sus-
picious is Mp = 1. In case of GRASP, 100 initial solutions are generated. The results
of the comparison can be seen in Table 1, where the minimal, maximal and average
number of relocations for each problem instance are given.
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From the results in Table 1, it can be seen that the GR-C manages to significantly
outperform GA — ILS RS when both the average and minimal number of relocations
are considered in all the tested instances. The improvement for many instances is
greater than 30%. There are several reasons for this improvement. First, the perfor-
mance of the greedy algorithm is highly dependent on the chosen relocation heuristic.
As it will be seen in the later subsections, the lowest tier heuristic, which is used as
a basis of the heuristic in GA-ILSRS, has a significantly worse performance than
MinMax4CB. Next, as it is discussed in Ji et al. (2015) the potential number of load-
ing sequences is very large, and the GA is used to explore them in an efficient way.
For each generated loading sequence, the solution is found using a greedy algorithm,
and the length of the found solution is used as the fitness function in the GA. In this
way, the loading sequence and relocation operations are observed relatively indepen-
dently. In case of the proposed greedy approach, the loading sequence is generated
iteratively based on the current bay state, which depends on the performed reloca-
tion operations. In this way, the generation of the loading sequence and the relocation
operations are closely connected, which produces a positive effect. Finally, it is well
known that the performance of greedy algorithms can significantly be improved by
using a local search which, contrary to GA-ILSRS, the proposed method incorpo-
rates. The repeated runs of the greedy algorithm, in the GRASP, further improve the
quality of the found solutions. The improvement is most significant in the larger prob-
lem instances and is often 5-10%. This indicates that the solution space has a large
number of local optimal solutions.

6.2 Comparison of different heuristics

The objective of the second group of tests is to compare different heuristics for the
BRLP. To be able to do so, a wide range of random problem instances have been
generated. The number of containers N in each instance is between 10 and 390. The
maximal value of N is selected to be close to the number of containers inside a ship
bay of the largest vessels having 18 000 TEU (twenty-foot equivalent unit), as dis-
cussed in Ji et al. (2015). In the generated problem instance, the number of vessel
stacks VS is set to 3, 5, 10, 15 and 20. The vessel bay has the same structure as in
Fig. 1. For each vessel bay, two yard bays have been generated having a maximal
allowed tier YT of 6 or 8. The number of yard stacks YS is selected so that the to-
tal occupancy would be around 66%. For each (N, VS, YS, YT), 40 different random
yard bay configurations have been generated. The generated problem instances are
made available and can be downloaded from Jovanovic (2017).

We compare the lowest tier (LT), MinMax (M M) and MinMax with consider-
ation of 4-blockings (MM4CB) for relocation heuristics. Each relocation heuristic
has been combined with one of the heuristics for retrieval. The tested heuristics are
based on the number of minimal obstructing containers including information re-
garding only well-located containers (M BW) and both well-located and 4-blocking
containers (M BW4CB), as described in the Heuristics section. For each of the tested
combination of heuristics, a single run has been executed for each of the 40 prob-
lem instance in one size. The average number of relocation operations can be seen
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in Table 2. We did not include the results of using MinB, for the retrieval heuristic,
since it had significantly worse results than the other two heuristics. We wish to point
out that the use of the reshuffle index, as described above, is extremely important for
the performance of both MM and MMA4CB. In Table 2, we did not include execution
times, since all the greedy algorithms were very fast, taking less than 20 milliseconds
in the case of problem instances with 390 containers.

The first thing that can be noticed, from the results in Table 2, is that the greedy
algorithm using MM4CB + M BW4CB manages to outperform all the other combi-
nations of heuristics in a vast majority of problem sizes. In only a few problem sizes,
having less than 50 containers, it did not produce the best results. The use of in-
formation regarding 4-cycles, as in heuristics MM4CB and M BWA4CB, significantly
improves the performance. The improvement is greater when this information is used
for the relocation heuristic, compared to the retrieval one. In case of problems hav-
ing more than 100 containers, this improvement is generally around 10-20% /0.1-5%
in case of the relocation/retrieval heuristic. It is important to note that, LT + MBW
always performed worse than MM4CB + MBWACB.

On the other hand, when comparing the greedy algorithm based on heuristics that
do not consider 4-cycles (MM + M BW), this was not the case. In case of bays having
more than a 100 containers, LT would get better average results than MM + MBW
in around 50% of the tested cases. It can be concluded that there is no significant
difference between the use of heuristics LT and MM, which is contrary to the case
of BRP, where the latter has a significant advantage. The main reason for this is
the “stinginess” of the MM heuristic. To be more precise, the MM heuristic tries to
preserve all yard stacks to which containers with a low due date (from the same vessel
stack) can be well-located. This has a consequence, that containers are potentially
placed to yard stacks where there is a large number of containers from other stacks,
which can result in the creation of a 4-cycle. This unintentional creation of 4-cycles is
a lot less frequent in case of LT, since placing a container on a yard stack with a low
number of containers decreases the possibility of both direct blocking and 4-cycles.
It is important to note that, if the reshuffle index is not used to break ties between
stacks, in both MM and MMACB, this type of issue becomes extreme and greatly
reduces performance.

6.3 Evaluation of the correction procedure

In our last group of computational experiments, we evaluate the performance of
the correction procedure and the corresponding GRASP algorithm. The tests are
conducted on the same data sets as in the case of evaluating the heuristic func-
tions. For each problem instance, a single run of the GRASP algorithm is performed.
We consider GRASP algorithms based on heuristics MM + MBW (GRAS Py) and
MMACB + MBW4CB (GRAS Pycp). For both of them, 100 initial solutions are gen-
erated. The parameters for the correction procedure are the same as in the case of the
comparison with GA-ILSRS. With the goal of having a way to evaluate the effect of
the correction procedure, we also observe the results acquired using the randomized
basic greedy algorithm (MM4CB + M BWA4CB) with heuristics exploiting informa-
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Table 2 Comparison of the performance of solution quality of different heuristics for the BRLP.

N VS YS YT LT + MBW MM+ MBW  MMACB+ MBW MM+ MBWACB  MMA4CB + MBW4CB
10 3 3 6 2.35 2.18 2.23 2.18 2.23
16 3 4 6 6.10 5.60 5.68 5.53 5.60
16 3 3 8 8.98 8.20 8.15 8.20 8.25
31 3 8 6 13.28 12.35 12.18 11.93 11.58
31 3 6 8 20.08 16.80 17.43 17.00 17.25
46 3 12 6 23.00 21.70 19.10 20.53 18.78
46 3 9 8 33.63 28.35 28.93 27.90 28.63
19 5 5 6 3.93 3.53 3.68 3.50 3.50
19 5 4 8 5.88 5.38 5.40 5.08 5.10
29 5 8 6 7.78 7.83 6.85 7.08 6.68
29 5 6 8 11.98 10.28 9.95 9.40 9.68
54 5 14 6 21.13 20.20 18.33 18.23 16.88
54 5 11 8 28.23 24.98 23.60 23.30 22.38
79 5 20 6 36.95 34.98 29.40 31.88 28.13
79 5 15 8 53.95 46.00 41.45 44.13 40.30
50 10 13 6 11.28 11.80 10.68 10.15 9.55
50 10 10 8 14.05 13.65 12.18 12.05 11.40
70 10 18 6 21.13 20.35 18.60 17.33 16.73
70 10 14 8 26.83 24.30 22.80 21.85 20.83
120 10 30 6 45.90 47.15 40.95 42.20 39.05
120 10 23 8 66.35 62.23 52.05 58.28 51.18
170 10 43 6 72.23 75.85 62.73 71.60 61.08
170 10 32 8 107.25 100.13 84.43 93.90 79.68
94 15 24 6 23.88 23.63 20.90 20.75 19.18
94 15 18 8 34.38 31.80 29.05 29.08 26.93
124 15 31 6 37.95 38.03 35.20 35.80 33.15
124 15 24 8 53.70 51.35 43.85 45.68 41.78
199 15 50 6 76.05 80.58 67.90 72.35 66.83
199 15 38 8 106.25 105.10 87.30 95.73 84.53
274 15 69 6 118.38 124.28 107.75 116.78 104.48
274 15 52 8 169.03 165.85 136.78 152.03 132.40
150 20 38 6 43.40 44.85 39.70 40.18 39.05
150 20 29 8 61.03 58.85 51.48 52.50 48.30
190 20 48 6 62.68 65.25 57.15 58.80 57.35
190 20 36 8 89.18 84.55 74.08 79.60 72.13
290 20 73 6 112.25 122.88 106.83 115.83 102.50
290 20 55 8 164.38 159.60 136.18 149.70 131.78
390 20 98 6 174.58 194.48 164.13 184.88 164.08
390 20 74 8 247.13 246.98 203.48 234.20 199.33

tion about 4-cycles. In case of the greedy algorithm, 100 separate runs have also
been performed. In Table 3, the average solution qualities and execution times are
presented.

From the results in this table, we can first observe that the use of the correction
procedure produces a significant improvement, when compared to the MM4CB +
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Fig. 6 Comparison of convergence speed of the proposed GRASP algorithm based on different heuristic
functions and the randomized greedy algorithm.

MBWA4CB. The improvement is relatively small (a few percent), but consistent, in
case of problem instances having up to 35 containers. In case of larger problem in-
stances, it becomes significant being generally around 10%. Although the use of the
correction procedure in GRAS Py produces a significant improvement when com-
pared to the MM + MBW, it only manages to outperform the randomized MM2S B +
MBW?2S B in a few of the smallest problem instances. In case of the larger problem
instances, MMA4CB + M BW4CB manages to find solutions having between 1-15%
less relocations than GRAS Py . This indicates that the use of the improved heuristics
is essential for this type of algorithm.

The computational time of GRAS P4cp is approximately twice as much as the one
of GRAS Py. The computational cost of using the correction procedure largely de-
pends on the number of relocations in the solution, as expected from the analysis of
the worst case performance. The increased computational cost ranges from 2 to 40
times for the smallest to largest problem instances. This is a lower increase by several
orders of magnitude, in computational cost, than the one expected from the estimate
of the worst case performance. The computational cost of the greedy approach, illus-
trated on MM4CB + MBWA4CB, efficiently scales. To be more precise, the increase
of the computational cost of solving problems having 29 to 390 containers is around
200 times. In case of GRAS Pscp, the increase is substantially higher and is around
2500 times. Note that, although the computational cost of GRAS Pcp is significantly
higher than MMACB + MBWACRB, it has a faster convergence speed. This behavior
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can be observed in Fig. 6, where we illustrate the relation between solution quality
and execution time for one representative problem instance having the largest number
of containers.

7 Conclusion

In this paper, we have proposed a family of greedy algorithms for solving the BRLP.
A wide range of heuristics have been developed and evaluated. The computational
experiments have shown that by extending the heuristics standardly used for BRP
and PMP to include information about 4-cycles a significant improvement can be
achieved. Further, we have shown that by analyzing properties of solutions generated
in this way, and avoiding undesirable behavior in them, further improvements can be
achieved.

In the future we plan to explore the effect of incorporating the stowage plan into
models used for housekeeping in the container yard, like the PMP. Next, we aim at
defining a tight lower bound for the new problem. Another direction is to conduct an
analysis of other constraints that can be added to the BRLP formulation to even better
represent the real-world problem.
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Table 3 Comparison of the computational cost and solution quality of the proposed GRASP algorithm
based on different heuristic functions and the randomized greedy algorithm.

N VS YS YT Solution Time[s]
MMACB + MBW4ACB  GRASPy  GRAS Pycp MMACB + MBW4ACB  GRASPy  GRAS Pycs

10 3 3 6 2.18 2.15 2.15 <0.01 <0.01 0.01
16 3 4 6 5.35 5.13 5.08 <0.01 0.01 0.01
16 3 3 8 8.05 7.60 7.60 <0.01 0.01 0.02
31 3 8 6 10.95 10.58 10.45 0.01 0.03 0.04
31 3 6 8 16.30 14.75 14.68 0.01 0.04 0.08
46 3 12 6 17.83 17.38 16.85 0.02 0.07 0.09
46 3 9 8 27.25 23.25 23.63 0.02 0.10 0.21
19 5 5 6 3.35 3.33 3.28 0.01 0.01 0.01
19 5 4 8 4.90 4.90 4.85 0.01 0.01 0.02
29 5 8 6 6.23 6.43 6.18 0.01 0.02 0.03
29 5 6 8 8.98 8.48 8.45 0.01 0.03 0.04
54 5 14 6 15.88 15.70 14.68 0.03 0.08 0.11
54 5 1 8 20.73 19.78 19.15 0.03 0.11 0.18
79 5 20 6 26.18 27.15 24.68 0.05 0.24 0.30
79 5 15 8 37.75 36.45 33.83 0.06 0.35 0.56
50 10 13 6 8.08 8.35 7.83 0.03 0.05 0.07
50 10 10 8 10.23 10.23 9.65 0.03 0.06 0.10
70 10 18 6 14.15 14.53 13.40 0.05 0.12 0.19
70 10 14 8 18.43 18.53 16.85 0.05 0.16 0.26
120 10 30 6 33.48 35.13 30.53 0.14 0.56 091
120 10 23 8 45.58 47.78 40.85 0.15 0.88 1.49
170 10 43 6 52.80 57.98 48.20 0.27 1.67 2.51
170 10 32 8 70.78 79.28 64.68 0.29 2.70 4.07
94 15 24 6 15.50 16.43 14.68 0.08 0.18 0.34
94 15 18 8 22.88 22.83 20.53 0.09 0.27 0.52
124 15 31 6 27.00 27.55 24.63 0.15 0.43 0.84
124 15 24 8 36.18 37.25 32.40 0.16 0.69 1.29
199 15 50 6 57.38 60.40 51.50 0.39 2.19 4.51
199 15 38 8 73.95 79.78 66.45 0.42 3.33 6.59
274 15 69 6 91.25 97.00 82.18 0.76 6.62 13.03
274 15 52 8 118.50 132.43 106.40 0.83 10.70 19.87
150 20 38 6 31.28 31.73 27.78 0.22 0.63 1.35
150 20 29 8 40.70 42.40 36.65 0.24 1.09 2.17
190 20 48 6 46.05 47.65 41.70 0.36 1.46 3.10
190 20 36 8 61.70 64.30 55.38 0.39 2.34 5.31
290 20 73 6 90.00 92.48 81.40 0.87 6.82 14.90
290 20 55 8 117.78 126.40 105.03 0.95 11.12 25.05
390 20 98 6 143.83 152.98 130.50 1.74 22.86 48.44
390 20 74 8 178.10 199.68 161.88 1.82 33.44 75.90




