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Abstract. In this paper an ant colony optimization (ACO) algorithm for
the minimum connected dominating set problem (MCDSP) is presented.
The MCDSP become increasingly important in recent years due to its ap-
plicability to the mobile ad hoc networks (MANETs) and sensor grids. We
have implemented a one-step ACO algorithm based on a known simple
greedy algorithm that has a significant drawback of being easily trapped
in local optima. We have shown that by adding a pheromone correction
strategy and dedicating special attention to the initial condition of the ACO
algorithm this negative effect can be avoided. Using this approach it is
possible to achieve good results without using the complex two-step ACO
algorithm previously developed. We have tested our method on standard
benchmark data and shown that it is competitive to the existing algorithms.

Keywords: Ant colony optimization (ACO), Minimum connected dominat-
ing set problem, Swarm intelligence, Optimization metaheuristics

1. Introduction

A dominating set for a graph G(V,E) is a subset of vertexes D ⊆ V that has
a property that every vertex in G either belongs to D or is adjacent to a vertex
in D. Finding the dominating set with the smallest possible cardinality among
all dominating sets for a graph is one of the standard NP-complete problems. A
very important variation of the minimum dominating set problem is its connected
version. We call a dominating set connected if it has the property that any node
n ∈ D can reach any other node m ∈ D by a path that stays entirely within
D. That is, D induces a connected subgraph of G. The minimum connected
dominating set is the one with the minimum number of vertexes. The minimum
connected dominating set problem (MCDSP) is also NP-complete.
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The MCDSP has gained popularity due to its close connection to the mobile
ad hoc networks (MANETs) and sensor grids. In practical problems that can be
transformed to the MCDSP there is usually no need to get the optimal solution,
near-optimal solutions are sufficient in most cases.

In this paper we introduce an improved ACO algorithm for the MCDSP. The
rest of the paper is organized as follows. In the next section we present different
approaches to the MCDSP. In the third section a greedy algorithm for solving
the MCDSP is introduced. In the fourth section we present the implementation
of the ACO for the MCDSP. In the fifth section we explain our approach to avoid
stagnation in ACO using a pheromone correction strategy and our method of
selecting the initial vertexes. In the last section, we analyze and compare the
use of pure ACO and its combination with pheromone correction on standard
benchmark problems and generated examples for the MCDSP.

2. Minimum Connected Dominating Set Problem (MCDSP)

Different methods have been developed to find near-optimal solutions for the
MCDSP. There are two main directions in developing algorithms for solving this
problem: centralized and distributed, each of them closely connected with the
type of application they are used for. In this article we focus on centralized
algorithms.

Several heuristics and appropriate greedy algorithms have been developed
for the MCDSP. Some of them are one-step [25] or two-step [6], [22], [12] grow-
ing techniques, or pruning-based greedy algorithms [4], [5]. A multi-step collab-
orative cover heuristic approach has been presented in [23]. The MSDSP has
also been solved using a combination of simulated annealing and taboo search
[24], neural networks [13] and parameterized approximation [10].

The ant colony optimization (ACO) is a meta heuristic that has been de-
veloped by Doringo for the traveling salesman problem [9]. ACO and other
evolutionary algorithms have been proven to be effective on a wide range of
combinatorial and continuous optimization problems [1], [19], [3], [2], [27]. Pre-
viously, ACO has been applied to the MDSP with great success [14], also on its
weighted version [17]. For implementation of a network cluster presented as a
MCDSP, a two step ACO approach was used [31]. As the first step a dominating
set is created and next, as the second step, new vertexes are added to make it
connected. The effectiveness of the ACO has been improved by use of differ-
ent types of hybridization, like combining ACO with GA [20], [18] or differential
evolution (DE) [32].

In this article we present an implementation of the ACO algorithm for the
MCDSP. In our ACO implementation, we use a one-step approach applying the
heuristic proposed by Guha and Khuller [12]. This approach was avoided in
article [31] because of fear of early trapping in local optima and a more com-
plex one was chosen. We propose to overcome this problem by introducing a
method for avoiding early stagnation. We use a pheromone correction strategy
(PCS), similar to the one used in our article [15], to direct the ant colony to
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areas were good solutions are more likely. The idea of this approach is to up-
date the pheromone trail used in ACO based on a heuristic that determines the
desirability of vertexes in the solution, depending on the properties of the cur-
rently best found solution. We further improve the effectiveness of this method
by implementing a good procedure for setting initial conditions of the algorithm.
In our tests we show that our method is a good choice compared to existing
methods and that the use of ACO combined with pheromone correction strat-
egy has significantly better performance than the standard max-min ant system
(MMAS) [26] version of ACO for this problem.

3. Greedy Algorithms for the MCDSP

There are two possible approaches to create a greedy algorithm for the MCDSP.
The first one is to use a one-step approach in which the solution is constructed
using only one heuristic. Another approach is represented by two-step greedy
algorithms. In that case an intermediate problem like the MDSP or the maximal
independent set is solved first, and at the second stage obtained solution is
converted to the solution for the MCDSP as in articles [12], [6], [22]. Two-step
methods usually give better results, but at the cost of being more complex for
implementation. The improved results are a consequence of less constrained
selection of new vertexes at the first stage. Using this type of algorithm as a
base for ACO does not come natural since a separate ACO has to be developed
for each stage of the algorithm.

Because of the problems mentioned, we propose a one-step greedy algo-
rithm as a base for our ACO implementation. We have chosen to use the first
greedy algorithm given by Guha and Khuller [12]. The idea of this approach is
the following: we start with an initial vertex v0 ∈ V with the highest degree. The
degree of a vertex v is the number of edges that v is incident to. Now, v0 is the
root of the tree T . At each step we pick a vertex w, which is a neighbor of some
vertex v in T , that covers the highest number of uncovered vertexes. We call a
vertex v covered if v ∈ T , or there exists vertex w ∈ T for which (v, w) ∈ E. We
repeat this process until all vertexes in G are covered.

To implement this greedy algorithm we need to be able to easily distinguish
between neighboring, covered and uncovered vertexes. We accomplish this by
using the following process. Initially all vertexes are colored white. When a new
vertex is added to T it is colored black. We mark all its neighbors that are
not already in T with the gray color. In the next step we select a gray colored
vertex that is connected to the highest number of white vertexes. The algorithm
is finished when all of the vertexes have been colored. An illustration of this
algorithm is given in Fig. 1.

As noticed by Guha and Khuller [12], this type of heuristic for the greedy al-
gorithm is easily trapped in local optimal solutions due to its short-sightedness.
Because of this, more complicated algorithms have been created. Guha and
Khuller have used the same approach, but instead of using single vertexes,
they used pairs of them. In article [25] a heuristic that tracks the number of
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Fig. 1. Example of creating a connected dominating set using the greedy heuristic: 1)
Input graph, 2) Initial step 3,4) Further steps in the algorithm

black and gray vertexes, and the number of separate black sections is used in
the greedy algorithm. In [4] and [5] a greedy pruning-based approach is used
where the least important vertex is removed from the dominating set. All these
algorithms have a more complicated and slower implementation. We show that
shortcomings of the mentioned first simple heuristic are greatly reduced when
it is combined with ACO and our improvements.

4. Implementation of ACO for the MCDSP

In the ACO implementation for the MCDSP there are significant differences
compared to its implementation for the traveling salesman problem (TSP). In
the case of TSP the solution is a permutation of the set of all the cities; contrary
to this for the MCDSP the solution is a subset of the set of graph vertexes where
the order is unimportant. The heuristic function for the TSP is static because it
represents the distance between cities. For the MCDSP the heuristic function
is the number of white neighbors (not yet covered), which is dynamic because
more vertexes are marked black or gray as new vertexes are added to the solu-
tion subset. Finally, in the case of TSP at each step all the non visited vertexes
are potentially selected, while in the case of MCDSP only the vertexes marked
gray are considered. These three differences affect the basic algorithm in the
following way: the ants leave the pheromone on vertexes instead of edges, the
heuristic function is dynamically updated and potential candidates have to be
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tracked. Such variant of ACO with dynamic heuristic and a solution that con-
sists of a subset instead of a permutation have also been used for solving the
set partitioning [7], minimum vertex cover [15], set covering [21] and maximum
clique [11] problems.

When implementing ACO, we first need to represent the problem in a way
that makes simple the dynamic calculation of the heuristic function. This can
be done in the following way. Initially, for each vertex i the value of the heuristic
function η0i is it’s degree, or in other words, the number of connections that it
has. Three sets are then created: white W 0 that initially holds all the vertexes
and two empty sets, B0 for black and Gr0 for gray vertexes. As mentioned
before, the heuristic is dynamic and it has to be updated as new vertexes are
added to the result set. If at step j vertex v is added, all it’s neighbors have their
degree decreased by one giving the new heuristic function ηj . At this step we
also move vertex v from the Grj to Bj , and all its neighbors from W j to Grj .

To define ACO algorithm for a problem, three parts need to be defined: ant
transition rule, global update rule and local update rule. We start by defining the
transition rule using heuristic function ηi in the following equation:

pkj =

{
0 , j ̸∈ Grk
probkj , j ∈ Grk

(1)

probkj =


1 , q > q0 & j = arg max

i∈Grk
τiη

k
i

0 , q > q0 & j ̸= arg max
i∈Grk

τiη
k
i

τjη
k
j∑

i∈Grk
τjηk

i

, q ≤ q0

(2)

In Equation (2) parameter q0 is used to define exploitation/exploration rate.
Connected to it, q is a random variable upon which the next selection depends.
Unlike the TSP transition rule, the selection does not depend on which vertex
was added last to the current solution, but only on the current state of the graph.
That is why τi is used instead of τij for pheromone trail, and ηki instead of ηij
for the heuristic function. To fully specify the ACO algorithm, it remains to define
the global (when ants finish their paths) and the local (when an ant chooses a
new vertex) update rules.

∆τi =

{
0 , i /∈ V ′
1

|V ′| , i ∈ V ′ (3)

In Equation (3) ∆τi is quality measure of the best global solution subset V ′

that contains vertex i (|V ′| is the number of vertexes in V ′). It is used when the
global update rule in Equation (4) is defined. Parameter p is used to set the
influence of a newly found solution on the pheromone trail.

τi = (1− p)τi +∆τi (4)

We wish to emphasis that ∆τi is equal to zero for most of the vertexes, which
means that the pheromone will be falling to zero for points that are not part of
the global best solution.
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The formula for the local update rule has the standard form

τi = (1− φ)τi + φτ0 (5)

The quality measure of the solution acquired by the greedy algorithm (where
the vertex with the best ratio of vertex degree and weight is selected) is taken for
the value of τ0. Parameter φ is used to specify the strength of the local update
rule.

5. Avoiding Stagnation in ACO for the MCDSP

When ACO algorithm with the heuristic approach given by Guha and Khuller
[12] is used for the MCDSP, there is a strong possibility of getting trapped in
local optima. There are two main reasons for this. The first one is that this is a
standard problem with ACO due to the way the pheromone matrix is created.
The second one is induced by the way Guha and Khuller’s greedy algorithm,
which is a base for ACO implementation, works where the initially selected ver-
tex has a very strong influence on the final result.

5.1. Pheromone Correction Strategy

We first focus on a way to avoid the problems caused by updating of the phero-
mone matrix. The basic approach to avoid stagnation in ACO is to use the
MMAS version of ACO, in which an extra constraint is added which requires
that all pheromone values are bounded, τi ∈ [τmin, τmax]. In our case this is
very important because our update rule can lower the minimum value of the
pheromone very close to zero and inflicted vertexes will practically never be se-
lected. The problem with MMAS is that for keeping the search greedy enough
τmin has to be very small but the search will never be intensified after the
pheromone for a vertex has reached τmin.

Another interesting approach is combing ACO with the minimum pheromone
threshold strategy (MPTS) as proposed in article [29]. The idea of the MPTS is
to intensify search around vertexes that have been rarely selected. This is done
by adding a minimum threshold value τmt that is bounded τmin < τmt < τmax.
In the beginning τmt is set to some initial value and then adjusted during the
search, depending on the performance. Threshold τmt is used for updating the
pheromone trail. When the search is conducted, values in the pheromone trail
τi are compared to the τmt and if τi is lower than τmt, than τi is changed to
some significantly higher value. In our experiments this approach proved to be
efficient for small graphs, but for larger problems the search would not be greedy
enough and would give results that are of lower quality than ones acquired by
the MMAS version of ACO.

To improve the performance of ACO we implemented a pheromone correc-
tion strategy similar to the one used for minimum weight vertex cover prob-
lem (MWVCP) [15]. The idea of this approach is to change the pheromone
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matrix by analyzing some of the properties of the best found solution. More
precisely, when the search for a better solution becomes stagnant we update
the pheromone matrix. We do this by using a simple heuristic function that de-
scribes the desirability of a vertex in the solution. For example, a vertex that is
part of the solution and does not cover any vertexes solely by it self is not very
desirable. For an undesirable vertex in the solution we greatly decrease the
value of the pheromone and as a consequence, that vertex is not often chosen
as a part of the solution in the following steps of the algorithm.

We have adapted this approach for the MCDSP. First, let us define η(v, V ′)
as the number of vertexes that vertex v, which is part of the best found solution
V ′, solely covers.

Sus =
1

1 + η(v, V ′)
(6)

In Equation (6) we have defined Sus as the undesirability of a vertex in
the solution. The next step in the pheromone correction strategy is to select
a random number RK of vertexes which solely cover the smallest number of
vertexes. For each vertex i in the solution the probability of it being selected for
pheromone correction is:

pi(selected) =
RK −RankSus(i, V ′)

RK
(7)

In Equation (7) instead of using the value of Sus for vertexes, we used
RankSus which represents their rank by undesirability . RK is the maximum
number of vertexes that are considered for correction. The final step is to lower
the pheromone trail for the selected vertexes:

∀i ∈ Selected
τi = δτi

(8)

The use of Sus(v, V ′) as a measure of desirability is not fully effective be-
cause the same group of vertexes would be repetitively selected until a better
solution set was found. Because of this we introduce an improved desirability
criterion:

CorSus(i, V ′) = Sus(i, V ′) ∗ ExSusepect(i) (9)

The improvement consists of tracking which vertexes have already been
selected and preferring the selection of new vertexes. To do this, a new array
ExSuspect is introduced with elements initially set to 1. If vertex i is selected,
the following correction is done:

0 < λ < 1
ExSuspect(i) = ExSuspect(i) ∗ λ (10)

This type of approach in which the pheromone value has been greatly de-
creased for some vertexes that are part of the best solution has been applied
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to the MWVCP with good results [15]. The ant colony in the following steps of
the algorithm avoids using these vertexes when creating new solutions. This
approach however, does not give good results when extended to graph covers
that also need to be connected. The problem is that when a vertex is removed,
it is highly likely that it will leave the remaining vertex set disconnected. In the
following steps it is hard for the ants to create a new good solution avoiding
the removed vertexes due to the connectivity problem. Because of this a new
type of correction is added, which is used to make it easier for new solutions to
be constructed. This is done by increasing the pheromone values at vertexes
that are not a part of the best found solution but are highly likely to appear in
new good solution. We will consider a vertex that is not part of the solution, but
covers many of the vertexes in the best solution, desirable to appear in good
solutions.

Now we define a method for pheromone correction for vertexes that are not
part of the best solution. First, let us define Des(v, V ′) as the number of vertexes
that are a part of the best found solution that v /∈ V ′ is connected to. The next
step in the pheromone correction strategy is to select a random number RK ′ of
vertexes which cover the greatest number of vertexes that are in the best found
solution or in other words, have the greatest value of Des. For each vertex i not
in the solution the probability of being selected for pheromone correction is:

pi(selected) =
RK ′ −RankDes(i, V ′)

RK ′ (11)

In Equation (11) instead of using the value of Des for vertexes, we used
RankDes which represents their rank by desirability. RK ′ is the maximum num-
ber of vertexes that are considered for correction. The final step is to correct the
pheromone value pheromone for the selected vertexes by increasing the value
of pheromone:

∀i ∈ Selected

τi =
τmax + τmin

2
(12)

For vertexes for which the pheromone values will be increased we also track
how often they are selected with the array ExSuspect and use a new corrected
desirability function CorDes in the same way as for vertexes that are a part of
the solution.

Finally, we need to define a stagnation criteria for recognizing if the search
has been trapped in a local minimum. The criterion used is that there has been
no improvement in the solution in n iterations of the ant colony. In our imple-
mentation we use separate values n1 and n2 for the two pheromone correction
methods.

5.2. Initial Vertex Selection

When the starting point for creating an ACO algorithm for the MCDSP is Guha
and Khuller’s greedy algorithm, the performance is extremely influenced by the
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vertex that is initially selected. This is because the solution set slowly grows
from the initial vertex through its neighbors. As previously mentioned, the heuris-
tic function is dynamic, so the previously selected vertexes not only affect the
potential candidates but also which one of them will be selected. This way the
initially selected vertexes have a snowball effect on the final solution. In the case
of the TSP this problem is also present but it is less severe and can be solved
by selecting the first vertex at random, out of all the vertexes in the graph since
they all participate in the best solution. In our case this is not a good approach
because only a relatively small number of vertexes are part of the best solution
so the search becomes too wide. In the case of MWVCP [15] where the solution
is also a small subset of V , we selected a random vertex of the best solution.
However, if we choose the initial vertex for MCDSP in this way the search be-
comes too narrow. This is because in the case of MWVCP the previous steps
only affect the heuristic function but in the case of MCDSP the candidate list is
also affected.

We try to balance these two approaches in the following way:

InitV ertex =

{
Random(V ′) , s < s0
Random(V, τ) , s > s0

(13)

In Equation (13) s is a random variable on which the type of selection de-
pends, s0 is a fixed parameter that defines how often the initial vertex will
be selected from the global best solution V ′ or from all the vertexes in V . In
case it is selected from V , the probability distribution is only dependent on the
pheromone trail corresponding to vertexes.

5.3. Our Improved ACO Algorithm for the MCDSP

The recapitulation of the key elements of our improved ACO algorithm for the
MCDSP is:

– ACO algorithm for the MCDSP is implemented with necessary adjustments
considering that for the MCDSP solution is a subset of the set of graph
vertexes where the order is unimportant and that the heuristic function is
dynamic. That affects the basic algorithm in a way that the ants leave the
pheromone on vertexes instead of edges, the heuristic function is dynami-
cally updated and potential candidates have to be tracked.

– The mentioned ACO algorithm is based on the first greedy algorithm given
by Guha and Khuller [12]. It starts with an initial vertex v0 ∈ V with the
highest degree as the root of the tree T . At each step a vertex w is picked,
which is a neighbor of some vertex v in T , that covers the highest number
of uncovered vertexes. This process is repeated until all vertexes in G are
covered.
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– ACO algorithm for the MCDSP based on Guha and Khuller’s greedy algo-
rithm is strongly influenced by the vertex that is initially selected because
the solution set slowly grows from the initial vertex through its neighbors.
We introduce modification that narrows the selection to vertexes that be-
long to the global best solution, but not always, according to Equation (13).

– When stagnation is detected, search has to move to, at that moment, less
promising areas. Rather than using more standard method of increasing the
pheromone level for vertexes that currently do not belong to the best found
solution, we decrease the pheromone level for, by defined criteria, unde-
sirable vertexes in the best found solution. This novel approach improves
leaving local optima in the directions that lead to better solutions.

– The previous step, very successful for some other problems [15], creates
some problems when unmodified applied to graph covers that also need to
be connected. The problem is that when a vertex is removed, it is highly
likely that it will leave the remaining vertex set disconnected. Because of
this a new type of correction is added, which is used to make it easier for
new solutions to be constructed. This is done by increasing the pheromone
values at vertexes that are not a part of the best found solution but are, by
defined criteria, highly likely to appear in new good solution.

The program for our experiments was written in C#, using the framework
from article [16]. The program implements the following pseudo code

Reset Graph Info
Reset Solution for all Ants
Select Initial Vertex for all ants

while (! AllAntsFinished)
for All Ants
if(AntNotFinished)

begin
add new vertex A to solution based on probability
correct ant’s cover graph data
calculate new set of candidates
calculate new heuristic
local update rule for A

end
end for

end while

Compute DeltaTauI
Compute TauI
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If(Iteration_NoChange % n1)
Use CorSus for Pheromone Correction

If(Iteration_NoChange % n2)
Use CorDes for Pheromone Correction

6. Test and Results

We have conducted two types of tests. In the first type we analyze the effec-
tiveness of our method on benchmark data sets with existing solutions. In the
second group of tests we generate problem instances as proposed in article
[14] that correspond to ad hoc network clustering problems.

The ACO algorithm is implemented in its MMAS version. For both, ACO with
and without pheromone correction, we conducted ten separate colony simula-
tions and compared average solutions and standard deviations. All the colonies
had the following parameters: q0 = 0.9 specifies the exploitation/exploration
rate, p = 0.1 and φ = 0.1 specify the global and local update rules. These are
the standard values used by most authors and after some testing we decided
that there is no need to change them. The value of the parameter that defines
initial vertex selection is s0 = 0.2. This parameter is specific for our method and
was determined empirically after significant number of tests. The parameters
used for our pheromone correction had the following values: coefficient for the
pheromone correction δ = 0.0001, the maximum number of selected vertexes
RK = |V |

s where s is a random number from the interval [2,10] and λ = 0.9. We
determined these parameters in [15] and after some testing determined that
the same values are appropriate for this problem. The stagnation parameters
had the following values: n1 = 20 and n2 = 40. These values were empirically
proven to balance two corrections specific for our method. In our tests we used
10 colonies for both, ACO and ACO with pheromone correction strategy. In both
cases we used random seeds with values from 0 to 9.

We have tested our method on benchmark data sets that have been used on
the Tenth International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’09) [28]. The maximum number of iterations for a colony
was 350 which means that 3500 solutions have been created. We compare the
quality of solutions achieved by our ACO combined with a pheromone correction
strategy to standard MMAS ACO using the basic version of Guha and Khuller’s
heuristic, to pure greedy algorithm and to known best benchmark results from
the LPNMR’09. These results are in Table 1.

In Table 1 we only give the results for problem instances that have had a
satisfactory solution (the solution is known) given in the LPNMR benchmark.
The best found solution for the ant colonies, which is commonly shown, does
not appear in the table due to the fact that both ACO algorithms have achieved
the best given solution in all the benchmark examples. We first notice that the
basic greedy algorithm of Guha and Khuller performs poorly and gives the av-
erage error of 126% compared to the best solution. The MMAS variation of
ACO gives results that on average have 8.5% error. This shows that the use of
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Table 1. Comparison of LPNMR, Greedy 1, simple ACO and ACO combined with MPTS

Problem LPNMR Greedy ACO MMAS ACO with PCS
Dimensions Result Average St.Dev. t Average St.Dev t

40*200 5 10 5.8 0.60 3.2 5.3 0.45 4.1
45*250 5 15 5.8 0.40 3.5 5.5 0.50 4.3

50*250(1) 8 15 8.1 0.54 4.8 8.0 0.00 6.1
50*250(2) 7 17 7.5 0.50 5.0 7.1 0.30 6.5

55*250 8 20 8.8 0.98 5.6 8.3 0.45 7.3
60*400 7 15 7.0 0.00 6.1 7.0 0.00 9.1
70*250 13 32 14.2 0.74 11.0 13.9 1.04 13.5
80*500 9 20 10.0 0.44 12.1 9.8 0.40 16.9
90*600 10 19 10.9 0.83 14.0 10.6 1.01 17.3

Average 8.00 18.11 8.68 8.34

ACO, with careful selection of the initial vertex, manages to overcome the short-
sightedness of the underlying greedy method. Finally, the results that have been
archived by adding the pheromone correction strategy to ACO manages to im-
prove the results even further to have an average error of 4.2%. Standard de-
viation is also improved in most cases. Columns marked with t report compu-
tational times in seconds for ten runs. They should be used only for coarse
comparison since they include hard disk time, no optimization of the algorithm
was attempted and it was written in C#.

As an illustration of the effectiveness of this method we give a comparison
with results for the problem viewed as decision problem achieved by Answer Set
Programming (ASP), Propositional Satisfiability (SAT) and Constraint Program-
ming (CP) that are given on the LPNMR’09 web site. The benchmark test set
consists of 21 problems of different sizes, and for each it is requested to answer
if a solution of a certain number of vertexes exists. For each of the test exam-
ples we have conducted two colony runs with a fixed number of iterations (350),
and we check if any of the colonies has found a solution with the requested
number of vertexes; if it has the problem is satisfied, otherwise it is not. The test
have been done on similar hardware (ours slightly better): at LPNMR’09 Dell
OptiPlex 745, 1 CPU with 2 cores: GenuineIntel Intel(R) Core(TM)2 CPU 6600
@ 2.40GHz 4 GB RAM, and in our case Dell OptiPlex 755, 1 CPU with 2 cores:
GenuineIntel Intel(R) Core(TM)2 CPU E8500 @ 3.16GHz 3 GB RAM. The soft-
ware used at LPNMR’09 was created in C++ and our application was made
using C# which gives them a speed advantage. Our method had successfully
solved all the problem instances and for that it needed 52 seconds. In compari-
son to this, the best method from LPNMR’09 has solved all the problems in 36
seconds, and the following ones needed 128, 169, 316, 465 and 535 seconds.
Although the comparison is not fully accurate it still shows that our method is
very competitive.
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In our second group of tests we generated graphs in the same way as pro-
posed by Chen [14]. The graphs are generated in the following way. In some
fixed area N ∗ N a random number of points are selected with a uniform dis-
tribution which represent the nodes of our graph. If the distance between two
nodes i and j is smaller that some value R than edge (i, j) is a part of our
graph. We have generated problems with different number of nodes and differ-
ent edge densities and used them to compare ACO and ACO with a pheromone
correction strategy. We use the same parameters for ACO as before, except for
the maximum number of iterations for a colony which is now 5000 due to the
increased size of the problems. We can see the results in Table 2.

For each of the 41 test instances we compared the best found solution and
the average solution for ACO and ACO combined with pheromone correction.
We first wish to point out that the basic greedy algorithm performs poorly for
larger problem instances. Both ACO approaches improve the minimal solution
2-3 times compared to the greedy algorithm. ACO combined with a pheromone
correction strategy improved the best found solution in 18 cases and decreased
its quality in only 3 cases. When the average solution is observed the addition
of a pheromone correction strategy improved the result quality in 33 cases and
decreased its quality in 6 cases. The advantages of using the PCS are greater
in the case of small and medium problem instances. We explain this by the fact
that the PCS parameter values have been chosen from analyzing the behavior
of the algorithm for small problem instances. We believe that the same level of
improvement can be archived with a better choice of parameters.

7. Conclusion

In this paper we have presented an ant colony optimization algorithm for the
minimum connected dominating set problem. Our implementation is fast and
simple one-step ACO method based on a greedy heuristic where our pheromone
correction strategy and special attention to the initial condition of the ACO over-
come shortcomings of that heuristic. The tests on standard benchmark data
as well as on standard generated examples have shown that our algorithm
generates good solutions compared to other state of the art algorithms. More-
over, the execution time is favorable compared to the results obtained on 10th
International Conference on Logic Programming and Nonmonotonic Reason-
ing (LPNMR’09) benchmark data sets. This is important since such solutions
are usually used in MANETs and the speed of execution is more important
than optimality. We used successfully the similar strategy to improve ACO for
the MWVCP and another version for the TSP so we can consider that our
pheromone correction strategy is a rather general method of improving ACO.
Future research may include additional tuning for larger examples and use of
different pruning-based greedy heuristics as in [4], [5]. They are more complex
for implementation but natural for the ACO since these are one-step algorithms
that much less depend on the initial vertex selection. Some recent improve-
ments in greedy algorithms [30], [8] can also be included in the future research.
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Table 2. Comparison of ACO and ACO combined with pheromone correction on different
MCDSP instances

Area(N*N) R Greedy ACO ACO + PCS
Nodes Min Avg Min Avg

400 60 48 20.0 21.6 19 21.2
80 70 33 16 17.0 15 16.2

80 35 12 14.0 12 13.1
90 41 11 11.8 11 11.6
100 23 8 9.0 8 8.9
110 25 8 8.5 8 8.5
120 17 7 7.5 7 7.2

600 80 38 23 24.7 22 23.6
100 90 40 22 23.8 21 23.6

100 38 17 20.0 17 19.0
110 35 15 17.2 15 16.8
120 36 15 16.2 14 15.5

700 70 96 46 50.7 46 49.6
200 80 89 41 43.7 41 43.9

90 84 34 36.0 33 35.7
100 75 28 30.8 28 31.0
110 70 23 27.4 22 26.4
120 68 21 23.6 21 23.4

1000 100 96 46 50.7 46 49.6
200 110 92 43 44.9 42 44.8

120 82 37 39.9 37 39.8
130 91 32 34.7 32 34.9
140 76 30 31.3 29 31.3
150 83 28 29.6 26 28.8
160 86 24 26.6 25 26.5

1500 130 158 60 64.5 60 64.3
250 140 144 53 57.2 52 57

150 170 51 54.9 51 54.4
160 151 47 50.5 45 49.8

2000 200 178 55 58.6 52 58.8
300 210 151 51 53.5 50 52.8

220 140 47 48.9 45 48.4
230 166 44 47.5 44 46.9

2500 200 198 79 82.0 79 81.5
350 210 185 75 79.1 74 78.2

220 205 68 72.6 69 73.8
230 193 66 69.2 66 68.9

3000 210 259 99 101.6 98 104.0
400 220 225 88 95.4 91 97.6

230 205 86 91.4 86 90.3
240 210 82 85.8 80 84.1
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