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Abstract 

We present a method for lossy compression of three 
dimensional gray scale images that is based on a 3D linear 
spline approximation to the image. We have extended an 
approach that has previously been successfully applied in two 
dimensions. In our method, we first select significant points 
in the data, and use them to create a 3D tetrahedralization. 
The tetrahedrons of the tetrahedralization are used as cells for 
a linear interpolation spline that gives an approximation of  
the original image. The compression is done by storing the 
positions of the vertices of the tetrahedralization and the 
values there instead of the value of the approximation at each 
grid point. We introduce a novel concept of using a smoothed 
version of the original image to improve the quality of the 
approximating spline. To increase the efficiency of the 
algorithm, we combine it with a refinement/decimation 
technique. We compare our compression technique to 
JPG2000 3D. We show that our algorithm performs similarly 
to, and in some cases even outperforms it, for high 
compression ratios. Our approach gives images that have 
significantly different properties than ones created using 
wavelets, and have the potential of being more suitable for 
some applications. In addition, this type of compression is 
particularly suitable for visualization.  

1 Introduction 

Volumetric data sets are being created and used much more 
frequently in the recent years since the appearance of more 
powerful computers and the fall in prices of equipment that 
can gather and digitalize data of this type. With the increased 
resolution of the images the volume of data has become 
tremendous. For example, to store a three dimensional data 
set whose dimension is equal to 1024 in each direction, and 
whose voxels are bytes, we need one gigabyte. This shows us 
the necessity of compression for volumetric data. 

In this article we shall present a lossy 3D compression 
method for volumetric images. New compression algorithms 
for 3D data have been developed by adapting existing 2D 
methods. Previously, the Discrete Cosine Transform (DCT) 
has been extended to  be used for the compression of 
volumetric data [2,22]. Currently, the most effective 

algorithms for compression of volumetric data use wavelets in 
three dimensions [4,5,18]. Wavelet compression of 
volumetric data has been standardized and is in part 10 of 
JPG2000 [20]. 

A completely different approach to the compression of 2D 
images is to approximate them using piecewise linear splines 
based on a triangulation. The compressed image file then 
contains only the vertices of the triangles and the values at the 
vertices [7,8,12,16]. The decompression consists of 
decompressing the vertices and their corresponding values, 
then carrying out a linear interpolation of the values to the 
pixel locations. This technique first determines the significant 
points of the image in the sense that they represent the 
geometry. We define a significant point to be a pair: the 
position and the corresponding value. Later these points are 
used to create a triangulation, and a linear spline which is an 
approximation of the image. In the cases where very high 
compression ratios are needed, the use of this type of method 
gave results that are equivalent to or even better than the 
standard JPG2000 [13]. This method has been extend to the 
third dimension for application on video data [9]. 

In this paper, we present an extension of this compression 
method using data dependent triangulations to the third 
dimension. The method is developed for gray scale 3D 
images. It is fully defined by giving a method for vertex 
selection, creation of linear splines and a coding system for 
storing the selected significant points.  

To accelerate convergence, we introduce a novel concept of 
using a smoothed version of the original image to improve the 
quality of the approximation. This approach to compression 
has the additional advantage that visualization is accelerated. 
To visualize a compressed image, it is not necessary to 
decompress the entire image, since many visualization 
routines require only the vertices of the tetrahedrons and the 
values there, not all of the voxel values.  

In 3D, instead of using triangles for creating linear splines, we 
use tetrahedrons. We have extended Silva’s refinement  
algorithm [7] previously used on mammographic medical 
images to the third dimension. We further improve the quality 
of the approximation spline by adding a correction method for 
the values corresponding to significant points by taking into 
account a smoothed version of the original image. To increase 
its efficiency, we have combined it with the 
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refinement/decimation technique as proposed by H. Pedrini 
[15]. To make this possible, due to the great increase of 
calculation time when the problem is solved in the third 
dimension, we have developed a new approximate method for 
selecting those points which should be removed.  We show 
that this approach applied to volumetric data compression 
gives results that are comparable and in some  cases even 
better that the 3D version of JPG 2000 in terms of peak signal 
to noise ratio for high compression ratios. The compressed 
images have significantly different properties than ones 
created by wavelets which can make them more suitable for 
some applications.  

The paper is organized in the following way. In the second 
section we give an introduction to creation of three 
dimensional data dependent tetrahedralization. In the next 
section we give details of the combined image approach that 
improves the quality of tetrahedralization. In the fourth 
section we explain the adaptation of the 
refinement/decimation technique for selection of significant 
points. In the next section, we give a short overview of the 
complete algorithm. In the fifth section we compare our 
method to Silva’the three dimensional version of JPG2000 
and, finally, in the last section, we draw some conclusions. 

2 Three dimensional data dependent 
Tetrahedralization 

Two dimensional images in computer graphics are most 
commonly defined as discrete scalar fields :I C  with 
a domain {0,..., } {0,..., }i j   , as a regular grid of 

width i and the height j into the color space C. In the case of 
three dimensional data, {0,.., } {0,.., } {0,.., }i j k     

where k is the depth of the regular grid. In this paper we focus 
on gray scale images where C is {0,.., 2l  -1}. We use the term 
significant point for a pair consisting of position and value, 
which is (x,y,value) in two dimensions and (x,y,z,value) in 
three dimensions. A tetrahedralization T of the domain Ω can 
be used for creating an approximation to the image I by linear 
interpolation of the function values from the vertices to the 
interior of each of the tetrahedrons.   

In this section, we give a detailed explanation of the extension 
of Silva’s algorithm for selecting significant points of two 
dimensional images for creating linear approximation splines 
[7]  to the third dimension. In Silva’s algorithm, the basic idea 
is to find a triangulation T of the domain with vertices chosen 
from among the grid points such that the linear spline based 
on T gives a good approximation to the data. It is only 
necessary to store the significant points (in a compressed 
form), because from this information, we can reconstruct the 
triangulation, and thus the linear spline using Delaunay 
triangulation.  

To do this we shall first explain what a DT is in three 
dimensions. Next we show the changes that need to be made 
on the iterative algorithm for finding the significant points. 
First we point out that a direct extension of the two 
dimensional Delaunay triangulation can be done to the third 
dimension. In it, instead of using triangles we use 

tetrahedrons as basic cells. One important property of DT is 
that it is unique for a set of points in which no four lie on one 
circle. The Delaunay tetrahedralization now has the specific 
empty sphere property, that is, the circumscribing sphere of 
each cell of such a tetrahedralization does not contain any 
other vertex of the tetrahedralization in its interior. These 
tetrahedralizations are uniquely defined except in degenerate 
cases in which five points are cospherical. Even in this case, 
with some restrictions, it can be made unique [10].  

 

Figure 1. An example of triangulation and appropriate 
approximation 

Silva’s algorithms start with a simple triangulation containing 
a very small number of vertices to which we iteratively add 
new vertices to improve the quality of the approximation. 
This approach is called refinement. Opposite to this is 
decimation, where we start with a very fine triangulation 
containing vertices corresponding to all the pixels of the 
image. Then at each step we remove the vertices that 
decreases the quality of the approximation the least. 
Refinement techniques in general achieve results of lower 
quality but are significantly faster compared to decimation. 
Note that the vertices here are always grid points. 

In Silva’s algorithm, initially the four corner points of the 
image are chosen as significant points. These vertices create a 
triangulation consisting of the top left and bottom right 
triangle. Using these two triangles, an approximation spline 
L0 is created. At each step i of the algorithm, a piecewise 
linear spline Li is obtained.  At odd refinement steps, a new 
point with the largest approximation error is selected and with 
it a new triangulation and corresponding linear spline Li+1 are 
created. The error for triangle t is the sum of errors of all 
points p inside of it. In the case of an even iteration, the point 
with the worst approximation is selected from that triangle 
which has the largest error. This process is repeated until the 
desired approximation quality is achieved or the maximum 
number of vertices is reached. An example is given in Figure 
1. In Silva’s algorithm, the values of the spline at its vertices 
is always taken to be the value of the image there. In our 
algorithm, we remove this restriction. 

Silva’s algorithm for selecting the significant points in three 
dimensions is changed in the following way. Initially we start 
with a tetrahedralization using the 8 corner vertices of the 
domain and tetrahedrons that a DT containing them generates. 
We use the refinement approach proposed by [7]. More 
precisely, we shall be switching between the globally worst 
approximated point and instead of choosing the triangle with 
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the biggest error, we choose the appropriate tetrahedron. To 
do this we need to define an error function for a tetrahedron ∆ 
at iteration i as follows 

2( ) | ( ) ( ) |i i
p

E I p L p


    (1) 

where I is the image. 

The error function in Equation 1 represents the sum of 
squares of errors over all the points inside the tetrahedron. We 
use the l2 error instead of the absolute value as in the case of 
two dimensions, because we are trying to minimize the peak 
signal to noise ratio. We have observed in our tests, that better 
results are achieved in this way. 

3 Combined image approach 

 In this section we present our combined image approach to 
the selection of significant points of the image. We alternate 
between the use of the original image and a smoothed 
version. The choice of which image will be used at any step 
of  the algorithm, depends on the quality of the approximation 
achieved by the linear spline. Our approach, also separates the 
selection of position and values for a significant point 

We first tried using a smoothed image obtained from applying 
a Gaussian blur filter [19]. The desired effect of removing 
problematic areas from the image is achieved but at the cost 
of some regions of the image becoming greatly distorted. 
Therefore instead of using Gaussian blur, we use the Bilateral 
filter which is given in article [21]. This filter, as does the 
Gaussian blur, computes a weighted average of pixel values 
in the neighbourhood, but instead of just using the distance 
between pixels it also takes into account corresponding 
values. This way, edges are just slightly blurred while noise 
reduction is achieved.  

Let us define I* as the image resulting from applying the 
Bilateral filter on the original image I. The initial idea was to 
use solely I* instead of I in the algorithm described in the 
previous section. The problem with this approach is that the 
smoothed image does not approximate the original image 
well. One solution to this problem is to stop using the 
smoothed image when the approximation has reached a 
certain level of PSNR. We avoid this problem by combining 
the use of the smoothed image and the original one. This is 
done by dividing the selection of a significant point into two 
stages. In the first, we select the significant points position 
and in the second the corresponding value. In each of these 
stages we use one of the two images. We give an outline of 
our method in the following pseudo code: 
 
 Add corners of volume to DT 
 I* = BilateralFilter(I) 
 Ic = I* 
WHILE(More Points Needed) 

     IF  (counter.\ mod.\ 2 == 0) 
           p = MaxErrorPosition(L,Ic) 
     ELSE 
          p = MaxTetrahedronErrorPosition(L,Ic) 

     Add  p  to DT 

     IF (|I - LI* (p) | < |I – LI(p) |) 
           L = L I* (p) 
     ELSE 
           L = LI(p) 

     IF (PSNR(L) < α PSNR(I*)) 
            Ic=I* 
     ELSE 
            Ic=I 

ENDWHILE 
 
In the pseudo code, Ic stands for the image which is used in 
the current calculations. p is a point with position (x; y; z). L 
is the linear spline corresponding to the current 
tetrahedralization. The function MaxErrorPosition gives us 
the position of that point for which the approximation spline L 
has biggest error to Ic. Similarly, 
MaxTetrahedronErrorPosition gives us the maximum error 
position inside the tetrahedron D with the greatest error E(D). 
α is a fixed constant that regulates when we use the original 
or smoothed image for the selection of a significant point.  
The algorithm starts by creating a Tetrahedralization from the 
8 corner points of the volume. We set Ic to be the smoothed 
image I* which we use in Silva’s algorithm. As proposed by 
Silva, we switch selecting between MaxErrorPosition and  
MaxTetrahedronErrorPosition for selecting points depending 
on whether we are adding an odd or even vertex. When the 
selected position is added to the triangulation it generates a 
new DT. For the new position p and DT we check which of 
the values I(p) from the original or I*(p) from the smoothed 
image gives an interpolation spline LI(p) or LI*(p) with higher 
quality approximation to the original image. We finally add a 
significant point p with a value that is equal to I(p) or I*(p), 
depending on which gives a better approximation to our 
tetrahedralization. Before selecting the next point we check if 
the approximation function has reached a certain level of 
PSNR (αPSNR(I*)). If it has, we start using the original 
image I as the current image. We wish to point out that the 
two approximation splines LI*(p) and LI(p) which appear in the 
algorithm are easily calculated together  and the calculation of 
the second one does not greatly increase execution time. .  

4 Refinement-Decimation  

The results achieved by the above algorithm can be greatly 
improved by adding decimation/refinement steps as proposed 
by H. Pedrini [15]. The idea of this approach comes from the 
fact that some points, at the moment they are added to the set 
of significant points, greatly improve the approximation 
spline but as further ones are added they may become 
unnecessary in the sense that their removal would not greatly 
change the quality of the approximation function. One 
extreme example of generating unnecessary points using a 
refinement method is shown by Garland and Heckbert [11]. 
So instead of just adding new points to the set at some stages 
of the algorithm, we shall remove the least necessary ones. 
 There are several ways of selecting points for decimation. In 
the case of 2D decimation as given in [8], an exact approach 
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has been used. The vertex whose removal shall minimally 
decrease the PSNR of the approximation is chosen. To do 
this, we need to recalculate the triangulation and the 
approximation function in the changed triangles. In the case 
of two dimensions, the recalculation of the approximation 
function is not a great part of the overall calculation time of 
the algorithm. However, when we move to the third 
dimension and use tetrahedrons instead of triangles, this part 
of the algorithm becomes substantially more time consuming, 
a fact which we have experienced in our experiments. A 
different approach is given in [15] for the 2D version of the 
problem. Instead of calculating the exact effect of removing a 
point, an approximation to it is used. It consists of removing 
the point whose removal will least change the approximation.  
 
In our algorithm, we implement a mix of exact and 
approximate methods for selecting which vertex shall be 
removed. It is obvious that at the time a new vertex is added 
we can easily see what will be the effect of its removal on the 
quality of the approximation. The error corresponding to 
vertex p can be seen as the sum of errors of all the 
tetrahedrons that are incident to it. The other tetrahedrons are 
not influenced by p. In Equation 2, we give the error 
connected with vertex p that is added as the n+1-st vertex of 
the tetrahedralization.  

1

1 1( ) ( )
n

n nE p E


 


   (2) 

Here En+1 represents the error functions, Γn+1
 represents the 

set of tetrahedrons that vertex p is incident to when n+1 
significant points have been selected. At this stage it is 
necessary to calculate all En+1(Δ) for all tetrahedrons inside 
Γn+1 to prepare the next step of the refinement algorithm. We 
shall define the error that corresponds to p at step n in 
Equation 3 

( ) ( )
p
n

p
n nE p E







   (3) 

In Equation 3, Γp-
n is the set of all the tetrahedrons that are in 

conflict with, or in other words their circumscribing sphere 
contains, p in the DT without p. This DT is exactly the 
tetrahedralization at step n. All the values of Ep-

n(D) are 
known before adding p so Ep-

n (p) is easily calculated. From 
the definition of the Delaunay tetrahedralization we know that 
volume Γp-

n is equivalent to Γn+1. So the effect of removing p 
from the tetrahedralization is the following. 

1( , 1) ( ) ( )p
n nErrorChange p n E p E p
    (4) 

ErrorChange gives us the the effect of removing p at step 
n+1. We wish to emphasize that the ErrorChange does not 
use the absolute value since removal of a point can in some 
cases even improve the approximation.  
 The problem is that when adding the point p, its neighbors 
are also affected due to the re-tetrahedralization that occurs. 
The current error for a neighboring point q is easily calculated 
using Equation 2, since all the En+1 are known. To get the 
exact value of Eq-

n (q) we need to recalculate the 
tetrahedralization that exists after removing q and the 
corresponding approximation. This recalculation is as 
complex as the one for adding  p and it needs to be done for 

all the neighbors. This makes it very inefficient. We avoid 
this by using an approximation of the error at previous step 
Eq-

n (q). This is done in the following way. Let us say q has 
been added at step m+1. At this moment it was easy to 
calculate the error Eq-

m (q).  This value is stored. Let us define 

1

1( ) ( )
n

n p 





   (5) 

In Equation 5, μ(Δ) represents the volume of the tetrahedron 
Δ. μn+1(p) is the volume that is connected to a vertex p at step 
n+1 which is equal to the sum of volumes of all the 
tetrahedrons that are connected to it. Using μ we define the 
following approximation for ( )q

nE q  

1( )
( ) ( )

( )
q q n
n m

m

q
E q E q

q




    (6) 

 ( )q
nE q is equal to the error Eq-

m (q) just scaled to the new 

volume to which q is connected at step n+1. Now we shall 
remove vertices that have the minimal approximated error 
change, given in Equation 7, from the tetrahedralization. 

*
1( , 1) ( ) ( )p

n nErrorChange p n E p E p
     (7) 

 

5 Algorithm overview 

The complete algorithm proceeds as follows. We first 
initialize the DT by adding the corner vertices of the brick 
that represents the data. We set the number of vertices that 
shall be decimated to half of the maximal size of our 
significant point set. In the main loop, we add vertices to the 
DT using the combined image approach until we reach the 
maximal allowed number of vertices. When we reach this 
number, we remove NumOfDecimation vertices from the 
significant point set. We set NumOf Decimation to its half and 
repeat this process until no vertex should be decimated. 
Finally the significant points, which are effectively a point 
cloud, were compressed using coding proposed in article [14].  

 
The software is written in C++. In it, the calculation of the 
three dimensional DT is done using CGAL (Computational 
Geometry Algorithms Library) which is an open source 
project that provides efficient and reliable geometric 
algorithms in the form of a C++ library [1].We have 
conducted our tests on data sets that are a part of The Volume 
Library assembled by Stefan Roettger [17]. This library is a 
collection of CT Scans, MRI Scans, Laser scanning 
microscopy and computer generated data sets which have 
been taken from several industry and academic sources. We 
compare our algorithm to JPG2000 3D (Part 10 - JP3d) which 
is an extension of JPG 2000 for three dimensional data. In our 
tests, we have compared the achieved PSNR for a fixed 
number of bits per voxel for JPG 2000 3D and our method. 
We also analyze the effect of our improvements on the direct 
extension of Silva’s algorithm [7]. 
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6 Results and Discussion 

In this section, we evaluate the effectiveness of using the 
previously given tetrahedralization algorithm for compression 
of volumetric data.  
 
Our results are contained in Table 1 which compares the 
PSNR obtained when compressing to 0.03125 bits/voxel for 
Silva’s method, for our method without using a smoothed 
image, for our method using a smoothed image and for 
JPEG2000/3D. 

Previous research, done for two dimensional images, has 
shown that compression methods that use triangulation for 
creating approximating linear splines are most effective when 
very high compression ratios are desired [12]. Because of 
this, in our experiments, we choose 0.03125 bits per voxel. 
This bit rate was the minimal one used in [18]. We can see the 
results on various test images in Table 1.  

Table 1. Comparison of Peak Signal to Noise Ratio archived 
by JPG2000/3D and Delaunay tetrahedralization methods on 
different data sets using 0.03125 bits per voxel 

The decimation improvement has shown its effectiveness in 
all the tested cases and shows an increase of PSNR compared 
to the direct extension of Silva’s method in average from 
34.05 to 34.64. The combination of decimation and the 
combined image approach would further increase the value of 
PSNR and in average it would be 35.53. Only in the case of 
BluntFin, did the use of a smoothed image not improve the 
PSNR when it was combined with decimation. The reason for 
this is that the original image is very smooth which means 
there are no problematic regions and further smoothing only 
distorts the image. This type of case can easily be recognized 
and avoided since the PSNR of the smoothed image is very 
high. Contrary to this in images that have a high level of 
discontinuity, like spheres and Daisy, the positive effect of 
this improvement is more evident. Our method in average 
does not perform as well as the JPG 2000 3D when PSNR is 
observed. But in some cases, it is more effective. In the case 
of 0.03125 bits used per voxel the difference in PSNR is 
relatively small 35.53 compared to 36.09. We have observed 
that the source of the error is significantly different for our 
method and JPG 2000. In our observation of we have noticed 
that in the case of JPG 2000 3D the error is small over the 

whole image, while with our method the error greatly varies 
from zero in some areas while being very high in others.  

In the case of smaller sized images (Dti-fa, Dti-md, Spheres) 
when both improvements have been applied, the PSNR that is 
achieved even outperforms JPG 2000 3D. This can be 
explained by the fact that the number of bits needed to store a 
significant point depends on the image size. Because of this, a 
higher proportion of number of significant points to image 
size can be achieved for smaller images for the same number 
of bits per voxel, while in the case of wavelets no similar 
relation exists. 

In many of the uses of volumetric data, it is visualized. In 
some cases this would be interactive. For this type of 
application, our method can prove to be more efficient than 
wavelet based methods. When visualizing compressed 
volumetric data in 3D, we first need to uncompress all the 
values in the grid and later apply one of the standard 
rendering methods. These methods are usually very slow due 
to the fact that a large amount of data needs to be processed. 
As for using triangles when rendering surfaces, it is possible 
to optimize the rendering of volumes using tetrahedrons. An 
overview of advantages of using tetrahedrons for different 
rendering techniques can be seen in the survey article [6]. 
This type of rendering is suitable for our compression method 
since it is based on tetrahedrons and secondly that full 
decompression is not needed but only the decompression of 
the vertices and the values. 

7 Conclusion 

In this paper we have presented a promising new method for 
compressing volumetric data that is based on the use of 
Delaunay tetrahedralization combined with linear splines. It is 
an extension of a known two dimensional refinement 
technique to the third dimension. We have given a detailed 
explanation of the changes that appear compared to the two 
dimensional problem. We improved the quality of the 
approximation spline by combining the use of original data 
with a smoothed version of it. This concept can also be 
applied to 2D images. Further, we have introduced a method 
that greatly decreases the calculation time needed for 
selection of significant points that should be removed when 
decimation steps are added to the basic algorithm.  

 We have compared our compression method to JPG 2000 3D 
on a variety of different data sets. In cases where very high 
compression ratios are desirable, our method has given results 
of similar, in some cases even better, quality when PSNR is 
observed. The artifacts that appear in the compressed image 
have different properties than the ones that appear when using 
JPG 2000 3D. Because of this difference, it could be more 
suitable for certain types of data. An additional advantage of 
our method is that the compressed data is actually a 
tetrahedralization of the original image which makes it more 
suitable for visualization, especially since full decompression 
is no longer needed. We believe that the results achieved, can 
be further improved by adapting some of the more complex 
methods that have been developed for two dimensional 
images  

File 
Delaunay JPG2000 

3D Silva Dec Dec+Com 
Dti-fa 30.00 30.45 31.92 31.59 
Dti-md 36.70 37.21 37.84 34.51 
Spheres 29.81 30.35 31.88 31.48 
BluntFin 44.54 45.75 45.57 46.96 

Daisy 34.72 35.12 37.84 37.51 
Orange 29.60 30.21 31.14 33.31 
Tomato 33.44 34.25 35.43 37.31 
Baby 30.81 31.19 31.42 32.86 

Vismale 32.44 33.03 33.10 34.06 
Engine 38.35 38.79 39.17 41.39 

AVERAGE 34.05 34.64 35.53 36.09 
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