
1

A COMBINED IMAGE APPROACH TO COMPRESSION OF
VOLUMETRIC DATA USING DELAUNAY

TETRAHEDRALIZATION

R. Jovanovic†*, R.A. Lorentz †

* Institute of Physics, University of Belgrade, Pregrevica 118, Zemun, Serbia, rakabog@yahoo.com
†

 Texas A&M University at Qatar, Doha, PO Box 23874, Qatar, rudolph.lorentz@qatar.tamu.edu

Keywords: Compression, Delaunay tetrahedralization.

Abstract

We present a method for lossy compression of three
dimensional gray scale images that is based on a 3D linear
spline approximation to the image. We have extended an
approach that has previously been successfully applied in two
dimensions. In our method, we first select significant points
in the data, and use them to create a 3D tetrahedralization.
The tetrahedrons of the tetrahedralization are used as cells for
a linear interpolation spline that gives an approximation of
the original image. The compression is done by storing the
positions of the vertices of the tetrahedralization and the
values there instead of the value of the approximation at each
grid point. We introduce a novel concept of using a smoothed
version of the original image to improve the quality of the
approximating spline. To increase the efficiency of the
algorithm, we combine it with a refinement/decimation
technique. We compare our compression technique to
JPG2000 3D. We show that our algorithm performs similarly
to, and in some cases even outperforms it, for high
compression ratios. Our approach gives images that have
significantly different properties than ones created using
wavelets, and have the potential of being more suitable for
some applications. In addition, this type of compression is
particularly suitable for visualization.

1 Introduction

Volumetric data sets are being created and used much more
frequently in the recent years since the appearance of more
powerful computers and the fall in prices of equipment that
can gather and digitalize data of this type. With the increased
resolution of the images the volume of data has become
tremendous. For example, to store a three dimensional data
set whose dimension is equal to 1024 in each direction, and
whose voxels are bytes, we need one gigabyte. This shows us
the necessity of compression for volumetric data.

In this article we shall present a lossy 3D compression
method for volumetric images. New compression algorithms
for 3D data have been developed by adapting existing 2D
methods. Previously, the Discrete Cosine Transform (DCT)
has been extended to be used for the compression of
volumetric data [2,22]. Currently, the most effective

algorithms for compression of volumetric data use wavelets in
three dimensions [4,5,18]. Wavelet compression of
volumetric data has been standardized and is in part 10 of
JPG2000 [20].

A completely different approach to the compression of 2D
images is to approximate them using piecewise linear splines
based on a triangulation. The compressed image file then
contains only the vertices of the triangles and the values at the
vertices [7,8,12,16]. The decompression consists of
decompressing the vertices and their corresponding values,
then carrying out a linear interpolation of the values to the
pixel locations. This technique first determines the significant
points of the image in the sense that they represent the
geometry. We define a significant point to be a pair: the
position and the corresponding value. Later these points are
used to create a triangulation, and a linear spline which is an
approximation of the image. In the cases where very high
compression ratios are needed, the use of this type of method
gave results that are equivalent to or even better than the
standard JPG2000 [13]. This method has been extend to the
third dimension for application on video data [9].

In this paper, we present an extension of this compression
method using data dependent triangulations to the third
dimension. The method is developed for gray scale 3D
images. It is fully defined by giving a method for vertex
selection, creation of linear splines and a coding system for
storing the selected significant points.

To accelerate convergence, we introduce a novel concept of
using a smoothed version of the original image to improve the
quality of the approximation. This approach to compression
has the additional advantage that visualization is accelerated.
To visualize a compressed image, it is not necessary to
decompress the entire image, since many visualization
routines require only the vertices of the tetrahedrons and the
values there, not all of the voxel values.

In 3D, instead of using triangles for creating linear splines, we
use tetrahedrons. We have extended Silva’s refinement
algorithm [7] previously used on mammographic medical
images to the third dimension. We further improve the quality
of the approximation spline by adding a correction method for
the values corresponding to significant points by taking into
account a smoothed version of the original image. To increase
its efficiency, we have combined it with the

2

refinement/decimation technique as proposed by H. Pedrini
[15]. To make this possible, due to the great increase of
calculation time when the problem is solved in the third
dimension, we have developed a new approximate method for
selecting those points which should be removed. We show
that this approach applied to volumetric data compression
gives results that are comparable and in some cases even
better that the 3D version of JPG 2000 in terms of peak signal
to noise ratio for high compression ratios. The compressed
images have significantly different properties than ones
created by wavelets which can make them more suitable for
some applications.

The paper is organized in the following way. In the second
section we give an introduction to creation of three
dimensional data dependent tetrahedralization. In the next
section we give details of the combined image approach that
improves the quality of tetrahedralization. In the fourth
section we explain the adaptation of the
refinement/decimation technique for selection of significant
points. In the next section, we give a short overview of the
complete algorithm. In the fifth section we compare our
method to Silva’the three dimensional version of JPG2000
and, finally, in the last section, we draw some conclusions.

2 Three dimensional data dependent
Tetrahedralization

Two dimensional images in computer graphics are most
commonly defined as discrete scalar fields :I C with
a domain {0,..., } {0,..., }i j   , as a regular grid of

width i and the height j into the color space C. In the case of
three dimensional data, {0,.., } {0,.., } {0,.., }i j k   

where k is the depth of the regular grid. In this paper we focus
on gray scale images where C is {0,.., 2l -1}. We use the term
significant point for a pair consisting of position and value,
which is (x,y,value) in two dimensions and (x,y,z,value) in
three dimensions. A tetrahedralization T of the domain Ω can
be used for creating an approximation to the image I by linear
interpolation of the function values from the vertices to the
interior of each of the tetrahedrons.

In this section, we give a detailed explanation of the extension
of Silva’s algorithm for selecting significant points of two
dimensional images for creating linear approximation splines
[7] to the third dimension. In Silva’s algorithm, the basic idea
is to find a triangulation T of the domain with vertices chosen
from among the grid points such that the linear spline based
on T gives a good approximation to the data. It is only
necessary to store the significant points (in a compressed
form), because from this information, we can reconstruct the
triangulation, and thus the linear spline using Delaunay
triangulation.

To do this we shall first explain what a DT is in three
dimensions. Next we show the changes that need to be made
on the iterative algorithm for finding the significant points.
First we point out that a direct extension of the two
dimensional Delaunay triangulation can be done to the third
dimension. In it, instead of using triangles we use

tetrahedrons as basic cells. One important property of DT is
that it is unique for a set of points in which no four lie on one
circle. The Delaunay tetrahedralization now has the specific
empty sphere property, that is, the circumscribing sphere of
each cell of such a tetrahedralization does not contain any
other vertex of the tetrahedralization in its interior. These
tetrahedralizations are uniquely defined except in degenerate
cases in which five points are cospherical. Even in this case,
with some restrictions, it can be made unique [10].

Figure 1. An example of triangulation and appropriate
approximation

Silva’s algorithms start with a simple triangulation containing
a very small number of vertices to which we iteratively add
new vertices to improve the quality of the approximation.
This approach is called refinement. Opposite to this is
decimation, where we start with a very fine triangulation
containing vertices corresponding to all the pixels of the
image. Then at each step we remove the vertices that
decreases the quality of the approximation the least.
Refinement techniques in general achieve results of lower
quality but are significantly faster compared to decimation.
Note that the vertices here are always grid points.

In Silva’s algorithm, initially the four corner points of the
image are chosen as significant points. These vertices create a
triangulation consisting of the top left and bottom right
triangle. Using these two triangles, an approximation spline
L0 is created. At each step i of the algorithm, a piecewise
linear spline Li is obtained. At odd refinement steps, a new
point with the largest approximation error is selected and with
it a new triangulation and corresponding linear spline Li+1 are
created. The error for triangle t is the sum of errors of all
points p inside of it. In the case of an even iteration, the point
with the worst approximation is selected from that triangle
which has the largest error. This process is repeated until the
desired approximation quality is achieved or the maximum
number of vertices is reached. An example is given in Figure
1. In Silva’s algorithm, the values of the spline at its vertices
is always taken to be the value of the image there. In our
algorithm, we remove this restriction.

Silva’s algorithm for selecting the significant points in three
dimensions is changed in the following way. Initially we start
with a tetrahedralization using the 8 corner vertices of the
domain and tetrahedrons that a DT containing them generates.
We use the refinement approach proposed by [7]. More
precisely, we shall be switching between the globally worst
approximated point and instead of choosing the triangle with

3

the biggest error, we choose the appropriate tetrahedron. To
do this we need to define an error function for a tetrahedron ∆
at iteration i as follows

2() | () () |i i
p

E I p L p


   (1)

where I is the image.

The error function in Equation 1 represents the sum of
squares of errors over all the points inside the tetrahedron. We
use the l2 error instead of the absolute value as in the case of
two dimensions, because we are trying to minimize the peak
signal to noise ratio. We have observed in our tests, that better
results are achieved in this way.

3 Combined image approach

 In this section we present our combined image approach to
the selection of significant points of the image. We alternate
between the use of the original image and a smoothed
version. The choice of which image will be used at any step
of the algorithm, depends on the quality of the approximation
achieved by the linear spline. Our approach, also separates the
selection of position and values for a significant point

We first tried using a smoothed image obtained from applying
a Gaussian blur filter [19]. The desired effect of removing
problematic areas from the image is achieved but at the cost
of some regions of the image becoming greatly distorted.
Therefore instead of using Gaussian blur, we use the Bilateral
filter which is given in article [21]. This filter, as does the
Gaussian blur, computes a weighted average of pixel values
in the neighbourhood, but instead of just using the distance
between pixels it also takes into account corresponding
values. This way, edges are just slightly blurred while noise
reduction is achieved.

Let us define I* as the image resulting from applying the
Bilateral filter on the original image I. The initial idea was to
use solely I* instead of I in the algorithm described in the
previous section. The problem with this approach is that the
smoothed image does not approximate the original image
well. One solution to this problem is to stop using the
smoothed image when the approximation has reached a
certain level of PSNR. We avoid this problem by combining
the use of the smoothed image and the original one. This is
done by dividing the selection of a significant point into two
stages. In the first, we select the significant points position
and in the second the corresponding value. In each of these
stages we use one of the two images. We give an outline of
our method in the following pseudo code:

 Add corners of volume to DT
 I* = BilateralFilter(I)
 Ic = I*
WHILE(More Points Needed)

 IF (counter.\ mod.\ 2 == 0)
 p = MaxErrorPosition(L,Ic)
 ELSE
 p = MaxTetrahedronErrorPosition(L,Ic)

 Add p to DT

 IF (|I - LI* (p) | < |I – LI(p) |)
 L = L I* (p)
 ELSE
 L = LI(p)

 IF (PSNR(L) < α PSNR(I*))
 Ic=I*
 ELSE
 Ic=I

ENDWHILE

In the pseudo code, Ic stands for the image which is used in
the current calculations. p is a point with position (x; y; z). L
is the linear spline corresponding to the current
tetrahedralization. The function MaxErrorPosition gives us
the position of that point for which the approximation spline L
has biggest error to Ic. Similarly,
MaxTetrahedronErrorPosition gives us the maximum error
position inside the tetrahedron D with the greatest error E(D).
α is a fixed constant that regulates when we use the original
or smoothed image for the selection of a significant point.
The algorithm starts by creating a Tetrahedralization from the
8 corner points of the volume. We set Ic to be the smoothed
image I* which we use in Silva’s algorithm. As proposed by
Silva, we switch selecting between MaxErrorPosition and
MaxTetrahedronErrorPosition for selecting points depending
on whether we are adding an odd or even vertex. When the
selected position is added to the triangulation it generates a
new DT. For the new position p and DT we check which of
the values I(p) from the original or I*(p) from the smoothed
image gives an interpolation spline LI(p) or LI*(p) with higher
quality approximation to the original image. We finally add a
significant point p with a value that is equal to I(p) or I*(p),
depending on which gives a better approximation to our
tetrahedralization. Before selecting the next point we check if
the approximation function has reached a certain level of
PSNR (αPSNR(I*)). If it has, we start using the original
image I as the current image. We wish to point out that the
two approximation splines LI*(p) and LI(p) which appear in the
algorithm are easily calculated together and the calculation of
the second one does not greatly increase execution time. .

4 Refinement-Decimation

The results achieved by the above algorithm can be greatly
improved by adding decimation/refinement steps as proposed
by H. Pedrini [15]. The idea of this approach comes from the
fact that some points, at the moment they are added to the set
of significant points, greatly improve the approximation
spline but as further ones are added they may become
unnecessary in the sense that their removal would not greatly
change the quality of the approximation function. One
extreme example of generating unnecessary points using a
refinement method is shown by Garland and Heckbert [11].
So instead of just adding new points to the set at some stages
of the algorithm, we shall remove the least necessary ones.
 There are several ways of selecting points for decimation. In
the case of 2D decimation as given in [8], an exact approach

4

has been used. The vertex whose removal shall minimally
decrease the PSNR of the approximation is chosen. To do
this, we need to recalculate the triangulation and the
approximation function in the changed triangles. In the case
of two dimensions, the recalculation of the approximation
function is not a great part of the overall calculation time of
the algorithm. However, when we move to the third
dimension and use tetrahedrons instead of triangles, this part
of the algorithm becomes substantially more time consuming,
a fact which we have experienced in our experiments. A
different approach is given in [15] for the 2D version of the
problem. Instead of calculating the exact effect of removing a
point, an approximation to it is used. It consists of removing
the point whose removal will least change the approximation.

In our algorithm, we implement a mix of exact and
approximate methods for selecting which vertex shall be
removed. It is obvious that at the time a new vertex is added
we can easily see what will be the effect of its removal on the
quality of the approximation. The error corresponding to
vertex p can be seen as the sum of errors of all the
tetrahedrons that are incident to it. The other tetrahedrons are
not influenced by p. In Equation 2, we give the error
connected with vertex p that is added as the n+1-st vertex of
the tetrahedralization.

1

1 1() ()
n

n nE p E


 


  (2)

Here En+1 represents the error functions, Γn+1
 represents the

set of tetrahedrons that vertex p is incident to when n+1
significant points have been selected. At this stage it is
necessary to calculate all En+1(Δ) for all tetrahedrons inside
Γn+1 to prepare the next step of the refinement algorithm. We
shall define the error that corresponds to p at step n in
Equation 3

() ()
p
n

p
n nE p E







  (3)

In Equation 3, Γp-
n is the set of all the tetrahedrons that are in

conflict with, or in other words their circumscribing sphere
contains, p in the DT without p. This DT is exactly the
tetrahedralization at step n. All the values of Ep-

n(D) are
known before adding p so Ep-

n (p) is easily calculated. From
the definition of the Delaunay tetrahedralization we know that
volume Γp-

n is equivalent to Γn+1. So the effect of removing p
from the tetrahedralization is the following.

1(, 1) () ()p
n nErrorChange p n E p E p
   (4)

ErrorChange gives us the the effect of removing p at step
n+1. We wish to emphasize that the ErrorChange does not
use the absolute value since removal of a point can in some
cases even improve the approximation.
 The problem is that when adding the point p, its neighbors
are also affected due to the re-tetrahedralization that occurs.
The current error for a neighboring point q is easily calculated
using Equation 2, since all the En+1 are known. To get the
exact value of Eq-

n (q) we need to recalculate the
tetrahedralization that exists after removing q and the
corresponding approximation. This recalculation is as
complex as the one for adding p and it needs to be done for

all the neighbors. This makes it very inefficient. We avoid
this by using an approximation of the error at previous step
Eq-

n (q). This is done in the following way. Let us say q has
been added at step m+1. At this moment it was easy to
calculate the error Eq-

m (q). This value is stored. Let us define

1

1() ()
n

n p 





  (5)

In Equation 5, μ(Δ) represents the volume of the tetrahedron
Δ. μn+1(p) is the volume that is connected to a vertex p at step
n+1 which is equal to the sum of volumes of all the
tetrahedrons that are connected to it. Using μ we define the
following approximation for ()q

nE q

1()
() ()

()
q q n
n m

m

q
E q E q

q




   (6)

 ()q
nE q is equal to the error Eq-

m (q) just scaled to the new

volume to which q is connected at step n+1. Now we shall
remove vertices that have the minimal approximated error
change, given in Equation 7, from the tetrahedralization.

*
1(, 1) () ()p

n nErrorChange p n E p E p
    (7)

5 Algorithm overview

The complete algorithm proceeds as follows. We first
initialize the DT by adding the corner vertices of the brick
that represents the data. We set the number of vertices that
shall be decimated to half of the maximal size of our
significant point set. In the main loop, we add vertices to the
DT using the combined image approach until we reach the
maximal allowed number of vertices. When we reach this
number, we remove NumOfDecimation vertices from the
significant point set. We set NumOf Decimation to its half and
repeat this process until no vertex should be decimated.
Finally the significant points, which are effectively a point
cloud, were compressed using coding proposed in article [14].

The software is written in C++. In it, the calculation of the
three dimensional DT is done using CGAL (Computational
Geometry Algorithms Library) which is an open source
project that provides efficient and reliable geometric
algorithms in the form of a C++ library [1].We have
conducted our tests on data sets that are a part of The Volume
Library assembled by Stefan Roettger [17]. This library is a
collection of CT Scans, MRI Scans, Laser scanning
microscopy and computer generated data sets which have
been taken from several industry and academic sources. We
compare our algorithm to JPG2000 3D (Part 10 - JP3d) which
is an extension of JPG 2000 for three dimensional data. In our
tests, we have compared the achieved PSNR for a fixed
number of bits per voxel for JPG 2000 3D and our method.
We also analyze the effect of our improvements on the direct
extension of Silva’s algorithm [7].

5

6 Results and Discussion

In this section, we evaluate the effectiveness of using the
previously given tetrahedralization algorithm for compression
of volumetric data.

Our results are contained in Table 1 which compares the
PSNR obtained when compressing to 0.03125 bits/voxel for
Silva’s method, for our method without using a smoothed
image, for our method using a smoothed image and for
JPEG2000/3D.

Previous research, done for two dimensional images, has
shown that compression methods that use triangulation for
creating approximating linear splines are most effective when
very high compression ratios are desired [12]. Because of
this, in our experiments, we choose 0.03125 bits per voxel.
This bit rate was the minimal one used in [18]. We can see the
results on various test images in Table 1.

Table 1. Comparison of Peak Signal to Noise Ratio archived
by JPG2000/3D and Delaunay tetrahedralization methods on
different data sets using 0.03125 bits per voxel

The decimation improvement has shown its effectiveness in
all the tested cases and shows an increase of PSNR compared
to the direct extension of Silva’s method in average from
34.05 to 34.64. The combination of decimation and the
combined image approach would further increase the value of
PSNR and in average it would be 35.53. Only in the case of
BluntFin, did the use of a smoothed image not improve the
PSNR when it was combined with decimation. The reason for
this is that the original image is very smooth which means
there are no problematic regions and further smoothing only
distorts the image. This type of case can easily be recognized
and avoided since the PSNR of the smoothed image is very
high. Contrary to this in images that have a high level of
discontinuity, like spheres and Daisy, the positive effect of
this improvement is more evident. Our method in average
does not perform as well as the JPG 2000 3D when PSNR is
observed. But in some cases, it is more effective. In the case
of 0.03125 bits used per voxel the difference in PSNR is
relatively small 35.53 compared to 36.09. We have observed
that the source of the error is significantly different for our
method and JPG 2000. In our observation of we have noticed
that in the case of JPG 2000 3D the error is small over the

whole image, while with our method the error greatly varies
from zero in some areas while being very high in others.

In the case of smaller sized images (Dti-fa, Dti-md, Spheres)
when both improvements have been applied, the PSNR that is
achieved even outperforms JPG 2000 3D. This can be
explained by the fact that the number of bits needed to store a
significant point depends on the image size. Because of this, a
higher proportion of number of significant points to image
size can be achieved for smaller images for the same number
of bits per voxel, while in the case of wavelets no similar
relation exists.

In many of the uses of volumetric data, it is visualized. In
some cases this would be interactive. For this type of
application, our method can prove to be more efficient than
wavelet based methods. When visualizing compressed
volumetric data in 3D, we first need to uncompress all the
values in the grid and later apply one of the standard
rendering methods. These methods are usually very slow due
to the fact that a large amount of data needs to be processed.
As for using triangles when rendering surfaces, it is possible
to optimize the rendering of volumes using tetrahedrons. An
overview of advantages of using tetrahedrons for different
rendering techniques can be seen in the survey article [6].
This type of rendering is suitable for our compression method
since it is based on tetrahedrons and secondly that full
decompression is not needed but only the decompression of
the vertices and the values.

7 Conclusion

In this paper we have presented a promising new method for
compressing volumetric data that is based on the use of
Delaunay tetrahedralization combined with linear splines. It is
an extension of a known two dimensional refinement
technique to the third dimension. We have given a detailed
explanation of the changes that appear compared to the two
dimensional problem. We improved the quality of the
approximation spline by combining the use of original data
with a smoothed version of it. This concept can also be
applied to 2D images. Further, we have introduced a method
that greatly decreases the calculation time needed for
selection of significant points that should be removed when
decimation steps are added to the basic algorithm.

 We have compared our compression method to JPG 2000 3D
on a variety of different data sets. In cases where very high
compression ratios are desirable, our method has given results
of similar, in some cases even better, quality when PSNR is
observed. The artifacts that appear in the compressed image
have different properties than the ones that appear when using
JPG 2000 3D. Because of this difference, it could be more
suitable for certain types of data. An additional advantage of
our method is that the compressed data is actually a
tetrahedralization of the original image which makes it more
suitable for visualization, especially since full decompression
is no longer needed. We believe that the results achieved, can
be further improved by adapting some of the more complex
methods that have been developed for two dimensional
images

File
Delaunay JPG2000

3D Silva Dec Dec+Com
Dti-fa 30.00 30.45 31.92 31.59
Dti-md 36.70 37.21 37.84 34.51
Spheres 29.81 30.35 31.88 31.48
BluntFin 44.54 45.75 45.57 46.96

Daisy 34.72 35.12 37.84 37.51
Orange 29.60 30.21 31.14 33.31
Tomato 33.44 34.25 35.43 37.31
Baby 30.81 31.19 31.42 32.86

Vismale 32.44 33.03 33.10 34.06
Engine 38.35 38.79 39.17 41.39

AVERAGE 34.05 34.64 35.53 36.09

6

References

[1] Cgal, Computational Geometry Algorithms Library.
2010; Available from: http://www.cgal.org.

[2] G.P. Abousleman, M.W. Marcellin, and B.R. Hunt,
Compression of hyperspectral imagery using the 3-D
DCT and hybrid DPCM/DCT. Geoscience and Remote
Sensing, IEEE Transactions on, 1995. 33(1): p. 26 -34.

[3] S. Ait-Aoudia, F.-Z. Benhamida, and M.-A. Yousfi,
Lossless Compression of Volumetric Medical Data, in
Computer and Information Sciences, ISCIS 2006. 2006,
Springer Berlin / Heidelberg. p. 563-571.

[4] H. Benoit-Cattin, et al., 3D medical image coding using
separable 3D wavelet decomposition and lattice vector
quantization. Signal Processing, 1997. 59(2): p. 139 -
153.

[5] A. Bilgin, G. Zweig, and M.W. Marcellin, Three-
Dimensional Image Compression With Integer Wavelet
Transforms. Appl. Opt., 2000. 39(11): p. 1799-1814.

[6] P. Cignoni, C. Montani, and R. Scopigno, Tetrahedra
Based Volume Visualization, in Mathematical
Visualization, Algorithms, Applications, and Numerics.
1998, Springer Verlag. p. 3-18.

[7] L.S. da Silva and J. Scharcanski, A lossless compression
approach for mammographic digital images based on
the Delaunay triangulation, in Image Processing, 2005.
ICIP 2005. IEEE International Conference on. 2005. p.
II - 758-61.

[8] L. Demaret, N. Dyn, and A. Iske, Image compression by
linear splines over adaptive triangulations. Signal
Processing, 2006. 86(7): p. 1604 - 1616.

[9] L. Demaret, A. Iske, and W. Khachabi, Sparse
Representation of Video Data by Adaptive
Tetrahedralizations, in Locally adaptive filters in image
and signal processing. 2010. p. 197-220.

[10] T.-P. Fang and L.A. Piegl, Delaunay triangulation in
three dimensions. Computer Graphics and Applications,
IEEE, 1995. 15(5): p. 62 -69.

[11] M. Garland and P. Heckbert, Fast Polygonal
Approximation of Terrains and Height Fields. 1995,
Computer Science Department, Carnegie Mellon
University.

[12] B. Lehner, G. Umlauf, and B. Hamann, Image
Compression Using Data-Dependent Triangulations, in
Advances in Visual Computing. 2007, Springer Berlin /
Heidelberg. p. 351-362.

[13] B. Lehner, G. Umlauf, and B. Hamann, Survey of
techniques for data-dependent triangulations, in GI
Lecture Notes in Informatics, Visualization of Large and
Unstructured Data Sets. 2007. p. 178-187.

[14] T. Lewiner, et al., GEncode: Geometry-Driven
Compression in Arbitrary Dimension and Co-
Dimension, in SIBGRAPI. 2005. p. 249 - 256.

[15] H. Pedrini, An Improved Refinement and Decimation
Method for Adaptive Terrain Surface Approximation, in
WSCG. 2001. p. 103-109.

[16] V. Petrovic and F. Kuester, Optimized Construction of
Linear Approximations to Image Data. Computer

Graphics and Applications, Pacific Conference on,
2003: p. 487.

[17] S. Roettger. The Volume Library. 2006; Available
from:

 http://www9.informatik.uni-erlangen.de/External/vollib/.
[18] P. Schelkens, et al., Wavelet coding of volumetric

medical datasets. Medical Imaging, IEEE Transactions
on, 2003. 22(3): p. 441 -458.

[19] L.G. Shapiro and G.C. Stockman, Computer Vision.
2001: Prentence Hall. 137-150.

[20] D.S. Taubman, M.W. Marcellin, and M. Rabbani,
JPEG2000: Image Compression Fundamentals,
Standards and Practice. Journal of Electronic Imaging,
2002. 11(2): p. 286-287.

[21] C. Tomasi and R. Manduchi, Bilateral Filtering for
Gray and Color Images, in ICCV-98. 1998, IEEE
Computer Society: Washington, DC, USA. p. 839.

[22] A.M. Vlaicu, et al., New compression techniques for
storage and transmission of 2D and 3D medical images,
in Advanced Image and Video Communications and
Storage Technologies, N. Ohta, H.U. Lemke, and J.C.
Lehureau, Editors. 1995, SPIE: Amsterdam,
Netherlands. p. 370-377.

