
Abstract

Cuckoo Search is one of the recent swarm itelligence metaheuritics. It
has been succesfuly applied to a number of optimization problems but is
stil not very well researched. In this paper we present a parallelized ver-
sion of the Cuckoo Search algorithm. The parallelization is implemented
using CUDA architecture. The algorithm is significantly changed compared
to the sequential version. Changes are partialy done to exploit the power of
mass parallelization by the graphical processing unit and partialy as a con-
sequence of the memory access restrictions that exist in CUDA. Tests on
standard benchmark functions show that our proposed parallized algorithm
greatly decreases the execution time and achieves similar or slightly better
quality of the results compared to the sequential algorithm.
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1 Introduction
In recent years a wide range of nature inspired algorithms has been developed for
solving hard optimization problems. Among such algorithms swarm intelligence
is becoming prominent. Swarm intelligence is collective behavior of decentral-
ized, self-organized systems. A wide range of animal and insect species like fish,
birds and ants exhibit this type of behavior where many extremely primitive indi-
viduals exhibit remarkable collective intelligence and by doing so greatly increase
their chance of survival in nature.

Swarm intelligence has inspired the development of many metaheuristics for
solving hard combinatorial as well as continuous optimization problems. They
include Ant Colony Optimization [1], Particle Swarm Optimization [2], Artificial
Bee Colony Optimization [3] etc. with numerous improvements [4], [5], [6].

A new and very promising member of the swarm intelligence metaheuris-
tics family is the Cuckoo Search (CS) algorithm which mimics the behavior of
the brood parasites [7][8]. It has not yet been thoroughly researched, but there
have already been successful applications to many different problems like com-
ponent design[9], training neural models [10] [11], mesh optimization [12], test
data generation[13], etc . There have also been several attempts to improving its
performance by adding changes to the basic algorithm [14], [15], [16], [17] or by
taking special consideration to the generation of the initial population [18]. One
of the most successful is the Cuckoo Optimization Method but it has a significant
increase in algorithm complexity [19].

Closely related to swarm intelligence algorithms are different types of older
evolutionary algorithms that are also population based. Many of the concepts
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used to improve performance of evolutionary algorithms can also be applied to
ones based on swarm intelligence. One of the common problems is transition
from global to local search i.e. moving from wide search to a fine one localized
near already found good solutions [20], [21]. Another approach to improving the
performance of population based algorithms is hybridization that combine more
than one of such algorithms [22], [23].

Population based algorithms are very suitable for parallelization. This is due
to the fact that such algorithms always contain large number of population mem-
bers each conducting very similar tasks. It has been shown that even superlinear
improvement compared to the sequential version of the algorithm can be achieved
[24] by using the island based approach where separate colonies are executed in
parallel.

Until recently massive parallelization has been reserved for supercomputers
only, however nowadays with the development of the powerful Graphic Proces-
sor Units (GPU) it become available even on average personal computers. The
GPU has evolved into a highly parallel, multithreaded, manycore processor with
tremendous computational power and very high memory bandwidth. Several tools
have been created for developing software exploiting the power of the GPU like
NVIDIAs CUDA (Compute Unified Device Architecture) [25], Khronos Groups
OpenCL (Open Computing Language) [26] and Microsoft DirectCompute which
is a part of Microsoft DirectX [27].

In this paper we focus on the parallelization of the Cuckoo Search algorithm
on the GPU using CUDA. Previously the parallelization of the CS has been done
using multi-core processors [28], but that approach yields much lower number
of threads that are executed simultaneously, compared to the possibilities of the
GPU.

In our algorithm parallelization is used on three levels. First, parallel reduction
is used to speedup the calculation of the fitness function for colony members.
Second, all members of one colony are calculated in parallel in one block which
contains several threads. Finally, several colonies are run in parallel in separate
thread blocks.

The developed algorithm has been designed in a way to comply with CUDA
memory access restrictions. We show in our tests that proposed approach greatly
increases the speed of calculation giving similar or slightly better quality results
compared to the sequential algorithm. Slightly better quality results are achieved
even though we only parallelized the basic version of the algorithm and did not
introduce any communication among parallel entities, which would be another
possibility. The improvement is due to more systematic exploration.
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The rest of the paper is organized as follows. In the next section the sequential
Cuckoo Search algorithm is presented. The parallel version of this algorithm is
presented in the following section. In the final section, experimental results and
discussion are presented.

2 Cuckoo Search
Cuckoo search (CS) is an optimization algorithm that has been inspired by the
brood parasitism of some cuckoo species. Cuckoos lay their eggs in the nests of
other host birds (of other species). The shape and color of the cuckoo eggs have
evolved to mimic the ones of the host. If a host bird discovers that the eggs are
not their own, it will either throw these alien eggs away or simply abandon its nest
and build a new one elsewhere. If the cuckoo eggs hatch, the cycle is repeated.

This type of behavior has been converted to a meta-heuristic called Cuckoo
Search in the following way. Each egg in a nest represents a solution, and cuckoo
egg represents a new solution. The idea is to create new, similar and potentially
better solutions (cuckoos) to replace the not-so-good solutions in the nests. In the
simplest form, each nest contains one egg.

CS is based on three idealized rules:

1. Each cuckoo in the colony lays one egg (solution) at a time, and dumps it in
a randomly chosen nest.

2. The best solution will be carried to the next generation.

3. The number of available hosts nests is fixed, and the egg laid by a cuckoo is
discovered by the host bird with a probability pa. The discovering (discard-
ing) operation is only done on some set of worst nests.

These rules can be converted to the standard CS algorithm given in the follow-
ing pseudo code:

Objective function: f(X), X = (x1, x2, .., xd)

Generate an initial population of n host nests;
while (t < MaxGeneration) or (stopcriterion) do

Get a cuckoo randomly (say, i) and replace its solution by performing Levy
flights;
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Evaluate its quality/fitness Fi

Choose a nest among n (say, j) randomly;
if Fi < Fj then

Replace j by the new solution;
end if

A fraction (pa) of the worse nests are abandoned and new ones are built;
Keep the best solutions/nests;
Rank the solutions/nests and find the current best;
Pass the current best solutions to the next generation;

end while
Levy flight is of essential importance for the CS algorithm, it is performed

using the following equation:

Xi(t+ 1) = Xi(t) + α
⊗

Levy(λ), (1)

where α (α > 0) represents a step size. This step size should be closely related
to the scale of the test function that the algorithm is applied on. In most cases,
α can be set to the value of 1. Equation 1 basically represents a stochastic equa-
tion for a random walk which is a Markov chain. In it the next position (status)
is dependent of two parameters: the current position (Xi(t)) and probability of
transition (α

⊗
Levy(λ)). The product

⊗
is used for entry-wise multiplications.

It has been shown that the use of Levy flight is much more efficient in exploring
the search space as its step length is significantly longer when a large number of
steps is performed compared to a simple random walk. The random step length
is drawn from a Levy distribution which has an infinite variance with an infinite
mean:

Levy ∼ u = t−λ , λ ∈ (0, 3] (2)

The consecutive positions generated through steps / iterations of a cuckoo,
create a random walk process which obeys a power-law step length distribution
with a heavy tail.

As presented in this pseudo code, the first step is to generate the initial popula-
tion (set of random solutions). In the main loop of the algorithm one new solution
Fi is generated using Levy flight (a heavy tailed random walk) from the appro-
priate nest i. This new solution is compared to a solution that corresponds to a
randomly selected nest j and if the newly generated solution Fi is better, the nest
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becomes the same as i. This step is used to focus the search in more promising
areas of the solution space. The final part of the main loop is used to diversify the
search of the colony to new regions. This is done by changing the positions of pa
fraction of the worst nests using Levy flight. The Levy flight step in this stage,
has a greater base step (multiplied by a scalar), compared to the one that is used
when new cuckoos are generated to avoid trapping in local optimal solutions.

Some of the main advantages of CS compared to other population based meth-
ods is that it is relatively easy to implement and it has a very small number of
parameters that control the method.

3 Parallelization of CS
In the parallelization of CS we consider its use on finding minimal values for
standard tests like the Sphere, Rosenbrocks valley, Schwefels and other functions.
These functions are mostly given in the form of the sums of functions on its ele-
ments. This makes it possible to greatly increase calculation speed using parallel
reduction.

3.1 Analysis
When analyzing the sequential CS algorithm we notice two parts of it that are not
natural to parallel algorithms. First is the generation of one new solution Fi from
nest i and comparing it to a single solution Fj that corresponds to nest j. In the
sequential algorithm this is done to minimize the number of calculated evaluations
that are necessary to guide the colony to good areas of the solution space. In case
of a parallel algorithm in which separate threads are dedicated to individual nests
this is not an advantage for the calculation speed. The reason for this is that if the
fitness function is calculated only for one nest (thread), a high level of divergence
exits amongst threads. This in practical applications means that during this step
all but one thread will be idle.

The second problematic part in the CS is the sorting of solutions corresponding
to nests, and leaving the worst pa fraction. In case of a parallel algorithm it is more
natural to use a partial parallel reduction for the maximization problem. If parallel
reduction is stopped at the third step we know that all the values that have passed
to this stage are greater than at least 3 elements which means they have a high
probability of belonging in the worst 25%. This makes them suitable for change
using Levy flight as explained in previous section. We wish to point that it is not
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of essential importance in the CS that the worst pa faction has been abandoned
since this stage is just used for diversification of the search. What is important
is that the best solution is passed to the next generation and that some ”relatively
bad” nests are abandoned which is achieved with this reduction approach.

3.2 Implementation
The first step in implementing the parallel CS algorithm is to divide the calcula-
tions into separate threads. To do this using the GPU with CUDA architecture,
we need to follow the organization of threads and memory that exist in it. In
CUDA a group of threads are organized in thread blocks which have access to fast
shared memory, an these blocks are organized into a grid. The separate blocks
can communicate using global memory which is slow compared to the shared
one. Because of this the threads are organized in the following way: separate
memory blocks are dedicated to separate colonies since there is not much need
for communication between them.

As mentioned in the previous section, for a single colony we wish to be able to
calculate the fitness function using parallel reduction. On the other hand we wish
to be able to calculate several nests at the same time. To achieve this we shall
dedicate n threads to each of the m nest inside of the colony. The organization of
threads in the proposed parallel algorithm can be seen in Figure 1.

Figure 1: Organization of threads in the GPU. Left - Different thread blocks are
dedicated to separate colonies. Right - In a single block (colony) each row is
responsible for calculating the fitness function of a single nest

As previously mentioned, in the parallel version of the algorithm it is not an
optimal approach to just select one random nest i with solution Fi and compare it
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to another random nest j and it’s solution Fj , and if Fi is better replace j with i.
It is much better to do this for a higher number of nest pairs. There are to main
problems when this is attempted, bank conflicts and a very high speed of losing
diversity.

In our implementation we solve the problem of bank conflicts in the following
way. We consider a bank conflict if we have two pairs (i1, j) and (i2, j) which try
to write to the same location j. In the sequential CS algorithm we use one pair of
nests (i0, j0), and check if the fitness function corresponding to nest i0 is greater
than the one of j0. In the case of the parallel version of the algorithm we wish
to do the same with several pairs of (ik, jk) and avoid bank conflicts. A second
requirement for the selected pairs is for them to be relatively random. The pairs
will be generated in the following way, first we shall use one random variable α
from which two variables will be generated using Equations 3, 4.

Offset = α2 mod BlockSize (3)

Dist = 1 + (α3 mod
BlockSize

2
) (4)

VariableBlockSize is used to specify the number of nests existing in a colony.
Variable Dist is used to define the distance (difference in nest indexes), more
precisely a pair will be defined (k, (k+ dist)%BlockSize). Finally the nests that
will be used for the initial indexes k of the pair will be the ones that satisfy the
following equation

(k +Offset)/Dist) mod 2 == 0 (5)

In Equation 5 variable Offset is used to randomize the selection of the first
element of the pair.

In the CS algorithm for the initial nest k, in the pair, a new test position X∗
k

is generated and the corresponding fitness function F ∗
k is calculated. We compare

this value to the value of the fitness function of the second element of the pair
Fk+Dist, if it is better the nest position Xk+Dist is overwritten by X∗

k . It is obvious
that if at each iteration of the algorithm there is a large number of pairs, or in other
words a large number of positions (solutions) that are overwritten, the diversity of
solutions in the colony will disappear very quickly. This has a consequence that
the colony is easily trapped in local optimal solutions. Because of this effect, in-
stead of overwriting a solution we will generate new test ones using the following
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formula.
Xk+Dist = pX∗

k + (1− p)Xk+Dist (6)

In Equation 6 p is a fixed constant from the interval (0, 1). When using this
approach it is important not to loose good newly generated solutions. In the case
that Fk > F ∗

k , the nest position Xk needs to be overwritten by X∗
k .

To better understand this approach we give the following pseudo code that is
executed by an individual thread.

i - thread index gives index in vector Xj(x1, x2...)
j - thread index defines which nest or parameter Xj

Load all Xj to shared memory
syncthreads();

Calculate initial function values Fj
using parallel reduction for nest(row of threads)
syncthreads();

while (Not All Evaluations Done) do

calculate levi flight step Sj
X∗
j = Xj + Sj

Check Bounds
syncthreads();

Calculate F ∗
j = F (X∗

j ) using parallel reduction for nest(row of threads)
syncthreads();

if (F ∗
j < Fj) then

Xj = Xj + Sj;
end if
syncthreads();

Use partial parallel reduction for maximum of all Fj (column of threads)
for all nest has passed reduction do
Xj = Xj + d ∗ Sj
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end for
syncthreads();

Get block level random variables Offset and Dist

if ((j +Offset)/Dist) mod 2 == 0) then
if (Fj+Offset < F ∗

j ) then
Xj+Offset = p ∗Xj+Offset + (1− p) ∗X∗

j

end if
end if

syncthreads();
end while

copy all Xj from shared to Output memory
In the presented pseudo code operations similar toXj = Xj+Sj represent the

appropriate operation that is done by the thread, more precisely the thread (i, j)
will execute the following Xj[i] = Xj[i] + Sj[i]. This notation has been chosen
to have a more clear pseudo code. The parameter d appearing in the pseudo code
represents a scalar value greater than 1, that is used to generate new solutions that
are far from existing ones to avoid trapping in local optimal solutions.

4 Tests and Results
In this section we compare the performance of the sequential and proposed CUDA
implementation of the CS algorithm. Both algorithms are implemented using
Microsoft Visual Studio 2010 combined with CUDA version 4.0 for the paral-
lel implementation. The calculations have been done on a machine with Intel(R)
Core(TM) i7-2630 QM CPU @ 2.00 Ghz, 4GB of DDR3-1333 RAM, with Nvidia
GTX 540M 1GB graphics card running on Microsoft Windows 7 Home Premium
64-bit). The graphics card had 96 CUDA Cores.

Due to the restraints given by the amount of shared memory that a thread block
can efficiently use, the size used in our implementation is 25x16. The optimal size
of the blocks has been calculated using the CUDA occupancy calculator [29]. The
block size means that each colony had 25 nests and that 16 threads are dedicated
to each nest. In our tests we first compare the quality of results, to verify that the
proposed approach does not degrade the performance. In the tests we have used
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only three of the simpler benchmark functions for which there is no necessity for
fine tuning of the algorithm which is common in the improved versions of the CS.
We do this since the goal of our proposed approach is to significantly increase the
calculation speed and not the improvement of the quality of results compared to
the sequential CS.

The sequential CS algorithm that is used for comparison is presented in the
article [7]. The tests are done on the standard test functions Sphere, Rosenbrocks
valley, Schwefel having 5, 10 and 16 parameters. In Table 1, we present the
average and best found solutions for 25 independent runs of the algorithm with 10
000 evaluations for each test function. The values for the sequential algorithm are
calculated using the Matlab code provided by Yang which has also been used in
article [7].

Table 1: Comparison of quality of results achieved by sequential and parallel CS
algorithm.
Function Number

of
Parallel CS Sequential CS

Parameters Average Stdev. Best Average Stdev. Best
Sphere 5 3.54E-05 2.88E-05 4.11E-06 9.67e-13 1.36e-12 2.71e-14
Min=0 10 0.0055 0.0110 0.0004 5.34e-4 0.0021 0.0029

16 0.0383 0.0312 0.0050 0.1356 0.0476 0.0522

Rastrigin 5 0.7926 0.7712 0.0011 2.8088 0.8766 0.6566
Min=0 10 2.787 2.069 0.111 21.962 3.896 14.583

16 6.526 3.633 1.127 58.491 5.064 50.303

Schwefell 5 -2051.39 41.52 -2092.0 -1873.1 65.1 -2037.7
Min= 10 -3615.0 144.5 -4063.5 -3.094.3 162.9 -3434.1
-
418.9*NP

16 -5224.5 289.6 -5833.6 -4272.6 239.4 -4730.1

It is noticeable that the parallel version of the CS in most of the test cases
out performs the sequential version. The parallel algorithm performs worst in
the case of the Sphere function which we believe is due to the fact that in our
implementation the step in the Levy’s flight does not decrease fast enough. The

11



expected reason for improvement is that a more diverse solutions are generated
and tested. This is due to the fact that lower quality solutions (nests) are not simply
overwritten but are used in the creation of new ones. The newly created nests are
a linear combination of the good and the lower quality solution, and in a sense
represent a transition between them. This has a consequence that in a relatively
small number of iterations, the lower quality solution will become very close to
the good one, but the space between them will be also checked. The number of
intermediate solutions checked is low enough not to decrease the effectiveness of
the basic algorithm, but provides a more systematic exploration of the solution
space.

In the second part of our experiments we analyze the calculation speed of our
parallel algorithm and the sequential one. In Table 2, we compare the time needed
for the execution of 25 CS when 100 000 function evaluations are conducted for
each of the test functions. For these tests we have implemented the sequential
algorithm given by Yang using C++.

From the results in Table 2, we can see a tremendous decrease in calculation
time of even 10-25 times. The big difference in the level of speedup 10 times in
the case of 5 parameters and 25 times in case of 16 parameters is due to the fact
of using a fixed block size in all of our tests. This has been done for simplic-
ity of implementation. In the case of smaller problems with only 5 parameters a
large number of threads would be idle during the program execution. This dra-
matic speedup is similar to the case of parallelization of the PSO algorithm given
in article [30]. This parallelization of PSO using CUDA also involves the use
of multiple threads for function evaluation for individual colony members using
parallel reduction.

5 Conclusion
In this paper we have presented a massive parallel version of the CS. The imple-
mentation is done using CUDA for execution on the GPU. The new algorithm
consists of parallelization on several levels, first numerus threads are used for
evaluating fitness function for individual nests in the colony, all the nests in one
colony are executed in parallel and finally several colonies are simulated at the
same time. The sequential algorithm has been significantly changed for its paral-
lel implementation. The new version of the CS algorithm has been able to improve
the quality of results for the same number of function evaluations. The proposed
parallel algorithm has had a significant decrease in calculation time of even 25
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Table 2: Comparison of execution speed of the sequential and parallel CS algo-
rithm for 100 000 function evaluations.

Function Number of Execution time
Parameters Sequential Parallel

Sphere 5 15.32 1.42
10 20.52 1.42
16 27.34 1.43

Rastrigin 5 17.44 1.50
10 22.21 1.50
16 33.50 1.51

Schwefell 5 19.43 1.51
10 24.45 1.51
16 35.67 1.52

times compared to the sequential CS.
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