
Parallelization of the Local Threshold and Boolean Function Based
Edge Detection Algorithm Using CUDA

Raka JOVANOVIC
University of Belgrade

Institute of Physycs
Pregrevica 118, 11000 Belgrade

SERBIA
rakabog@yahoo.com

Milan TUBA
Megatrend University Belgrade
Faculty of Computer Science

Bulevar umetnosti 29, 11070 Belgrade
SERBIA

tuba@ieee.org∗

Dana SIMIAN
Lucian Blaga University of Sibiu
Department of Computer Science

5-7 dr. I. Ratiu str., Sibiu
ROMANIA

dana.simian@ulbsibiu.ro

Abstract: In this paper we present a parallelized algorithm for edge detection for gray scale images. The chosen
method is the local threshold and boolean function based edge detection. This method differs from common edge
detectors in the use of bit map patterns instead of analyzing gradient changes in the image for edge recognition.
The parallelization is implemented on the GPU, exploiting its multithreaded, many-core processor power using
NVIDIA’s CUDA (Compute Unified Device Architecture). We show in our tests the significant speedup of paral-
lelized algorithm compared to the sequential one.

Key–Words: Image processing, Edge detection, Parallel algorithms, CUDA technology

1 Introduction
Edge detection is an important subject in image pro-
cessing, due to its importance in a wide range of appli-
cations. For instance, edge detection is often used as
a tool in pattern recognition algorithms. The problem
of edge detection/recognition is an essential part of
predictive image compression algorithms. When us-
ing one of these methods the prediction error is very
high on edges if they are not recognized which greatly
reduces the archived compression ratio.

Because of its importance several approaches
have been developed for solving this problem. Edge
detection can be developed for gray scaled or colored
images. In this article we will focus on algorithms for
gray scaled images. The Marr-Hildreth Edge Detec-
tor is a gradient based operator which uses the Lapla-
cian to take the second derivative of an image [1].
Edge detection methods have also been developed us-
ing different gradient operators like Sobol, Roberts
Cross and Prewitt [2]. The Canny Edge Detector [3]
views edge detection as a signal processing optimiza-
tion problem for which an objective function is de-
fined. It is considered as a de facto standard for edge
detection. Both of these approaches in a way analyze
the change on the image like a gradient and consider
large changes as edges. A completely different con-
cept is used in the local threshold and boolean func-
tion based edge detection [4]. In that case 3x3 blocks

∗This research is supported by Ministry of Science, Republic
of Serbia, Project No. III-44006

of the image are converted in bit blocks. Some pat-
terns appearing in the bit blocks are considered as in-
dicators of edge existence. Additional research on this
topic is in [5], [6].

A common property of all these algorithms is that
they process a significant amount of data, all the pix-
els in the image. The necessary calculations for in-
dividual pixels can be done independently to a large
extent. Because of these properties they are ideal
for parallel implementation. Massive parallelization
of algorithms has become very popular in the re-
cent years with the development of the programmable
Graphic Processor Unit or GPU, that has evolved into
a highly parallel, multithreaded, many-core proces-
sor with tremendous computational power and very
high memory bandwidth. Several tools have been de-
veloped for developing software exploiting the power
of the GPU like NVIDIA’s CUDA (Compute Unified
Device Architecture) [7], Khronos Group’s OpenCL
(Open Computing Language) [8] and Microsoft Di-
rectCompute which is a part of Microsoft DirectX [9].

CUDA has been previously used in implement-
ing a Sobol gradient based edge detector, Canny edge
detector [10] and Gabor wavelet transform edge de-
tection [11]. In this article we give details of a
CUDA based implementation of the local threshold
and boolean function based edge detection. We show
the impressive speed improvement compared to the
sequential algorithm.

The paper is organized as follows. In the sec-
ond section we present the local threshold and boolean

Recent Researches in Applied Information Science

ISBN: 978-1-61804-089-3 157

function based edge detection algorithm. In the third
section we give details of its parallelization and imple-
mentation using CUDA. In the last section tests and
results are presented.

2 The Local Threshold and Boolean
Function Based Edge Detection

This edge detector has a greatly different approach
than the most commonly used Canny’s edge detection
method. Canny’s method and a wide range of simi-
lar ones relay on the analysis of gradient properties to
determine the existence of edges, usually in combina-
tion with Gaussian smoothing for removing noise in
the image.

The Local Threshold and Boolean Function
Based Edge Detector does not rely on gradient
changes, but it converts a window of pixels into a bi-
nary pattern based on a local threshold, and then ap-
plies masks to determine if an edge exists at a certain
point or not. More precisely a pixel is considered an
edge if the acquired binary pattern corresponds to an
edge shape. Because the threshold is calculated on a
per pixel basis, the edge detector should be less sen-
sitive to variations in lighting throughout the picture.
An advantage of this method is that it does not need
any kind of smoothing to reduce noise in the image.
It instead looks at the variance on a local level. The
algorithm can be divided in the following 4 stages:

Stage 1. Convert a 3x3 window corresponding to
a pixel of the image into a bit pattern using a local
threshold. The local threshold value is recalculated
for every pixel in the image as the mean of the 9 in-
tensity values of the pixels in the window minus some
small tolerance value. Conversion of the 3x3 window
is done in the following way: if a pixel has an inten-
sity value greater than this threshold, it is set to a 1
otherwise to zero. This gives a 3x3 binary pattern that
we further analyze.

Stage 2. For each pixel, we compare its 3x3
binary pattern to patterns that correspond to edges.
There are sixteen possible edge-like patterns that can
exist for a 3x3 binary matrix, the patterns can be seen
in Figure 1. If the binary window obtained in stage 1
is equivalent to any of these sixteen matrices, the cen-
ter pixel of the window is considered to be an edge
pixel.

Stage 3. Repeat stages 1 and 2 for every pixel in
the image as the center pixel of the window. This way
all the edges are acquired. The problem at this stage
is that it will also give some false edges as a result of
noise.

Stage 4. The final step is using a global thresh-
old to remove false edges. The calculated variance for

Figure 1: Patterns of 3x3 blocks that indicate that the
center pixels is an edge

each 3x3 window, should have a maximum at an edge.
This value is compared with a global threshold based
on some image properties like the noise intensity. If
this value of some pixel, expected to be an edge, is
greater than the threshold, it is kept as an edge, other-
wise it is removed.

An interesting fact is that the boolean edge de-
tector performs surprisingly similarly to the Canny
edge detector even though the two methods use dras-
tically different approaches. Canny’s method is still
preferred since it produces single pixel thick, contin-
uous edges. The Boolean edge detector’s edges are
often spotty. In the analysis of the boolean edge de-
tector performance it has been show that it performs
better than Canny’s algorithm on computer generated
images that have sharp edges.

3 Implementation using CUDA
It is evident that, in the algorithm presented in the pre-
vious section, the calculation performed on individual
pixels, are highly independent. Because of this fact
it is very suitable for parallelization. CUDA C ex-
tends C by making it possible for a programmer to de-
fine kernel functions that, when called, are executed in
parallel by different CUDA threads, contrary to only
once in regular C functions. Because of this CUDA
is ideal for implementing this type of algorithms. The
architecture of the GPU is different compared to the
CPU in a way that each of the processing nodes has a
much smaller amount of available high speed memory
and due to the fact that they have been constructed for

Recent Researches in Applied Information Science

ISBN: 978-1-61804-089-3 158

arithmetic processing of the data. This exactly corre-
sponds to the needs of an edge detection algorithm.
In this section we give a detailed explanation how to
implement this type of algorithm using CUDA.

It is obvious that the best way of parallelization is
to create separate threads for every pixel in the image,
perform the necessary calculations and store the infor-
mation of edge existences. We can divide the imple-
mentation into two parts, the host function and the ker-
nel functions. The host function is charged with start-
ing threads and making the input/output data avail-
able to the device (GPU) since it has separate memory
from the host (CPU). The kernel function is responsi-
ble for calculations, memory management on the de-
vice and thread synchronization. The host function
implements the following steps:

1. Load InputImage to Host memory

2. Allocate InputImage memory on device

3. Copy InputImage from Host to device Memory

4. Start kernels

5. Copy OutputImage from device memory to host

6. Free allocated host and device memory.

In CUDA a large number of separate threads can
be executed in parallel. Groups of threads are orga-
nized in blocks, and all the blocks are organized in
a grids. This is done to make calculations more effi-
cient in the sense of efficient use of available mem-
ory. In CUDA there is local memory dedicated to
individual threads, shared memory that is used by
threads in a block and global memory is available to
all the threads. Shared memory is expected to be much
faster than the global one; because of this kernel func-
tion can significantly improve performance if a major-
ity the data needed for threads can be accessed from
shared and local memory.

For convenience, all threads in CUDA have
ThreadIdx, a three dimensional vector, that makes it
possible for individual threads to identify themselves
in a one, two or three dimensional blocks. Similarly
a BlockIdx is used to identify a block inside of a grid.
This makes implementation of an image processing
filter like an edge detector easy, since we can connect
a thread with a pixel(X,Y) in the image in the follow-
ing way:

blockIdx.x ∗ blockDim.x+ threadIdx.x = X (1)
blockIdx.y ∗ blockDim.y + threadIdx.y = Y (2)

In the local threshold and boolean function based
edge detector, each thread needs to have access to the
value of the corresponding pixel in the image and all
of its neighbors. As previously mentioned, shared
memory should be faster than the global one; because
of this our kernel function needs to have the required
pixel values available from the local memory. In Fig-
ure 2 we can see an example of pixels being processed
and the values needed to be stored in the shared mem-
ory.

Figure 2: Left: image section that is being processed
by thread block, Right: Image section that is being
loaded to block’s shared memory

The kernel function that processes individual pix-
els can be illustrated by the following pseudo code.

Calculate from block and thread Ids
ImageCoord(iX, iY)
SharedCoord (bX, bY)

Copy pixel value to block shared memory (Image-
Shared)

if (isBlockBorder(iX, iY)) then
Load Neighboring Values

end if
syncthreads()
OutputImage[iX,iY] = BooleanEdgeDetection(As,
bX, bY, offset)
syncthreads()

The first step to calculate the image pixel coor-
dinates, and appropriate indexes for the stored shared
memory. The next step is to copy the pixel value from
global memory to shared memory, and in case it is a
block border, pixel and its neighbors. After this it is
necessary to synchronize all the threads, which means
making sure all the data has been copied to the shared
memory. Now it is possible to conduct the arithmetic
operations for checking edge existence using func-
tion BooleanEdgeDetection, and storing them in a
global output array. Finally, before exiting the kernel
thread, synchronization needs to be done.

Function BooleanEdgeDetection, calculates
edge existence for individual pixels. First the 3x3
window is converted into a bit map pattern as ex-

Recent Researches in Applied Information Science

ISBN: 978-1-61804-089-3 159

plained in Section 2. A bit patterns is stored as an
integer value in a form of a bit mask containing 9
flags. Each flag stands for one position in the 3x3
matrix. The acquired bit mask is compared to pre-
defined bit masks that correspond to the 16 possi-
ble edge patterns. The use of flags has the advan-
tage of lowering the need for memory of individual
threads. BooleanEdgeDetection also implements
the removal of false edges using the global threshold.
We can see in Figure 3 an example of edges detection
using this approach.

Figure 3: Top: Lena Image, Bottom: Detected edges
using the Local Threshold and Boolean Function
Based Edge Detection Algorithm

Table 1: Comparison of execution time for a 100 rep-
etitions of sequential and parallel CUDA implemen-
tation of the Local Threshold and Boolean Function
Based Edge Detection Algorithm

Dimensions Sequential CUDA Improvement
128x128 0.078 0.0083 9.40
256x256 0.309 0.0312 9.90
512x512 1.452 0.128 11.34

1024x1024 5.968 0.528 11.30
2048x2048 20.535 1.613 12.72

4 Tests and Results

In this section we compare the performance of the se-
quential and proposed CUDA implementation of the
edge detection algorithm. Both algorithms are imple-
mented using Microsoft Visual Studio 2010 combined
with CUDA version 4.0 for the parallel implementa-
tion. The calculations have been done on a machine
with Intel(R) Core(TM) i7-2630 QM CPU @ 2.00
GHz, 4GB of DDR3-1333 RAM, with Nvidia GTX
540M 1GB graphics card running on Microsoft Win-
dows 7 Home Premium 64-bit). The graphics card had
96 CUDA Cores.

In the parallel algorithm the size of a thread block
was 32x32. In article [10], the effectiveness of CUDA
is proven by comparing the authors parallel algorithm
to the Intel Open Computer Vision Performance Li-
brary (OpenCV) that contains a CPU assembly opti-
mized version of the Canny detector, capable of mul-
tithreaded multi-core operation. In our tests, we wish
to show the level of improvement that using CUDA
gives compared to the sequential algorithm.

We have done our tests on several images of dif-
ferent sizes, ranging from 128x128 to 2048x2048. For
each image size we observe the calculation time nec-
essary for finding edges in a 100 repetitions. A single
execution of edge detection is very fast, and without
the repetitions the results would possibly be prone to
outside factors. We present our results in Table 1.

The time presented in Table 1, is given for the
processing time excluding the time for loading the
bitmap image into the computer memory. In case of
the CUDA implementation the allocation of device
memory, copying of the data to and from the device
memory is included in the calculation time. We can
see that the speedup of the CUDA implementation is
significant and is around ten times faster than the se-
quential algorithm. The improvement slightly grow
with the increase of the image size, from 9.40 in the
case of 128x128, up to 12.72 in case of 2048x2048
image.

Recent Researches in Applied Information Science

ISBN: 978-1-61804-089-3 160

This great improvement justifies the use of CUDA
for edge detection and makes it possible to conduct
this type of image processing on images of large di-
mensions.

5 Conclusion

We have presented a parallel implementation of the
Local Threshold and Boolean Function Based Edge
Detection Algorithm using CUDA. We have shown
that the use of the GPU can greatly improve the speed
of these calculations compared to sequential calcu-
lations on the CPU. In our tests it was a significant
speedup of ten times.

We should emphasize that the method used here
could be made more efficient, and it should be possi-
ble to further decrease execution time using a more
sophisticated parallel algorithms exploiting the tex-
ture memory space available in CUDA. Our experi-
ence shows that using CUDA can move even more
complex image processing algorithms to the GPU.

References:

[1] E. Nadernejad, S. Sharifzadeh and H. Hassan-
pour, Edge Detection Techniques: Evaluations
and Comparisons, Applied Mathematical Sci-
ences, Vol. 2, 2008, 2–31,pp. 1507–1520

[2] LS. Davis, A survey of edge detection tech-
niques, Computer Graphics and Image Process-
ing, Vol. 4, No. 3 1975, pp. 248–260

[3] J. Canny, A Computational Approach To Edge
Detection, IEEE Trans. Pattern Analysis and
Machine Intelligence, 1986, 8–6, pp. 679-698.

[4] M.B. Ahmad, T.S. Choi, Local Threshold and
Boolean Function Based Edge Detection, IEEE
Transactions on Consumer Electronics, 1999,
45–3, pp. 674-679.

[5] Furferi R., Governi L., Palai M., Volpe Y., Ar-
tificial vision based inspection of marbled fab-
ric, Proceedings of the 5th International Confer-
ence on Computer Engineering and Applications
CEA’11, 2011, pp. 93-98.

[6] Yuan-Hui Yua, Chin-Chen Chang, A new edge
detection approach based on image context anal-
ysis, Image and Vision Computing, Vol. 24, Issue
10, 2006, pp. 10901102.

[7] NVIDIA CUDA C Programming Guide Version
4.0, 2011.

[8] P.O. Jaaskelainen, C.S. de La Lama, P. Huerta,
and J.H. Takala, , OpenCL-based design
methodology for application-specific proces-
sors, Embedded Computer Systems (SAMOS),
2010 International Conference on , 2010,
pp. 223–230.

[9] Direct Compute Lecture Series,
http://channel9.msdn.com/tags/DirectCompute-
Lecture-Series/, 2011

[10] L. Yuancheng and R. Duraiswami, Canny edge
detection on NVIDIA CUDA, Computer Vi-
sion and Pattern Recognition Workshops, 2008.
CVPRW ’08. IEEE Computer Society Confer-
ence on, 2008, pp. 1–8.

[11] Q. Wu, Z. Fu, C. Tong and Q. Wang, The
method of parallel Gabor wavelet transform
edge detection based on CUDA, Environmental
Science and Information Application Technol-
ogy (ESIAT), 2010 International Conference on,
2010, pp. 537–540 .

Recent Researches in Applied Information Science

ISBN: 978-1-61804-089-3 161

