
Benchmark data sets for the problem of partitioning supply /

demand graphs with limited capacity

Raka Jovanovic

(This is not the final version)

On this webpage we give test instances for the Problem of Minimal Partitioning Supply/Demand Graphs

with limited capacity (MPGSD-LC). The data has been used in the article

Test Data

A Heuristic Method for Solving the Problem of Partitioning Graphs with Supply and Demand, Raka
Jovanovic, Abdelkader Bousselham, Stefan Voss, Journal of Combinatorial Optimization, DOI:
10.1007/s10878-015-9945-z

In case you wish to use this data please contact me by email at rakabog@yahoo.com, regarding

referencing and if you need help using the data.

Problem Definition

The MPGSD-CL is defined for an undirected graph with a set of nodes and a set of edges

 . The set of nodes V is split into two disjunct subsets and . Each node will be called a

supply vertex and will have a corresponding positive integer value . Elements of the second

subset will be called demand vertices and will have a corresponding positive integer value

 . The goal is to find a set of disjoint subgraphs of the graph G for a fixed

value that satisfies the following constraints. All the subgraphs in must be connected subgraphs.

Each subgraph consists of supply and demand nodes and they must have a total supply greater or

equal to its total demand. The total supply in each of the subgraphs must be no more than a fixed

limit . The goal is to maximize the fulfillment of demands, or more precisely to maximize the

following sum.

datalc.zip
mailto:rakabog@yahoo.com

Satisfying the following constraints:

An illustration of problem instances is given in the following figure:

Problem Instances

We have generated separate sets of problem instances for general graphs and trees. With the goal of

having an extensive set of test problems a wide range of graph sizes has been considered. The

generated test instances have 10-100 supply nodes and 30-1000 demand nodes. For each pair ,

number of supply and demand nodes, problem instances having a maximal number of subgraphs

 have been generated with the constraint that . For each triplet

 , 40 different problem instances have been created using different seeds for the random

generator using the following algorithm.

The first step was generating random positive integer numbers, corresponding to node

weights, with a uniform distribution within the interval [10,39]. General graphs had a total of

 random edges, with the constraint that the graph had to be connected. In case of the

second type of graphs, i.e. trees, we would simply generate a random tree for nodes.

For both types of graphs, for a problem with a maximal number of subgraphs , the next step was

to select nsub random nodes as seeds for the subgraphs (partitions). The subgraphs are grown using an

iterative method until all the nodes of the original graph are contained in one of the subgraphs. The

growth of subgraph has been performed by expanding it to a random neighboring node that does

not belong to any of the other subgraphs.

The number of supply nodes in each of the subgraph was generated using the following iterative

procedure. Initially all . At each iteration a random graph is selected and for it is

incremented by one if < |

|-1. The next step was randomly selecting nodes inside which

will be supply nodes. The total supply in such partition would be calculated using the following

formula

Tehe equation states that the total supply inside of partition is equal to the sum of weights of all

nodes inside minus the sum of weights of all the nodes selected to be supply nodes. The

following step was distributing the total supply among the nodes that have been selected to be supply

nodes. In practice this means that we randomly generate numbers having the sum . This has

been done by generating distinct random integer numbers between 0 and . These

numbers are put in an array with the addition of and , and sorted. The supply corresponding to

the i-th node was equal to . The final step was setting the maximal allowed supply in a

subgraph to the maximal value of .

For problem instances generated using the proposed method the optimal solution is known and is equal

to the sum of supplies of all the supply nodes. It is important to mention that by using the proposed

method for generating problem instances it is possible to have partitionings that do not have

subgraphs with demand nodes. This is due to the possibility that some seed nodes may be cut off from

the rest of the graph. Such partitionings have been excluded from the test data sets.

The generated test instances have been made available for download.

File Structure

Benchmark data sets are given in one zip file. The file has two folders General, Tree which hold all the

problem instances for the specific type of graphs.

In each of these folders there are pairs of “x.gpr” files which give a problem instance definition and

“x.sol” which gives the optimal solutions for this instance. The structure of the files is intuitive, but we

give the following explanation of the structure

The “gpr” files have the following structure:

“Maximum Number of Subgraphs” % line included for easy reading

NSub

“Maximum Allowed Supply” % line included for easy reading

Ms

“Number of Supply” % line included for easy reading

N % number of supply nodes

“Number of Demmand” % line included for easy reading

M % Number of demand nodes

Weights % line included for easy reading

N+M Lines consisting of one integer value. % Positive means supply node, negative demand node.

 Node Ids start from 0

Edges % line included for easy reading

N+M Pairs of lines

Edges(I) % Indicates that edges connected to I will be given next

A line with a list on integers % list of nodes to which node %I% is connected

datalc.zip

The “sol” files have the following structure:

Number Of Partitions ” % line included for easy reading

N % Number of Partitions

N Pairs of lines

SupplyNode I % line included for easy reading, Gives information that I is the supply node

A line with a list of integers % All these nodes are a part of the current partition

The files for on problem size

For each of the problem sizes there are 40 different problem instances. We have used the following file

naming convection:

“test_S_D_N.gpr”, “sol_S_D_I.sol”. Where “S” gives the number of supply nodes, “D” the number of

demand nodes, N gives the number of subgraphs and “I” the number of the instance. For example for a

graph with 10 supply nodes, and 100 demand nodes, 3 subgraphs, the 15 problem instance files would

have the following names

“test_10_100_3_15.gpr”, “sol_10_100_3_15.gpr”.

For each number N of supply nodes we have generated graphs with (N*3, N*5, N*10, N*20) demand

nodes.

