
Noname manuscript No.
(will be inserted by the editor)

A Heuristic Method for Solving the Problem of
Partitioning Graphs with Supply and Demand

Raka Jovanovic · Abdelkader
Bousselham · Stefan Voß

Received: date / Accepted: date

Abstract In this paper we present a greedy algorithm for solving the problem
of the maximum partitioning of graphs with supply and demand (MPGSD).
The goal of the method is to solve the MPGSD for large graphs in a reason-
able time limit. This is done by using a two stage greedy algorithm, with two
corresponding types of heuristics. The solutions acquired in this way are im-
proved by applying a computationally inexpensive, hill climbing like, greedy
correction procedure. In our numeric experiments we analyze different heuristic
functions for each stage of the greedy algorithm, and show that their perfor-
mance is highly dependent on the properties of the specific instance. Our tests
show that by exploring a relatively small number of solutions generated by
combining different heuristic functions, and applying the proposed correction
procedure we can find solutions within only a few percent of the optimal ones.

Keywords Graph Partitioning · Greedy Algorithm · Demand node · Supply
node

Raka Jovanovic
Institute of Physics, University of Belgrade, Pregrevica 118, Zemun, Serbia
E-mail: rjovanovic@qf.org.qa
Qatar Environment and Energy Research Institute (QEERI), PO Box 5825, Doha, Qatar

Abdelkader Bousselham
Qatar Environment and Energy Research Institute (QEERI), PO Box 5825, Doha, Qatar
E-mail: abousselham@qf.org.qa

Stefan Voß
Institute of Information Systems, University of Hamburg, Von-Melle-Park 5, 20146 Ham-
burg, Germany and
Escuela de Ingeniera Industrial, Pontificia Universidad Católica de Valparáıso, Chile
E-mail: stefan.voss@uni-hamburg.de



2 Raka Jovanovic et al.

1 Introduction

A wide range of practical problems can be efficiently represented by means
of graph partitioning. Due to this, many variations of the problem have been
analyzed which correspond to specific applications like having a balanced par-
titioning (Andreev and Räcke, 2004), minimizing the number or weight of
cuts (Reinelt et al, 2008; Barnes et al, 1988), or by limiting the number of
cuts (Reinelt and Wenger, 2010). In this paper the focus is on the problem
of maximum partitioning of a graph with supply and demand (MPGSD). This
problem is defined on a graph G, in which each node is either a supply or
a demand node. Each node v has a corresponding positive number, which is
called the supply of node v; otherwise, if v is a demand node, this value would
be called demand. Each demand node can at most receive power from one
supply node through the edges of G. The objective in MPGSD is to find a
set of disjoint connected subgraphs S of graph G, such that each of them has
exactly one supply node, whose supply is at least the sum of demands of all
demand nodes in it. The goal is to maximize the total demand that is included
in the subgraphs. Formally speaking the MPGSD is not a true partitioning
problem since not all the nodes are included in the subgraphs, but this term
has been commonly used in the published literature. One of the important
applications of this theoretical graph problem is modeling of self-adequacy of
interconnected micro-grids (Arefifar et al, 2012), although in a much simpli-
fied form. The maximum partitioning problem has been applied for several
problems in the field of power supply and delivery networks (Boulaxis and
Papadopoulos, 2002; Ito et al, 2005; Morton and Mareels, 2000; Teng and Lu,
2002).

In existing literature the main focus of research for the MPGSD has been
on theoretical aspects of the problem (Ito et al, 2008; Narayanaswamy and
Ramakrishna, 2012; Ito et al, 2005; Kawabata and Nishizeki, 2013). One di-
rection of this research was in developing methods to create relaxed versions
of the problem. Due to the complexity of the problem, the research up to
now has focused on some specific types of graphs like trees (Narayanaswamy
and Ramakrishna, 2012; Ito et al, 2005; Kawabata and Nishizeki, 2013) and
series-parallel graphs (Ito et al, 2008). An interesting approach for solving this
problem, for general graphs, is given in Popa (2013). In it an algorithm based
on the calculation of all the paths from supply nodes to demand nodes has
been developed for applications in power supply networks. Due to the fact that
all such paths need to be calculated/updated the algorithm is computationally
expensive. The proposed algorithm gives a guarantee of a 2k approximation,
where k is the number of supply nodes. The original problem has also been ex-
tended with additional properties to be more suitable for specific applications.
One such example is the parametric version of the problem, in which all the
demands and supplies are dependent of a single parameter λ for application
to power supply networks (Morishita and Nishizeki, 2013). Another extension
is the problem of minimum cost partitions of trees with supply and demand
in which a maximal capacity has been added to edges (Ito et al, 2012).



Partitioning Graphs with Supply and Demand 3

It should be noted that the MPGSD at first glance looks similar to the
capacitated p-median problem which seeks to choose p nodes as median nodes
and then assigns all the remaining nodes to one of those medians; see, e.g.,
Maniezzo et al (1998). In the capacitated version of the problem the medians
have a limited capacity but any node may be assigned to any median if the
capacity constraint allows this (in an idealized form assuming the existence
of a complete graph). For the MPGSD this is not as easy as we need to find
disjoint subgraphs connected to the (let us call them) medians observing the
capacity constraint. In a similar way we may argue when it comes to the
capacitated clustering problem; see, e.g., Scheuerer and Wendolsky (2006).
Here a given set of nodes with known demands has to be partitioned into p
distinct clusters. Each cluster is made up by a customer acting as its cluster
center. The objective is to minimize the sum of distances from all cluster
centers to all other customers in their cluster, such that a predefined capacity
limit of the cluster is not exceeded and every customer is uniquely assigned to
one cluster. As a final example for other types of somewhat related partitioning
problems consider the partitioning of the nodes of a given graph into a number
of balanced classes, while minimizing the number of cut edges between the
classes (Galinier et al, 2011).

In this paper we present a greedy heuristic approach to solving the MPGSD.
The goal of developing such an algorithm is to allow solving large scale in-
stances, which is needed when modeling real power systems especially in the
case of interconnected microgrids. It has previously been shown that heuristics
are very efficient in the case of other types of partitioning problems (Barnes
et al, 1988; Kernighan and Lin, 1970; Kim and Moon, 2004). It is important
to point out that in the existing research there is a lack of experimental re-
sults. With this work we provide such results and the code developed for the
proposed method has been made available for download.

The proposed method is based on a two stage greedy algorithm. Further,
two greedy correction procedures are developed to improve the quality of ac-
quired solutions. The paper also includes an analysis of several heuristic func-
tions that are used in the two stages of the algorithm. We wish to emphasize
that the goal of this research is to develop a method that can find good ap-
proximate solutions within reasonable computational time. Because of this the
developed algorithm does not incorporate a look ahead mechanism based on
the analysis of adding more than one node to the partial solutions at each
iteration. Although this type of lookahead frequently significantly improves
the quality of solutions acquired by greedy algorithms, this is achieved at a
significant increase of the calculation time (unless some related finetuning is
performed).

In our numeric experiments we have observed that although certain heuris-
tics have had an overall better performance, in the sense of having the best
average of found solutions, there would be a wide discrepancy when individual
problem instances are observed. Such behavior would be even more evident
when the correction procedure was included. It is a well known fact that when
having several competing heuristics for an optimization problem, it is good



4 Raka Jovanovic et al.

practice to apply all of them and simply select the best found solution. This
idea can effectively be applied for the MPGSD, since we can combine different
heuristics for each of the stages of the algorithm. In this way we can explore
a relatively small number of potentially good solutions. In our test we show
that such an approach can find approximate solutions that have an average
error of 1-5% when trees or general graphs are considered.

The paper is organized as follows. In Section 2 we define the MPGSD
more comprehensively. Then we present the proposed algorithm, with separate
subsections dedicated to each of the stages of the algorithm and the correction
procedure. In Section 4 we show the results of our computational experiments.

2 Maximal Partitioning of a Graph With Supply/Demand

In this section we give a definition for the MPGSD as a slightly modified
version of the one given in Ito et al (2008).

The MPGSD is defined for an undirected graph G = (V,E) with a set of
nodes V and a set of edges E. The set of nodes V is split into two disjunct
subsets Vs and Vd. Each node u ∈ Vs is called a supply node and will have
a corresponding positive integer value sup(u). Elements of the second subset
v ∈ Vd are called demand nodes and will have a corresponding positive integer
value dem(v). The goal is to find a set of disjoint subgraphs Π = {S1, S2, .., Sn}
of the graph G that satisfies the following constraints. All the subgraphs in Π
must be connected subgraphs containing only a single distinct supply node.
As a result we have |Vs| = n. Each of the Si must have a supply greater or
equal to its total demand. Each demand node can be an element of only one
subgraph, or in other words it can only receive ‘power’ from one supply node
through the edges of G. Note that it is not necessary for all demand nodes to
be covered by Π.

The goal is to maximize the fulfillment of demands, or more precisely to
maximize the following sum: ∑

S∈Π

∑
v∈S∩Vd

dem(v) (1)

while the following constraints are satisfied for all Si ∈ Π∑
v∈Si∩Vs

sup(v) ≥
∑

v∈Si∩Vd

dem(v) (2)

Si ∩ Sj = ∅ , i 6= j (3)

Si is connected (4)

It has been shown that the MPGSD is NP-hard even in the case of a
graph containing only one supply node and having a star structure (Ito et al,
2008). An illustration of problem instances and corresponding solutions for
the MPGSD is given in Figure 1.



Partitioning Graphs with Supply and Demand 5

Fig. 1 Examples of problem instances for the MPGSD. On the left the square nodes rep-
resent supply nodes and circles demand nodes. Numbers within the nodes correspond to
supply and demand values, respectively. The right side shows the solutions, where the same
color of nodes (or shaded area) indicates they are a part of the same subgraph.

3 Outline of the Algorithm

In this section we will first give a short outline of the greedy algorithm and
corresponding corrections and in the following section each of the steps will
be presented in detail. As previously mentioned the solution of the MPGSD
will consist of |Π| = n subgraphs, where n = |Vs| is the number of supply
nodes. The idea of the greedy algorithm is to start with n disjunct subgraphs
Si. At the initial step of the algorithm each of the subgraphs would consist of
only one supply node si. Next, at each step (iteration) we would expand one
of the subgraphs Si with one node v ∈ Vd. In practice each iteration would
consist of two sub-stages. In the first we would select which subgraph Si would
be expanded, and in the second stage we would decide by which node v. The
selection of v will be constrained in a way that the newly generated subgraph is
connected, and that v is not an element of any other subgraph. This selection
should also produce a subgraph whose total demand is less than or equal to its
supply. Of course, the selection of Si and v should be done using some heuristic
measure that we expect to produce high quality solutions for the problem.

It is common practice to improve the solutions acquired using direct greedy
algorithms based on some local search to explore similar ones within a spe-
cific neighborhood. Examples of such an approach are the 2-opt (Tupia et al,
2013; Croes, 1958) and 3-opt (Alfa et al, 1991; Marinakis et al, 2005) algo-



6 Raka Jovanovic et al.

rithms with their application to problems that can formally define suitable
neighborhoods. The problem with such approaches is that if we chose a small
neighborhood the chances of improvement are limited. On the other hand if
the chosen neighborhood is large the method becomes computationally expen-
sive, in many cases even similar to the use of some advanced meta-heuristic
that can produce approximate solutions of higher quality. This is especially
a problem with large scale test instances, where even if the neighborhood is
defined relatively strictly, it will still consist of a large number of potential
candidates. As it is discussed in Barnes et al (1988), in case of graph parti-
tioning problems this approach generally equates to exchanging nodes between
subgraphs.

In our methods, we propose using a greedy correction approach that can
find improvements of the original solution by exploring only neighboring solu-
tions that are selected using a heuristic procedure. Two such greedy correction
procedures are used. In the first we simply check if some node v, that is not
an element of any of the created subgraphs, can be exchanged with some node
u of a neighboring subgraph Si to increase the total covered demand. As it is
mentioned in Popa (2013), which we have also experienced in our initial work
on the MPGSD (Jovanovic and Bousselham, 2014), one of the main drawbacks
of greedy algorithms is that a subgraph can be easily cut off from the rest of
the graph as nodes are added to other subgraphs. As a consequence of this, it
is possible that some supply nodes will be covering only a very small amount of
demands. The second correction procedure attempts to resolve this problem.

3.1 Greedy Algorithm

To formally define our algorithm, first we shall specify a corresponding set NV
to v ∈ V where NV (v) represents the set of adjacent nodes to v in G:

NV (v) = {u | u ∈ V ∧ (u, v) ∈ E} (5)

The idea is to slowly grow each of the subgraphs Si at each iteration by
adding new nodes. Since the subgraphs will be changing at each step of the
algorithm we introduce the notation Ski for the state of subgraph Si at iteration
k. We will define the function NV k for subgraphs Si, that represents the set
of all the nodes that are connected to some node in Ski .

N̂k
i = NV k(Si) = {u | u ∈ V ∧ ∃(v ∈ Ski )(u, v) ∈ E} (6)

It is obvious that if at some step k we select some node v ∈ N̂k
i , and adding

it to Ski , the resulting subgraph Sk+1
i will be connected. The selection of v

must also be defined in a way that the constraints (2), (3) are satisfied, or
in other words that there is no such Sk+1

j for which v ∈ Sk+1
j and that the

demand has not become larger than the supply in Sk+1
j . To achieve this, we

define a corrected set of nodes Nk
i , such that by adding v ∈ Nk

i to Ski the new



Partitioning Graphs with Supply and Demand 7

subgraph will satisfy all the constraints. To do this we first define function
supki as the available supply for each Ski given in Equation (7).

Supki =
∑

v∈Si∩Vs

sup(v)−
∑

v∈Si∩Vd

dem(v) (7)

Now we can define Nk
i in the following way.

Nk
i = {u | u ∈ N̂k

i ∧ dem(u) ≤ Supki } \
n⋃
j=1

Skj (8)

It is important to mention that the sets of neighbors Nk
i can be efficiently

calculated using an auxiliary structure that helps track the used nodes by
updating the set of edges E for graph G, using a similar procedure like in
the case of covering problems given in Jovanovic and Tuba (2011, 2013). De-
tails of the implementation are presented in our previous work (Jovanovic and
Bousselham, 2014).

Using the sets Nk
i , we can define a greedy algorithm for the MPGSD using

two heuristic functions. At each step of the algorithm, the first heuristic hs is
used to select the best Si, and the second heuristic hv will be used to select the
best v ∈ Nk

i to add to Si. The algorithm stops if all the neighboring sets Nk
j

are empty. In the following two subsections, we present the types of heuristic
functions used at each stage of the greedy algorithm.

3.1.1 Heuristics for Subgraph Selection

We first define a heuristic function hs that gives us the desirability of selecting
a subgraph Ski at iteration k for expansion. There are two main properties of
Ski that should be considered: the available supply Supki , or in other word the
amount of supply that has not been covered by some demand, and the number
of potential candidates |Nk

i |.
One heuristic will consider subgraphs with a higher value of Supki as more

desirable, in the sense that they should be selected earlier. The logic behind
this heuristic is that it is expected that more nodes need to be added to such
subgraphs than to ones with a lower available supply. In the proposed greedy
algorithm the number of non-satisfied demand nodes is constantly decreasing
and as a consequence there exists a possibility that there may not be enough
available demand to reach Supki . Using this idea we define the heuristic hs1 as

hs1(Ski ) = Supki (9)

As mentioned before, in the proposed algorithm we can enter a state in
which it is not possible to expand subgraph Ski due to being cutoff from the
rest of the graph by other subgraphs. Since each node can be an element of
only one subgraph, there is a possibility that all the elements of Nk

i will be
added to other subgraphs since a node can be a neighbor of several different



8 Raka Jovanovic et al.

subgraphs. Because of this we shall consider subgraphs with a low value of
|Nk

i | highly desirable. The second heuristic hs2 can be formally defined as

hs2(Ski ) =
1

|Nk
i |

, |Nk
i | 6= 0 (10)

Finally we introduce a third heuristic function hs3 that balances the two effects

hs3(Ski ) =
Supki
|Nk

i |
, |Nk

i | 6= 0 (11)

We should point out that for the heuristic functions hs2 and hs3 the case
|Nk

i | = 0 will be considered least desirable and will never be selected.

3.1.2 Heuristics for Node Selection

The second type of heuristic function hn that needs to be defined is used for
giving the desirability of adding v ∈ Nk

i to Ski . In designing such heuristic we
shall follow a similar logic as in the case of heuristic functions for subgraphs.

Let us first define function hn1 as

hn1(v) = dem(v) (12)

In Equation (12) nodes v with high demand are considered more desirable.
The idea of this heuristic is that it gets harder to satisfy high demands as the
algorithm progresses due to fact that the available supply constantly decreases
as new nodes are added to the subgraph. Because of this it seems better to
resolve high demands early.

The second heuristic for selection of nodes is designed to avoid the problem
of subgraphs being cutoff from the rest of the graph. In this case the desirability
of node u ∈ Nk

i will be proportional to increases/decrease of the number of
elements of Nk+1

i . Formally we can define the new heuristic hn2 as

C(u, Ski ) = {v | v ∈ NV (u)∧¬(v| ∈ Nk
i )∧ (dem(v) ≤ Supki − dem(u))} (13)

hn2(u) = |C(u, Ski )| (14)

C(u, Ski ) is defined as the set of new neighbors that will be added. This set
consists of neighboring nodes to u, which are not already in Nk

i and whose
demand is not greater than the available supply of Ski after adding node u.
The heuristic function hn2 is now simply the number of elements of C(u, Ski )
as given in Equation (14).

As in the case of selecting a subgraph, in case of nodes we will also use
a balanced heuristic. In this case nodes with a high demand and a signifi-
cant increase in the number of neighbors of the corresponding subgraph are
considered highly desirable. We define a new heuristic.

hn3(u) = (hn2(u) + 1)hn1(u) (15)

In Equation (15) the addition of one is included to distinguish between nodes
that do not add new connections to the subgraph.



Partitioning Graphs with Supply and Demand 9

Fig. 2 Illustration of several steps of the greedy algorithm when heuristics hs1 and hn1 are
used. The second number for supply nodes indicates the number of available supply. The
colored edges connected to grey(non-located nodes) give us the neighborhood of a subgraph.

3.1.3 Approximate computational cost

The proposed greedy algorithm can be presented using the following pseudo
code (see also Figure 2 for the illustration of several steps of the algorithm):

Initialize All Si with supply nodes; choose appropriate heuristic functions
hs and hn
while (Sum(Supi) > 0) and Sum(|Ni|) > 0) do

Select Si using hs(Si)
Select u ∈ Ni using hn(u)
Add u to Si
Perform Updates

end while

In the algorithm we first initialize all of the subgraphs as different supply
nodes. The iterative algorithm is repeated until all the available supply is
covered or no subgraph has any neighboring nodes to which it can expand. We
first select subgraph Si that is to be expanded and then the node with which
it will be expanded. Finally, the necessary updates to auxiliary structures are
performed. In our previous work (Jovanovic and Bousselham, 2014) we give
detailed explanation of the auxiliary structures and how they are used for a
simpler version of the algorithm.

Our goal of this work is more dedicated towards experimental investiga-
tion rather than theoretical analysis. Therefore, we only present a descriptive



10 Raka Jovanovic et al.

approximation of the asymptotic calculation time of the proposed algorithm.
This time can be approximated as follows:

|Vd| ∗ (|Vs|+ |AvgNumNeighbors(Si)|+AvgNumConnections(u)) (16)

In (16) the term |Vd| is included as we will be adding demand nodes one
by one to the partial solution. At each iteration we will first select the most
desirable subgraph or, in other word, finding the maximal value of |hs| for
which we will need |Vs| operations. It is important to mention that this can be
done more efficiently, since at each step only a limited number of subgraphs
will be changed. For the selection of the best node for expansion, we will have
to check all the neighbors of a subgraph Si which gives us the second term
|AvgNumNeighbors(Si)|. This value will be highly dependent on the density
of the graph, but will never be higher than |Vd|. This has the consequence that
the proposed algorithm will be much more efficient in case of sparse graphs.
In our experiments we have seen that this value is generally significantly lower
than |Vd|/|Vs|. The proposed heuristic functions can be calculated in constant
time if suitable auxiliary structures are used. The calculation time for the
update procedure for such structures will be proportional to the number of
connections that the added node u has.

3.2 Greedy Correction

In this section we present a greedy correction method for improving the solu-
tions acquired using the algorithm presented above. As mentioned before, in
this way we wish to avoid testing a large neighborhood of solutions acquired
by the greedy algorithm. This shall be done in two ways, in the first correction
we shall attempt to incorporate some of the demand nodes that have not yet
been included into the generated subgraphs. This is done by exchanging them
with some node of the generated subgraphs. The second correction focuses on
the problem that some of the supply nodes, and corresponding subgraphs, can
be cut off from the rest of the graph at a very early stage of the algorithm.
Note that this case frequently results with a set of subgraphs in which a large
amount of demand has not been covered. The idea of this correction is to
expand such subgraphs at the cost of their neighbors with the hope that the
amount of the covered demand can be increased by applying the first correction
procedure. For both types of corrections it is essential that the connectivity
of the corrected subgraphs is maintained. As it is well known, testing the con-
nectivity of a subgraph can be a computationally expensive procedure so we
shall first introduce a simple auxiliary structure that can be used to simplify
this test.

3.2.1 Auxiliary tree structure

There have been several algorithms developed for finding all the articulation
points (Chaudhuri, 1998; Kukreja, 2013), i.e., nodes whose removal will result



Partitioning Graphs with Supply and Demand 11

in an unconnected graph, but such a calculation would be redundant for the
needs of the proposed algorithm. In the proposed method we only wish to
avoid selecting an articulation point, in case it satisfies some other constraints.
Because of this we will use an approximate approach for recognizing such
points to avoid unnecessary calculations.

The idea is to represent each of the subgraphs as a tree. In this way only
leafs will be considered in the correction procedure. It is not necessary to have a
complete tree structure but only a method that makes it possible to track leafs.
Such a structure should be simple to update when nodes are added/removed
from the subgraph, and is preferred to have a higher number of leafs. This can
be done in the following way, each node of the graph will have a corresponding
integer value ch(u) indicating the number child nodes in the tree. We can
generate such a structure using the following simple procedure when generating
the solution. Let us consider the case that node u is added/removed with
respect to subgraph Ski

1. Each node u has a corresponding value ch(u) which indicates the number
of children it has in a tree. Initially all nodes have ch(u) = 0, except supply
nodes which have the maximal possible value of ch, since they can not be
removed from a subgraph

2. Select all the neighbors of u that are elements of Ski
3. For a node v among the nodes which have the largest value ch(v), increment
ch(v). In case of several nodes with the same value ch simply select the
one with a lower id (number of the node)

4. When a leaf node u is removed form Ski , select from its neighbors v ∈ Ski
the one with the largest value of ch(v), and decrease ch(v). In case of
several nodes having the same value of ch select the one with a lower id

Using this structure it is possible to check if a node is a leaf in constant
time. The update procedure for maintaining this structure only depends on
the number of connections that a node has. It is important that this structure
gives in some cases false positives, for articulation points. From our experience
this would very seldom effect the performance of the algorithm.

3.2.2 Correction for Non-located Nodes

The idea behind the first corrections is that it is possible to exchange a node
u that is non-located, with some leaf node v of a subgraph and increase the
covered supply. Here we use the term non-located for nodes that are not a part
of any of the generated subgraphs. It is expected that this type of procedure
will not be computationally expensive due to the fact that only a low number
of nodes will be left non-located after the greedy algorithm has been applied.

To fully specify this type of correction procedure, we first formally define
the set of nodes v ∈ Si that can be exchanged with u as

Ex(u, Si) = {v | (v ∈ Si)∧(ch(v) = 0)∧(0 < dem(u)−dem(v) ≤ Supi)} (17)



12 Raka Jovanovic et al.

Here supi gives the amount of available supply of subgraph Si. Using this
definition we can present the correction procedure using the following pseudo-
code:

repeat
Initialize N with all non-located nodes
Nout = N
for all u ∈ N do

for all Si connected to u do
Ex = Ex(u, Si)

if (Ex 6= ∅) or (sup(u) ≤ Supi) then
v = min dem(Ex(u, Si))
Si = (Si \ {v}) ∪ {u}
Nout = (Nout \ {u}) ∪ {v}
Update Auxiliary Structures
Exit Subgraph loop

end if
end for

end for
N = Nout

until NoChange

The main loop of the proposed correction procedure goes through all the
non-located nodes u, and for each of them it checks if it can improve the
amount of covered demand for one of the neighboring subgraphs. We consider
a subgraph Si neighboring to node u if there exists v ∈ Si such that (u, v) ∈
E. The correction is done greedily in the sense that the maximal level of
improvement will be selected. More precisely, node u will be exchanged with
v ∈ Si giving the minimal value of dem(v) with the constraint that the total
demand will not be greater than the total available supply. Note that in some
cases it may not be necessary to remove a node for Si.

After each exchange it is necessary to update the auxiliary structures. Since
it is possible that a new improvement, becomes possible after the performed
exchange operation, we also need to track the new unlocked nodes. In the
pseudo code this is done using the set Nout. After all the non-located nodes
are tested, we repeat the main loop for the new set of non-located nodes. The
correction has been completed when no improvement can be made for any
u ∈ N .

A specific case of the exchange correction is if we allow the exchange of a
non-located node u with a v ∈ Si in case dem(u) = dem(v). It is obvious that
we can not simply extend Ex(u, Si) by such v, since an endless cycle could
arise of first adding u to Si, and removing v and in the following iteration
we could just do the reverse if no further changes have been performed on Si.
On the other hand such an exchange is useful since it makes it possible to
diversify the search. Because of this we will allow such exchanges, but they



Partitioning Graphs with Supply and Demand 13

Fig. 3 Illustration of several steps of the non-located correction, and its ability to resolve
complex exchanges between subgraphs when improving the solution.

will be treated separately, in the sense that we will apply the algorithm given
in the pseudo code, but exclusively with the change that Ex(u, Si) will only
contain nodes v such that dem(v) = dem(u), we will call this operation a
switch non-located correction. The details of avoiding cycles will be given in
a later subsection.

Although the procedure only performs tests in the relation of a free node to
a single subgraph, by applying the consecutive corrections exchanges can occur
between several subgraphs. By doing so this simple procedure can produce a
significant level of improvement which we illustrate in Figure 3.

3.2.3 Cutoff Correction

The focus of the second correction procedure is to improve a solution in which
some supply nodes and their corresponding subgraphs have been cut from the
rest of the graph at an early stage of the algorithm. One example of such a
situation is given in Figure 4. In many cases it is not possible to improve such
a solution using the previously presented correction procedure. The idea is to
expand the subgraphs that have a high level of available supply by taking some
demand nodes from neighboring subgraphs. This is done in the hope that the
expanded subgraph will get access to some non-located nodes or that the new
corrected solution can be improved using the previously presented correction
procedure.



14 Raka Jovanovic et al.

Fig. 4 Example of two consecutive applications of the cutoff correction. In this case the
correction is first applied on the left subgraph, and the changes on the graph make it possible
to improve the right subgraph in the second application of the correction.

To formally present this correction procedure we first define the set of
neighboring nodes to a subgraph

Nn(Si) = {v | (∃u ∈ Si)((v, u) ∈ E)} (18)

Now we can define the set of nodes to which subgraph Si can be expanded as
follows:

Ex(Si) = {v | (v ∈ Nn(Si)) ∧ (ch(v) = 0) ∧ (dem(v) ≤ Supi)} (19)

In Equation (19) the set Ex(Si) consists of all neighboring nodes that are
leafs whose demand is not greater than the available supply Supi of subgraph
Si. With these definitions we can present the correction procedure using the
following pseudocode.

S = MaxSupplyExpandable(Π)



Partitioning Graphs with Supply and Demand 15

repeat
if (Ex(S) 6= ∅) then
u = max dem(Ex(S))
S = S ∪ {u}
Sub(u) = Sub(u) \ {u}
Update Auxiliary Structures

end if
until NoChange

As can be seen in the pseudo code we select the subgraph S that has the
maximal available supply and can be expanded or in other words Ex(S) 6= ∅.
At each iteration of the main loop we will expand S with that node u that has
the highest demand, and we will always select a non-located node before one
that is part of some subgraph. This procedure will be repeated until no more
nodes can be added to S.

We illustrate this correction procedure in Figure 4, by showing the effect
of two consecutive applications.

3.2.4 Problem of Cycles

One problem that can occur when using consecutive cutoff and switch cor-
rections is that we can enter into cycles. Here we use the term cycle for the
situation when after n corrections the set of subgraphs Π is the same as be-
fore any corrections have been done. A simple example is when in the first
correction some node u ∈ Si is moved to subgraph Sj , and in the following
correction u is moved back to Si. Note that such cycles can also include non-
located nodes. It is evident that cycles can be of an arbitrary length, but in our
experience we have seen that they are very seldom longer than six correction
operations.

In the implementation of the proposed algorithm we have used the following
method for avoiding cycles. Let us assume the last n corrections have resulted
in a cycle. This means that a sequence of corrections C1, C2, .., Cn leaves the
partitioning unchanged. A simple way of avoiding the repetition of the same
cycle is not allowing correction Cn+1 to be equal to C1. In practice this means
we will remove the possibility of selecting node u that appears in correction
C1 when selecting Cn+1. Although this procedure escapes the majority of
cycles, as we have seen in our tests, it can still get trapped in some. As a
consequence, when implementing the proposed corrections, it is necessary to
include a method for checking if the algorithm has started to stagnate. We
will consider the algorithm stagnant if for m corrections the covered demand
has not increased.

For the sake of completeness we include a straightforward method to check
if a cycle has happened in the last n corrections. For each node u we know
in which correction Ci it first appears, we can store the pair (Sj , u) if u ∈ Sj
before the correction is applied. In case that after applying n corrections, we
have u ∈ Sj for all the nodes that have been effected by some correction Ci, a



16 Raka Jovanovic et al.

cycle is completed. In our implementation of the proposed algorithm we will
be checking for all cycles up to length n.

3.2.5 Combined Correction and Multi-Heuristic Approach

From the definition of the cutoff correction it is evident that it does not neces-
sarily increase the amount of covered demand, but it changes the partitioning
to one that can be improved using the non-located node correction. To have
the maximal effect of the proposed corrections it is necessary to have several
consecutive applications of each. There are several potential orders in which
these corrections can be applied to improve the quality of the solution acquired
using the proposed greedy algorithm; through trial and error we have found
that best results are achieved when this is done as in the following pseudocode.

repeat
repeat

if (CorrectionNonLocated()) then
CorrectionSwitch()

end if
until (NoChangeNonLocated ∨ Stagnation)
repeat
CorrectionCutoff()

until (NoChangeCutOff ∨ Stagnation)
until (NoChange ∨ Stagnation)

In the presented code functions CorrectionNonLocated() and Correction-
Cutoff() perform the corrections as presented in the previous subsections, and
return if any change has been performed on the graph. CorrectionSwitch() is
used for the specific case of the non-located correction when only nodes with
equal demand are allowed to be exchanged. We have found that the highest
level of improvement is accomplished, when we first exhaust all the non-located
corrections, using the switch version of it to increase the potentially tested par-
titioning. In the second step we apply all the possible cutoff corrections. These
two steps are repeated until no more changes to the partitioning are achieved.
A natural extension of the proposed algorithm is to use a varying number
of nodes that are considered in the correction procedures. Similar approaches
have proven very efficient on other graph problems. As we have stated in the
previous subsection, the method for avoiding cycles does not manage to detect
all of them. Because of this it is necessary to include tests if the algorithm has
started to stagnate in the sense that no increase to the level of covered demand
has occurred in the last n iterations.

As mentioned in the introduction, when for a specific problem we have
several competing heuristics it is a common practice to apply all of them and
select the best found solution. This simple concept can effectively be applied
in the case of MPGSD, since we can combine heuristics for different stages
of the algorithm. In this way we can explore a relatively small number of
potentially good solutions. This approach becomes even more effective due



Partitioning Graphs with Supply and Demand 17

to the use of the correction procedure, which in a sense behaves like a hill
climbing method. Because of this the multiheuristic approach makes it possible
to explore several local, potentially global, optimal solutions. In practice we
have used three heuristics for the selection of the subgraph to be expanded, and
four for the selection of nodes. In the case of node selection we have included
an extra heuristic function which selects the node with the minimal demand.
This type of heuristic was not discussed in the corresponding subsection, due
to the fact that it generally does not have a good performance. In case of the
multiheuristic approach it effectively complements the other heuristics. We say
this in the sense that by combining it with the correction procedure, it can
find good solutions that have been overseen by greedy algorithms based on
the other heuristics.

4 Tests and Results

In this section we evaluate the performance of the proposed algorithm. We shall
first give a comparison of the effect of using different heuristics for each stage of
the algorithm. In our test we also examine the two proposed correction proce-
dures and the multiheuristic approach. The algorithm has been implemented in
C# using Microsoft Visual Studio 2012. The source code and the executive files
are available at http://mail.ipb.ac.rs/~rakaj/home/graphsd.htm. The
calculations have been done on a machine with Intel(R) Core(TM) i7-2630
QM CPU 2.00 Ghz, 4GB of DDR3-1333 RAM, running on Microsoft Win-
dows 7 Home Premium 64-bit.

With the goal of having a comprehensive evaluation of the proposed al-
gorithm we have performed experiments on a wide range of graph sizes. We
have conducted tests on graphs having 2-400 supply nodes and 6-8000 de-
mand nodes. For each of the test sizes 40 different problem instances have
been generated and we observe the average solution quality for each size. Such
experiments have been performed on trees and general graphs. The goal of the
conducted tests was to evaluate each heuristic, correction methods and show
the advantage of using the multiheuristic approach.

The problem instances (graphs) for n supply and m demand nodes have
been generated using the following algorithm. First we generate an array con-
taining n+m integer random weights uniformly distributed within the interval
[−10,−40]. In case of general graphs, (n+m)∗2 random edges would be added
to the graph but making sure that the graph is connected. In case of the second
type of graphs, i.e. trees, we would simply generate a random tree for n + m
nodes. For both types of graphs the next step was to select n random nodes
as seeds for n subgraphs (partitions). The subgraphs are grown using an iter-
ative method until (n+m) ∗ (0.95) nodes of the original graph are contained
in one of the subgraphs. The growth of subgraph Si has been performed by
expanding it to a random neighboring node that does not belong to any of the
other subgraphs. Finally, for each of the subgraphs Si a random node v ∈ Si



18 Raka Jovanovic et al.

is chosen and its weight (supply) w is set using the following formula:

w =

∣∣∣∣∣∑
a∈Si

dem(a)

∣∣∣∣∣− dem(v) (20)

For each of the test graphs, generated using this method, the optimal
solution is known and is equal to the sum of supplies of all supply nodes.
Note that by using such a procedure it is possible to have a set that does not
have n subgraphs due to some supply nodes being cut off from the rest of
the graph. We have excluded such graphs from our test cases. The generated
test instances are available for download at http://mail.ipb.ac.rs/~rakaj/
home/graphsd.htm.

In the first group of tests a comparison of the effect of using different
heuristics for selecting subgraph Si is observed. The results of this type of
experiments are given in Tables 1, 2 for general graphs and trees. For each
of the heuristics the same heuristic hn1, node with highest demand, was used
for node selection. In these tables we observe the average normalized error of
the found solution compared to the optimal one, which is known due to the
method of generating problem instances. More precisely, for each of the 40
test instances, for one graph size, we calculate the normalized error in percent
(Optimal − found)/Optimal ∗ 100, and give the average value of such errors
in Tables 1, 2. To have a better analysis of the proposed heuristics we also
observe the standard deviation, and maximal error.

In the case of general graphs, our tests show that the use of heuristic
function hs2, selection of a subgraph with a minimal number of neighbors, is
most beneficial with the average error between 0.7 - 8.2%. According to Tables
1, 2 all the heuristics had a better performance in case of a large ratio m/n
in case of the normalized error. This can be explained by the fact that in this
case the cutoff of subgraphs was less likely which is a major source of error. In
such cases, although the normalized error is small, generally less than 2%, the
absolute error is still significant. Our tests have shown that although hs2 gives
better average results, it is less reliable than the balanced approach using hs3
which in the majority of the cases has a smaller average maximal error, which
can go even up to 20%. In case of trees we have a different behavior in several
aspects. First, the decrease of average error with the increase of the number
of demand nodes does not occur, since for this type of graphs, the use of the
proposed algorithm is more likely to result in some subgraphs being cutoff. For
this type of graphs the balanced heuristic gives the best performance when
average and maximal error are considered. One explanation for this is that in
case of trees, the number of neighbors for each subgraph would vary much less,
and without using a balanced approach the heuristic would frequently have a
similar effect as a random search.

In our second group of tests we observe the effect of using different types of
heuristics for node selection. For each of the graph types we have used the best
performing heuristic for subgraph selection, from Tables 1, 2, and combined
them with different node selection heuristics. These results are presented in



Partitioning Graphs with Supply and Demand 19

Table 1 Comparison of heuristics for subgraph selection in case of general graphs. The
average, maximal and standard deviations are given in correspondence to the relative error
compared to the optimal solution for each graph size. The best results have been underlined.

Sup X Dem Error hs1 (%) Error hs2 (%) Error hs3 (%)
Avg Max StDev Avg Max StDev Avg Max StDev

2 X 6 7.4 46.1 8.7 3.9 19.3 5.6 5.6 19.3 6.1
2 X 10 5.6 23.1 4.4 4.3 11.8 2.6 4.5 11.8 3.1
2 X 20 1.8 4.2 1.1 1.7 4.1 1.1 2.1 5.2 1.3
2 X 40 0.8 1.7 0.5 0.7 2.1 0.5 0.6 1.7 0.4

5 X 15 10.9 38.8 7.8 6.5 20.0 4.8 7.9 20.1 5.3
5 X 25 7.9 34.6 6.0 4.5 15.6 3.3 4.9 13.1 2.5
5 X 50 3.9 10.3 2.6 1.9 5.2 1.0 2.6 8.1 1.3
5 X 100 2.0 13.6 2.5 0.9 4.8 0.8 0.9 3.7 0.6

10 X 30 11.5 23.9 4.4 6.7 15.2 3.4 8.4 18.1 3.5
10 X 50 7.4 14.2 2.8 5.2 15.0 3.0 5.0 12.2 2.1
10 X 100 3.9 13.1 2.4 2.3 9.5 1.6 2.3 5.2 0.9
10 X 200 2.5 13.0 2.8 1.5 10.6 1.9 1.1 5.9 0.9

25 X 75 12.1 19.2 3.2 8.2 16.8 2.9 9.1 14.6 2.9
25 X 125 8.6 13.6 2.1 5.5 8.9 1.6 6.0 10.3 1.6
25 X 250 4.6 8.7 1.5 2.8 7.7 1.4 2.9 5.5 0.9
25 X 500 2.8 6.1 1.4 1.5 4.9 1.1 1.3 3.2 0.6

50 X 150 12.0 15.6 1.9 8.0 12.2 2.1 8.6 12.2 1.8
50 X 250 8.8 10.8 1.3 5.9 10.4 1.6 6.1 10.1 1.3
50 X 500 4.6 7.4 1.3 2.6 4.5 0.9 2.6 3.7 0.6
50 X 1000 3.1 6.0 1.0 1.2 2.9 0.6 1.3 2.8 0.5

100 X 300 11.7 14.6 1.5 7.9 10.6 1.3 8.7 11.0 1.1
100 X 500 8.8 11.6 1.1 5.7 9.0 1.1 6.0 8.2 0.9
100 X 1000 4.7 7.0 0.9 2.9 5.6 0.8 2.9 4.3 0.5
100 X 2000 3.0 4.6 0.7 1.5 3.0 0.6 1.4 2.3 0.4

200 X 600 12.1 14.3 1.0 8.0 9.7 0.9 8.9 11.8 0.9
200 X 1000 8.8 10.8 0.7 5.8 7.4 0.6 6.2 7.2 0.5
200 X 2000 4.9 6.2 0.5 2.9 4.0 0.5 2.9 3.8 0.3
200 X 4000 3.1 4.2 0.4 1.5 2.5 0.4 1.4 2.2 0.3

400 X 1200 11.8 13.4 0.6 7.9 9.2 0.6 8.7 9.8 0.5
400 X 2000 8.7 10.0 0.5 5.9 7.0 0.6 6.2 6.8 0.3
400 X 4000 4.8 5.8 0.5 2.8 3.4 0.3 2.9 3.7 0.3
400 X 8000 3.0 3.7 0.3 1.5 2.0 0.3 1.4 1.8 0.2

Tables 3, 4, in which we present the same values as for the first type of heuris-
tics. For general graphs we have found that the use of the heuristic hn1 gives
the best results for both average and maximal error. In case of trees, again
we find that the balanced approach with heuristic hn3 finds the best quality
solutions.

In the last group of tests we compare the effect of the two correction pro-
cedures, and the multiheuristic approach to the simple use of the greedy al-
gorithm. This is done for both types of graphs, and we consider the average
error and maximal error and total execution time for the 40 test instances.
As we can see from Tables 5, 6 the approaches are computationally very ef-



20 Raka Jovanovic et al.

Table 2 Comparison of heuristics for subgraph selection in case of trees. The average,
maximal and standard deviations are given in correspondence to the relative error compared
to the optimal solution for each graph size. The best results have been underlined.

Sup X Dem Error hs1 (%) Error hs2 (%) Error hs3 (%)
Avg Max StDev Avg Max StDev Avg Max StDev

2 X 6 1.7 26.4 5.9 0.0 0.0 0.0 0.5 18.2 2.8
2 X 10 5.5 35.1 8.0 3.5 51.1 8.2 3.2 20.5 5.1
2 X 20 8.7 28.9 9.1 5.1 40.6 9.7 5.0 29.8 7.0
2 X 40 6.1 30.6 7.7 3.5 41.1 8.9 2.7 11.7 3.5

5 X 15 8.5 27.2 8.7 3.8 23.4 6.3 2.4 23.4 4.8
5 X 25 7.9 21.8 6.0 7.7 47.6 11.1 5.2 25.5 5.5
5 X 50 10.6 29.6 7.0 8.3 41.4 10.1 5.3 15.8 4.5
5 X 100 16.4 50.9 11.2 15.8 43.7 13.1 6.2 17.1 4.4
10 X 30 8.7 27.2 6.4 4.3 19.2 5.5 4.2 17.2 4.6

10 X 50 9.7 29.5 5.6 6.1 24.6 5.7 4.4 11.6 3.2
10 X 100 11.4 26.7 6.3 9.6 30.1 7.0 5.7 14.9 3.8
10 X 200 13.9 26.0 6.6 13.1 32.6 8.1 7.6 21.6 4.7

25 X 75 9.5 22.5 4.9 3.6 12.9 3.4 5.1 13.6 3.4
25 X 125 10.8 17.3 3.8 6.8 17.8 4.2 5.3 11.4 2.2
25 X 250 10.7 20.2 3.2 8.6 19.6 4.0 5.7 11.5 2.1
25 X 500 11.6 19.4 3.9 11.1 24.1 4.3 6.1 12.3 2.5
50 X 150 8.7 17.0 2.9 4.4 8.9 2.2 4.2 8.9 1.9

50 X 250 10.2 18.7 3.1 6.2 12.3 2.5 5.7 12.2 2.0
50 X 500 11.9 18.8 3.0 8.5 13.1 2.3 6.9 11.9 2.0
50 X 1000 12.8 18.3 2.4 11.3 16.9 3.1 7.1 10.8 1.5

100 X 300 9.8 14.1 2.0 4.8 8.8 1.8 5.3 8.3 1.3
100 X 500 10.3 14.4 1.8 6.1 10.8 1.8 5.7 8.9 1.3
100 X 1000 11.2 14.5 1.8 8.4 14.0 2.1 6.5 8.2 1.2
100 X 2000 12.1 17.5 1.9 10.3 13.5 2.0 6.8 9.8 1.3

200 X 600 9.5 13.7 1.5 4.5 8.2 1.6 5.2 7.7 1.2
200 X 1000 10.2 12.7 1.2 6.2 7.9 1.0 5.9 8.0 0.9
200 X 2000 11.4 14.8 1.5 8.7 11.9 1.3 6.6 8.4 0.9
200 X 4000 12.0 15.1 1.5 10.2 13.5 1.5 7.0 9.3 0.9

400 X 1200 9.3 11.8 0.9 4.6 6.7 0.7 5.4 6.9 0.7
400 X 2000 10.2 12.6 1.0 6.3 8.4 0.9 6.0 7.3 0.7
400 X 4000 11.2 13.1 1.0 8.7 11.5 0.9 6.9 8.2 0.6
400 X 8000 11.8 13.6 1.0 10.2 12.8 0.9 7.1 8.7 0.6

fective. Even in the case of the largest instances having 400 supply nodes and
8000 demand nodes the total execution time for 40 test instances is 10 and 7
seconds for general and tree graphs, respectively, when the greedy algorithm
is considered. The increase in the execution time of the non-located and com-
bined corrections was dependent on the average number of connections in the
graphs. In case of general graphs the increase of the calculation time of the
non-located and combined correction was approximately 50% and 150%, while
in the case of trees it was 20% and 50% of the calculation time of the greedy
algorithm. The execution time of the multiheuristic approach was around 12
times of the combined heuristic correction, which is expected since 12 such



Partitioning Graphs with Supply and Demand 21

Table 3 Comparison of heuristics for node selection in case of general graphs. The average,
maximal and standard deviations are given in correspondence to the relative error compared
to the optimal solution for each graph size. The best results have been underlined.

Sup X Dem Error hn1 (%) Error hn2 (%) Error hn3 (%)
Avg Max StDev Avg Max StDev Avg Max StDev

2 X 6 3.9 19.3 5.6 10.8 31.6 9.7 4.0 19.3 5.3
2 X 10 4.3 11.8 2.6 8.1 18.1 4.3 4.9 12.3 2.5
2 X 20 1.7 4.1 1.1 4.2 14.7 2.7 1.7 5.2 1.3
2 X 40 0.7 2.1 0.5 1.7 4.0 1.0 0.8 2.0 0.5

5 X 15 6.5 20.0 4.8 11.9 28.3 5.7 8.7 26.4 6.0
5 X 25 4.5 15.6 3.3 7.7 17.7 3.4 5.5 16.4 3.4
5 X 50 1.9 5.2 1.0 3.6 9.9 1.8 3.1 10.5 2.2
5 X 100 0.9 4.8 0.8 2.4 7.5 1.5 1.8 14.4 2.7

10 X 30 6.7 15.2 3.4 10.5 19.3 3.4 7.1 17.4 3.3
10 X 50 5.2 15.0 3.0 7.9 18.6 3.2 6.3 13.1 2.5
10 X 100 2.3 9.5 1.6 4.5 9.6 2.1 3.2 11.3 2.1
10 X 200 1.5 10.6 1.9 2.8 8.9 1.6 2.3 8.0 1.8

25 X 75 8.2 16.8 2.9 11.2 17.0 2.6 8.8 19.5 3.4
25 X 125 5.5 8.9 1.6 8.5 17.6 2.2 6.2 10.4 1.7
25 X 250 2.8 7.7 1.4 4.7 7.0 1.1 3.6 6.9 1.5
25 X 500 1.5 4.9 1.1 3.0 6.4 1.2 2.2 5.0 1.0

50 X 150 8.0 12.2 2.1 11.2 15.5 2.2 8.9 15.3 2.8
50 X 250 5.9 10.4 1.6 9.0 12.3 1.6 6.7 10.4 1.5
50 X 500 2.6 4.5 0.9 5.0 7.0 1.1 3.4 5.7 0.9
50 X 1000 1.2 2.9 0.6 3.0 4.4 0.7 2.3 3.4 0.6

100 X 300 7.9 10.6 1.3 10.7 13.5 1.4 8.7 11.9 1.6
100 X 500 5.7 9.0 1.1 8.6 10.2 0.9 6.6 9.2 1.2
100 X 1000 2.9 5.6 0.8 5.1 6.6 0.7 3.7 5.6 0.8
100 X 2000 1.5 3.0 0.6 3.3 4.8 0.7 2.4 4.1 0.7

200 X 600 8.0 9.7 0.9 11.2 13.6 1.0 8.6 11.5 1.0
200 X 1000 5.8 7.4 0.6 8.6 9.8 0.6 6.7 8.6 0.9
200 X 2000 2.9 4.0 0.5 5.0 6.5 0.6 3.7 5.1 0.6
200 X 4000 1.5 2.5 0.4 3.2 4.0 0.4 2.3 3.6 0.5

400 X 1200 7.9 9.2 0.6 11.3 12.9 0.7 8.7 10.3 0.8
400 X 2000 5.9 7.0 0.6 8.7 10.4 0.6 6.6 7.8 0.5
400 X 4000 2.8 3.4 0.3 5.1 6.0 0.4 3.7 4.9 0.4
400 X 8000 1.5 2.0 0.3 3.2 3.9 0.3 2.4 3.0 0.3

runs are performed. The level of improvement of the average error was signifi-
cant for both of the correction methods, and managed to improve it in almost
all the sets of instances. In case of the average maximal error, the performance
of the corrections was dependent on the graph size, and as it increases so does
the level of improvement. For several graph sizes the corrections did not man-
age to improve this value which indicated that strong locally optimal solutions
exist which can not be escaped using this procedure.

The use of the multiheuristic approach produced a great improvement in
the quality of found solutions. The average error was less than 1% in 40% of
the graph sizes, it never exceeding 5.7%, while having an error greater than



22 Raka Jovanovic et al.

Table 4 Comparison of heuristics for node selection in case of trees. The average, maximal
and standard deviations are given in correspondence to the relative error compared to the
optimal solution for each graph size. The best results have been underlined.

Sup X Dem Error hn1 (%) Error hn2 (%) Error hn3 (%)
Avg Max StDev Avg Max StDev Avg Max StDev

2 X 6 0.5 18.2 2.8 2.8 24.5 7.5 0.0 0.0 0.0
2 X 10 3.2 20.5 5.1 2.1 9.9 3.4 1.8 20.5 3.9
2 X 20 5.0 29.8 7.0 3.5 26.9 5.8 4.2 28.6 7.3
2 X 40 2.7 11.7 3.5 3.2 21.8 4.9 2.6 21.2 4.8

5 X 15 2.4 23.4 4.8 5.4 30.4 7.1 3.2 28.1 6.5
5 X 25 5.2 25.5 5.5 6.3 25.5 6.2 4.4 25.5 5.4
5 X 50 5.3 15.8 4.5 5.2 16.9 4.9 4.1 14.2 3.9
5 X 100 6.2 17.1 4.4 5.6 20.1 5.1 5.1 16.4 4.8

10 X 30 4.2 17.2 4.6 4.7 18.0 4.8 3.2 16.0 3.8
10 X 50 4.4 11.6 3.2 4.0 11.2 3.0 3.0 8.7 2.6
10 X 100 5.7 14.9 3.8 4.9 14.1 3.3 3.9 11.7 3.1
10 X 200 7.6 21.6 4.7 6.3 17.2 3.6 5.5 12.2 3.3

25 X 75 5.1 13.6 3.4 5.3 16.7 3.1 3.1 11.0 2.7
25 X 125 5.3 11.4 2.2 4.8 11.1 2.6 4.0 10.9 2.6
25 X 250 5.7 11.5 2.1 4.9 8.5 1.8 4.4 9.9 2.1
25 X 500 6.1 12.3 2.5 5.9 13.9 2.4 5.6 10.2 2.0

50 X 150 4.2 8.9 1.9 5.7 11.9 2.1 3.1 7.3 1.8
50 X 250 5.7 12.2 2.0 5.9 9.3 1.6 4.4 9.2 1.8
50 X 500 6.9 11.9 2.0 6.0 9.3 1.7 5.3 12.0 2.1
50 X 1000 7.1 10.8 1.5 6.1 9.5 1.7 6.1 9.6 1.8

100 X 300 5.3 8.3 1.3 6.1 10.2 1.9 3.8 7.7 1.4
100 X 500 5.7 8.9 1.3 5.8 8.4 1.2 4.4 6.9 1.2
100 X 1000 6.5 8.2 1.2 6.0 8.8 1.4 5.5 9.8 1.5
100 X 2000 6.8 9.8 1.3 6.3 8.3 1.2 6.4 10.2 1.5

200 X 600 5.2 7.7 1.2 5.4 7.2 1.0 3.4 4.9 0.9
200 X 1000 5.9 8.0 0.9 5.7 7.7 0.9 4.4 7.3 1.0
200 X 2000 6.6 8.4 0.9 6.1 8.6 1.0 5.5 8.1 1.0
200 X 4000 7.0 9.3 0.9 6.4 8.7 1.0 6.3 9.5 1.2

400 X 1200 5.4 6.9 0.7 6.0 7.6 0.7 3.8 4.8 0.5
400 X 2000 6.0 7.3 0.7 5.8 7.3 0.6 4.5 5.8 0.6
400 X 4000 6.9 8.2 0.6 6.0 7.1 0.5 5.6 6.4 0.5
400 X 8000 7.1 8.7 0.6 6.4 7.6 0.7 6.6 8.2 0.5

4% in less than 20% of the graph sizes. The use of this approach has proven to
be very robust and has given an improvement for the maximal error in almost
all the cases. Out of the 64 test sizes for only two of them it gave a maximal
error greater than 10%.

5 Conclusion

In this paper we presented a method for solving the problem of maximal
partitioning of graphs with supply and demand, with a special focus on solving
large scale problem instances. The main goal of this work was to provide some



Partitioning Graphs with Supply and Demand 23

Table 5 Evaluation of proposed correction methods and the multiheuristic approach for
general graphs. The average, maximal and standard deviations are given in correspondence
to the relative error compared to the optimal solution for each graph size. The computational
time is given for solving all the test instances of one graph size.

Sup X Dem Avg Error (%) Max Error (%) T ime(seconds)
Gr NL Com Mult Gr NL Com Mult Gr NL Com Mult

2 X 6 3.9 3.9 3.9 0.5 19.3 19.3 19.3 10.2 0.0 0.0 0.0 0.0
2 X 10 4.3 4.2 4.2 0.8 11.8 11.8 11.8 6.0 0.0 0.0 0.0 0.0
2 X 20 1.7 1.5 1.5 0.1 4.1 3.7 3.7 0.8 0.0 0.0 0.0 0.0
2 X 40 0.7 0.5 0.5 0.0 2.1 2.1 2.1 0.0 0.0 0.0 0.0 0.0

5 X 15 6.5 5.9 5.2 2.0 20.0 20.0 14.9 9.1 0.0 0.0 0.0 0.0
5 X 25 4.5 3.4 3.2 1.3 15.6 8.1 8.1 3.4 0.0 0.0 0.0 0.0
5 X 50 1.9 1.5 1.4 0.4 5.2 2.8 2.8 1.2 0.0 0.0 0.0 0.0
5 X 100 0.9 0.7 0.5 0.0 4.8 2.8 1.2 0.1 0.0 0.0 0.0 0.2

10 X 30 6.7 5.6 4.7 2.0 15.2 11.5 11.0 6.3 0.0 0.0 0.0 0.0
10 X 50 5.2 4.5 3.6 1.9 15.0 12.2 7.3 4.3 0.0 0.0 0.0 0.0
10 X 100 2.3 1.9 1.4 0.6 9.5 9.5 2.8 1.0 0.0 0.0 0.0 0.2
10 X 200 1.5 1.2 0.6 0.1 10.6 10.1 2.8 0.2 0.0 0.0 0.1 0.9

25 X 75 8.2 7.4 6.0 3.6 16.8 16.8 10.5 6.8 0.0 0.0 0.0 0.2
25 X 125 5.5 4.8 3.9 2.6 8.9 8.9 6.3 3.7 0.0 0.0 0.0 0.5
25 X 250 2.8 2.4 1.6 0.9 7.7 7.4 4.3 1.5 0.0 0.0 0.1 1.4
25 X 500 1.5 1.3 0.7 0.2 4.9 4.9 2.5 0.3 0.0 0.1 0.2 3.5

50 X 150 8.0 6.8 5.5 4.0 12.2 11.1 8.6 5.8 0.0 0.0 0.1 0.9
50 X 250 5.9 5.2 4.2 3.2 10.4 9.6 8.8 4.2 0.0 0.0 0.2 1.9
50 X 500 2.6 2.3 1.6 1.0 4.5 4.1 3.0 1.5 0.1 0.1 0.3 4.2
50 X 1000 1.2 1.1 0.7 0.2 2.9 2.7 1.9 0.5 0.2 0.3 0.6 10.1

100 X 300 7.9 7.1 6.0 4.8 10.6 8.9 7.9 7.0 0.1 0.1 0.3 3.0
100 X 500 5.7 5.1 4.2 3.5 9.0 8.4 6.4 5.1 0.1 0.2 0.4 5.5
100 X 1000 2.9 2.5 1.8 1.2 5.6 4.8 3.0 1.6 0.3 0.4 0.9 12.5
100 X 2000 1.5 1.3 0.7 0.3 3.0 2.8 1.5 0.8 0.7 0.9 1.9 30.4

200 X 600 8.0 7.1 6.4 5.3 9.7 8.6 8.6 6.9 0.3 0.4 0.7 9.4
200 X 1000 5.8 5.2 4.5 3.9 7.4 6.4 6.2 4.4 0.6 0.7 1.3 19.6
200 X 2000 2.9 2.5 2.0 1.3 4.0 3.6 2.8 1.7 1.4 1.6 3.4 48.3
200 X 4000 1.5 1.3 0.8 0.4 2.5 2.2 1.4 0.8 2.6 3.3 6.3 98.7

400 X 1200 7.9 7.1 6.4 5.6 9.2 8.5 8.2 6.8 1.4 1.7 2.5 33.8
400 X 2000 5.9 5.3 4.6 4.0 7.0 6.3 5.5 4.5 2.3 2.9 4.5 61.2
400 X 4000 2.8 2.5 2.0 1.4 3.4 3.1 2.7 1.9 4.8 5.9 9.4 145.7
400 X 8000 1.5 1.3 0.8 0.4 2.0 1.8 1.2 0.7 9.8 13.4 22.0 348.5

experimental results for the problem as most of the previous works were more
of a theoretical nature. Test data sets and the source code for the implemented
algorithm are publicly available. The proposed method consists of a greedy
algorithm based on two separate heuristics, and two correction procedures.
We have presented several potential heuristic functions for the two stages of
the algorithm and analyzed their effectiveness on sparse general graphs and
trees. The calculation time for the proposed correction procedures is similar
to the one of the greedy algorithm, while managing to considerably improve
the initially acquired solutions.



24 Raka Jovanovic et al.

Table 6 Evaluation of proposed correction methods and the multiheuristic approach for
trees. The average, maximal and standard deviations are given in correspondence to the
relative error compared to the optimal solution for each graph size. The computational time
is given for solving all the test instances of one graph size.

Sup X Dem Avg Error (%) Max Error (%) T ime (seconds)
Gr NL Com Mult Gr NL Com Mult Gr NL Com Mult

2 X 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 X 10 1.8 1.6 1.1 0.1 20.5 20.5 8.8 3.4 0.0 0.0 0.0 0.0
2 X 20 4.2 3.9 1.8 0.1 28.6 27.5 27.5 3.1 0.0 0.0 0.0 0.0
2 X 40 2.6 2.4 2.4 0.3 21.2 21.2 21.2 8.9 0.0 0.0 0.0 0.0

5 X 15 3.2 2.0 1.3 0.2 28.1 28.1 7.2 3.3 0.0 0.0 0.0 0.0
5 X 25 4.4 3.5 2.4 0.2 25.5 25.1 25.1 2.2 0.0 0.0 0.0 0.0
5 X 50 4.1 3.5 2.7 0.6 14.2 14.1 14.1 14.1 0.0 0.0 0.0 0.0
5 X 100 5.1 4.8 4.3 0.9 16.4 16.0 16.0 8.8 0.0 0.0 0.0 0.0

10 X 30 3.2 2.0 1.3 0.1 16.0 15.1 15.1 1.9 0.0 0.0 0.0 0.0
10 X 50 3.0 2.5 1.9 0.2 8.7 7.7 7.7 4.9 0.0 0.0 0.0 0.0
10 X 100 3.9 3.5 2.9 0.6 11.7 10.4 9.7 5.1 0.0 0.0 0.0 0.0
10 X 200 5.5 5.3 5.1 2.2 12.2 11.9 11.9 7.3 0.0 0.0 0.0 0.4

25 X 75 3.1 2.3 1.8 0.3 11.0 11.0 7.9 1.5 0.0 0.0 0.0 0.0
25 X 125 4.0 3.3 2.5 0.7 10.9 10.5 10.5 4.7 0.0 0.0 0.0 0.1
25 X 250 4.4 3.9 3.6 2.0 9.9 9.5 9.5 5.6 0.0 0.0 0.0 0.5
25 X 500 5.6 5.4 5.3 3.7 10.2 10.0 9.9 8.9 0.0 0.1 0.1 1.5

50 X 150 3.1 2.2 1.5 0.5 7.3 6.3 5.1 2.0 0.0 0.0 0.0 0.4
50 X 250 4.4 3.5 3.2 1.7 9.2 8.8 8.8 5.2 0.0 0.0 0.1 0.8
50 X 500 5.3 4.8 4.7 3.4 12.0 11.3 11.3 6.7 0.1 0.1 0.2 2.0
50 X 1000 6.1 5.8 5.8 4.6 9.6 9.5 9.5 7.1 0.2 0.2 0.3 4.1

100 X 300 3.8 2.7 2.3 1.1 7.7 6.7 6.7 3.7 0.1 0.1 0.1 1.5
100 X 500 4.4 3.5 3.2 2.3 6.9 5.7 5.7 4.0 0.1 0.2 0.2 2.8
100 X 1000 5.5 4.9 4.9 4.0 9.8 9.2 9.2 6.2 0.3 0.4 0.5 6.0
100 X 2000 6.4 6.1 6.1 5.1 10.2 9.8 9.8 7.3 0.7 0.8 1.1 12.7

200 X 600 3.4 2.3 2.0 1.1 4.9 4.0 3.9 2.2 0.3 0.4 0.5 5.9
200 X 1000 4.4 3.6 3.4 2.8 7.3 6.7 6.7 4.0 0.6 0.6 0.8 9.6
200 X 2000 5.5 5.0 5.0 4.4 8.1 7.5 7.4 6.2 1.2 1.4 1.6 20.0
200 X 4000 6.3 6.0 6.0 5.4 9.5 9.3 9.3 7.2 2.5 3.1 3.6 43.4

400 X 1200 3.8 2.7 2.6 1.9 4.8 3.8 3.8 2.9 1.3 1.4 1.6 20.8
400 X 2000 4.5 3.7 3.6 3.1 5.8 4.9 4.9 4.0 2.2 2.5 2.8 35.3
400 X 4000 5.6 5.1 5.1 4.5 6.4 5.8 5.8 5.3 4.7 5.4 6.0 74.1
400 X 8000 6.6 6.3 6.3 5.7 8.2 7.9 7.9 7.0 9.8 11.8 12.9 159.5

Our experiments have shown that the performance of competing heuristics
significantly differs depending on the graph properties. Due to the fact that the
correction procedure, to a large extent, behaves like a hill climbing method, the
combination of different heuristics with it produces very good results. This type
of multiheuristic approach manages to produce high quality average solutions
while at the same time being very robust. In the conducted experiments it
has been shown that even for very large graphs consisting of more than 8000
nodes, good quality solutions can be found within seconds.



Partitioning Graphs with Supply and Demand 25

References

Alfa AS, Heragu SS, Chen M (1991) A 3-opt based simulated annealing al-
gorithm for vehicle routing problems. Computers & Industrial Engineering
21(14):635 – 639

Andreev K, Räcke H (2004) Balanced graph partitioning. In: Proceedings of
the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and
Architectures, ACM, New York, SPAA ’04, pp 120–124

Arefifar S, Mohamed Y, EL-Fouly THM (2012) Supply-adequacy-based opti-
mal construction of microgrids in smart distribution systems. IEEE Trans-
actions on Smart Grid 3(3):1491–1502

Barnes E, Vannelli A, Walker J (1988) A new heuristic for partitioning the
nodes of a graph. SIAM Journal on Discrete Mathematics 1(3):299–305

Boulaxis N, Papadopoulos M (2002) Optimal feeder routing in distribution
system planning using dynamic programming technique and GIS facilities.
IEEE Transactions on Power Delivery 17(1):242–247

Chaudhuri P (1998) An optimal distributed algorithm for finding articulation
points in a network. Computer Communications 21(18):1707–1715

Croes GA (1958) A method for solving traveling-salesman problems. Opera-
tions Research 6(6):791–812

Galinier P, Boujbel Z, Coutinho Fernandes M (2011) An efficient memetic al-
gorithm for the graph partitioning problem. Annals of Operations Research
191:1–22

Ito T, Zhou X, Nishizeki T (2005) Partitioning trees of supply and demand.
International Journal of Foundations of Computer Science 16(4):803–827

Ito T, Demaine ED, Zhou X, Nishizeki T (2008) Approximability of parti-
tioning graphs with supply and demand. Journal of Discrete Algorithms
6(4):627 – 650

Ito T, Hara T, Zhou X, Nishizeki T (2012) Minimum cost partitions of trees
with supply and demand. Algorithmica 64(3):400–415

Jovanovic R, Bousselham A (2014) A greedy method for optimizing the self-
adequacy of microgrids presented as partitioning of graphs with supply and
demand. In: International Renewable and Sustainable Energy Conference
(IRSEC), 2014, pp 565–570

Jovanovic R, Tuba M (2011) An ant colony optimization algorithm with im-
proved pheromone correction strategy for the minimum weight vertex cover
problem. Applied Soft Computing 11(8):5360 – 5366

Jovanovic R, Tuba M (2013) Ant colony optimization algorithm with
pheromone correction strategy for the minimum connected dominating set
problem. Computer Science and Information Systems pp 133–149

Kawabata M, Nishizeki T (2013) Partitioning trees with supply, demand and
edge-capacity. IEICE Transactions 96-A(6):1036–1043

Kernighan BW, Lin S (1970) An efficient heuristic procedure for partitioning
graphs. Bell System Technical Journal 49(2):291–307

Kim YH, Moon BR (2004) Lock-gain based graph partitioning. Journal of
Heuristics 10(1):37–57



26 Raka Jovanovic et al.

Kukreja K (2013) Articulation points or cut vertices in a
graph. URL http://kartikkukreja.wordpress.com/2013/11/09/

articulation-points-or-cut-vertices-in-a-graph/

Maniezzo V, Mingozzi A, Baldacci R (1998) A bionomic approach to the
capacitated p-median problem. Journal of Heuristics 4(3):263–280, DOI
10.1023/A:1009665717611

Marinakis Y, Migdalas A, Pardalos P (2005) Expanding neighborhood grasp
for the traveling salesman problem. Computational Optimization and Ap-
plications 32(3):231–257

Morishita S, Nishizeki T (2013) Parametric power supply networks. In: Du DZ,
Zhang G (eds) Computing and Combinatorics, Lecture Notes in Computer
Science, vol 7936, Springer Berlin Heidelberg, pp 245–256

Morton AB, Mareels IM (2000) An efficient brute-force solution to the network
reconfiguration problem. IEEE Transactions on Power Delivery 15(3):996–
1000

Narayanaswamy NS, Ramakrishna G (2012) Linear time algorithm for tree
t-spanner in outerplanar graphs via supply-demand partition in trees. In:
CoRR, abs/1210.7919

Popa A (2013) Modelling the power supply network - hardness and approx-
imation. In: Chan TH, Lau L, Trevisan L (eds) Theory and Applications
of Models of Computation, Lecture Notes in Computer Science, vol 7876,
Springer Berlin Heidelberg, pp 62–71

Reinelt G, Wenger KM (2010) Generating partitions of a graph into a fixed
number of minimum weight cuts. Discrete Optimization 7(12):1 – 12

Reinelt G, Theis DO, Wenger KM (2008) Computing finest mincut partitions
of a graph and application to routing problems. Discrete Applied Mathe-
matics 156(3):385 – 396

Scheuerer S, Wendolsky R (2006) A scatter search heuristic for the capacitated
clustering problem. European Journal of Operational Research 169(2):533
– 547

Teng JH, Lu CN (2002) Feeder-switch relocation for customer interruption
cost minimization. IEEE Transactions on Power Delivery 17(1):254–259

Tupia M, Cueva R, Guanira M (2013) A grasp algorithm with 2-opt improve-
ment for job scheduling enviroment in ceramics production lines. Advances
in Information Sciences & Service Sciences 5(15):13–23


