
Appl. Math. Inf. Sci. 7, No. 3, 867-875 (2013) 867

Applied Mathematics & Information Sciences
An International Journal

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

Hybrid Seeker Optimization Algorithm for Global
Optimization
Milan Tuba1, Ivona Brajevic2, Raka Jovanovic3

1 Faculty of Computer Science, Megatrend University, Belgrade, Serbia
2 Faculty of Mathematics, University of Belgrade, Serbia
3 Institute of Physics, University of Belgrade, Pregrevica 118, Zemun, Serbia

Received: 26 Nov. 2012, Revised: 30 Nov. 2012, Accepted: 19 Jan. 2013
Published online: 1 May 2013

Abstract: Swarm intelligence algorithms have been succesfully applied to hard optimization problems. Seeker optimization algorithm
is one of the latest members of that class of metaheuristics and it has not yet been thorougly researched. Since the early versions of this
algorithm were less succesful with multimodal functions, we propose in this paper hybridization of the seeker optimization algorithm
with the well known artificial bee colony (ABC) algorithm. At certain stages we modify seeker’s position by search formulas from
the ABC algorithm and also modify the inter-subpopulation learning phase by using the binomial crossover operator. Our proposed
algorithm was tested on the complete set of 23 well-known benchmark functions. Comparisons show that our proposed algorithm
outperforms six state-of-the-art algorithms in terms of the quality of the resulting solutions as well as robustenss on most of the test
functions.

Keywords: Seeker optimization algorithm, artificial bee colony, swarm intelligence, unconstrained optimization metaheuristics, nature
inspired algorithms.

1 Introduction

Many population-based optimization algorithms have
been developed and applied to difficult optimization
problems. The success of these methods, which are
working on a set of candidate solutions and trying to
improve them, depends on their ability to maintain proper
balance between exploration and exploitation. The
exploitation refers to the ability of the algorithm to apply
the knowledge of previously discovered good solutions to
better guide the search towards the global optimum. The
exploration refers to the ability of the algorithm to
investigate the unknown and less promising regions in the
search space to avoid being trapped in local optima. A
poor balance between these two algorithm’s abilities may
result in a weak optimization method which suffers from
premature convergence or infinite random search.

Genetic algorithm (GA) inspired by Darwin’s theory
of evolution [1], differential evolution (DE) [2] which is
iteratively trying to improve a candidate solution with

This research was supported by Ministry of education and
science of Republic of Serbia, Grant III-44006.

regard to a given measure of quality, ant colony
optimization (ACO) [3] based on ant colony foraging
behavior, particle swarm optimization (PSO) [4] inspired
by the social behavior of birds or fish, artificial bee colony
(ABC) algorithm [5], [6] based on honey bees foraging
behavior, and cuckoo search (CS) [7] based on cuckoo
bird’s behavior, are among the most popular
metaheuristics which employ a population of individuals
trying to solve the problem. Pure versions of these
algorithms were later enhanced to improve the
performance in general, or for some class of the problems
[8], [9], [10], [11], [12], [13]. Sometimes they are
combined and successfully used for wide range of
problems [14], [15], [16], [17].

Swarm intelligence based algorithms represent an
important class of population-based optimization
algorithms, where ABC algorithm is one of the most
popular. Karaboga has introduced an artificial bee colony
(ABC) algorithm for numerical optimization problems
[5]. The performance of the ABC algorithm was tested
for optimization of multivariable unconstrained functions
and the results were compared with GA, PSO and particle

∗ Corresponding author e-mail: tuba@ieee.org
c⃝ 2013 NSP

Natural Sciences Publishing Cor.



868 M. Tuba, I. Brajevic, R. Jovanovic: Hybrid Seeker Optimization Algorithm for Global Optimization

swarm inspired evolutionary algorithm (PS-EA) [18]. The
results showed that ABC outperforms the other
algorithms. Since that time, ABC has been modified by
many researchers and has been applied to solve several
numerical optimization problems [19], [20], [21], [22].
There are object-oriented software implementations [23],
as well as parallelized versions [24] for unconstrained
optimization problems of the ABC metaheuristic.

Seeker optimization algorithm (SOA), based on
simulating the act of human searching, is a novel search
algorithm for unconstrained optimization problems [25].
SOA was analyzed with a challenging set of benchmark
problems, where its performance was compared to the
performance of DE and three modified versions of PSO
algorithms [26]. SOA has shown better global search
ability and faster convergence speed for most of the
chosen benchmark problems, especially for unimodal
benchmarks. For multimodal test functions the results
were not very satisfactory because it has been noticed that
for that type of problems algorithm may easily be trapped
at some local optimum. Since its invention, SOA has been
successfully applied to different problems. In [27] the
application of the SOA to tuning the structures and
parameters of artificial neural networks is presented,
while in [28] SOA-based evolutionary method is
proposed for digital IIR filter design. Also, a new
optimized model of proton exchange membrane fuel cell
(PEMFC) was proposed by using SOA [29]. Recently,
SOA was renamed to Human Group Optimization
algorithm or Human Group Optimizer (HGO), because
the term “seeker optimization algorithm” could not reflect
the essential nature of the novel algorithm of simulating
human behaviors [30].

In this paper, we propose a hybrid algorithm named
hybrid seeker optimization (HSO), which integrates
seeker optimization algorithm (SOA) with artificial bee
colony optimization (ABC) algorithm to solve
unconstrained optimization problems. The performance
of the proposed HSO algorithm has been tested on a set of
test functions and compared with SOA, ABC, DE and
three modified versions of the PSO algorithms. The
simulation results show that HSO algorithm can
outperform the other algorithms in most of the
experiments.

The organization of the rest of this paper is as follows.
In Sections 2 and 3, SOA and ABC algorithms are
described. In Section 4, our proposed hybrid seeker
optimization algorithm (HSO) is presented. Benchmark
functions are described in Section 5. In Section 6
simulation results and comparisons are presented.

2 Seeker optimization algorithm

Seeker optimization algorithm (SOA) models the
behavior of human search population based on their
memory, experience, uncertainty reasoning and
communication with each other [25]. Therefore the

individual of this population is called seeker or searcher.
In the SOA, the total population is equally categorized
into three subpopulations according to the indexes of the
seekers. All the seekers in the same subpopulation
constitute a neighborhood which represents the social
component for the social sharing of information.

Seeker i has the following attributes: the current
position xi = (xi1, xi2, ..., xiD), the dimension of the
problem D, the iteration number t, the personal best
position pi,best so far, and the neighborhood best position
gbest so far. The algorithm uses search direction and step
length to update the positions of seekers. In the SOA, the
search direction is determined by seeker’s egoistic
behavior, altruistic behavior and pro-activeness behavior,
while step length is given by uncertainty reasoning
behavior. Search direction αij and step length dij are
separately computed for each individual i on each
dimension j at each iteration t, where αij ≥ 0 and
dij ∈ {−1, 0, 1}. At each iteration the position of each
seeker is updated by:

xij(t+ 1) = xij(t) + αij(t) · dij (1)

where i = 1, 2, ..., SN, j = 1, 2, ..., D (SN is the
number of seekers). Also, at each iteration, the current
positions of the worst two individuals of each
subpopulation are exchanged with the best ones in each of
the other two subpopulations, which is called
inter-subpopulation learning.

The pseudo-code for the SOA is:

t = 0;
Generate SN positions uniformly and randomly in the
search space;
Evaluate all the seekers and save the historical best
position;
repeat

Compute search direction and step length for each
seeker;
Update each seeker’s position using Eq. (1);
Evaluate all the seekers and save the historical best
position;
Implement the inter-subpopulation learning
operation;
t = t+ 1 ;

until t = Tmax

More detailed explanation of calculation of search
direction and step length follows.

2.1 Calculation of the search direction

Seeker cooperative behavior types that are modeled are:
egoistic, altruistic and pro-active behavior. Seeker’s
behavior is considered egoistic if he believes that he
should go toward his personal best position pi,best
through cognitive learning. For reaching the desired goal,
by altruistic behavior, seekers want to communicate with

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 7, No. 3, 867-875 (2013) / www.naturalspublishing.com/Journals.asp 869

each other and adjust their behaviors in response to other
seekers in the same neighborhood region. If a seeker
wants to change his search direction and exhibit
goal-directed behavior according to his past behavior,
then it is considered that his behavior is pro-active. The
expression for search direction di, which models these
types of behavior, for the ith seeker is:

di = w · sign(pi,best − xi) + r1 · (gbest − xi) +
+ r2 · (xi(t1))− xi(t2)))

(2)

where the function sign() is a signum function on each
dimension of the input vector, w is the inertia weight,
t1, t2 ∈ {t, t− 1, t− 2}, x(t1) and x(t2) are the best and
the worst positions in the set x(t), x(t− 1), x(t− 2)
respectively, and r1 and r2 are real numbers chosen
uniformly and randomly in the range [0,1]. The balance
between global and local exploration and exploitation is
provided by reducing the value of inertia weight. Here,
inertia weight is linearly decreased from 0.9 to 0.1 during
a run.

2.2 Calculation of the step size

Fuzzy reasoning is used to generate the step length
because the uncertain reasoning of human searching. The
uncertainty rule of intelligent search is described as “If
{function value is small}, then {search radius is small}”.
The linear membership function was used for “short” of
“step length”. The vector µi, which is the grade of
membership from cloud model and fuzzy set theory,
needs to be calculated in order to calculate the step
length. It is inverse proportional to the objective function
value of xi. Hence, the best position so far has the
maximum µmax = 1.0, while other positions have a
µ < 1.0, and the worst position so far has the minimum
µmin. The expression is presented as:

µi = µmax − S − Ii
S − 1

· (µmax − µmin) (3)

where S denotes the size of the subpopulation to which
the seekers belong, Ii is the sequence number of xi after
sorting the objective function values in ascending order.
Besides the vector µi , we need to calculate vector δi by:

δi = w · abs(xmax − xmin) (4)

where the absolute value of the input vector as the
corresponding output vector is represented by the symbol
abs(), xmax and xmin are the positions of the best and the
worst seeker in the subpopulation to which the ith seeker
belongs, respectively. In order to introduce the
randomness in each variable and to improve the local
search capability, the following equation is introduced to
convert µi into a vector with elements as given by:

µij = rand(µi, 1), j = 1, 2, ..., D (5)

The equation used for generating the step length αi for
ith seeker is :

αi = δi ·
√
− ln(µi) (6)

3 Artificial bee colony algorithm

In ABC algorithm the colony of artificial bees consists of
three groups of bees: employed bees, onlookers and
scouts. All bees that are currently exploiting a food source
are known as employed bees. The number of the
employed bees is equal to the number of food sources and
an employed bee is assigned to one of the sources. Each
food source is a possible solution for the problem and the
nectar amount of a food source represents the quality of
the solution represented by the fitness value. Onlookers
are those bees that are waiting in the hive for the
employed bees to share information about the food
sources presently being exploited by them, while scouts
are those bees that are searching for new food sources
randomly. The number of onlooker and employed bees is
the same. Onlookers are allocated to a food source based
on probability. Like the employed bees, onlookers
calculate a new solution from its food source. After
certain number of cycles, if food source cannot be further
improved, it is abandoned and replaced by randomly
generated food source. This is called exploration process
and it is performed by the scout bees. Hence, employed
and onlooker bees carry out exploitation process, while
scout bees perform exploration. Short pseudocode of the
ABC algorithm is given below:

Initialize the population of solutions
Evaluate the population
t = 0;
repeat

Employed bee phase
Calculate probabilities for onlookers
Onlooker bee phase
Scout bee phase
Memorize the best solution achieved so far
t = t+ 1 ;

until t = Tmax

In employed bee phase an update process is performed
for each solution in order to produce a new solution:

vij = xij + rand · (xij − xkj) (7)

where k = 1, 2, ..., SN , j = 1, 2, ..., D are randomly
chosen indexes, k ̸= i, and rand is a random number
between [-1,1] (SN is the number of solutions, D is the
dimension of the problem). Then, a greedy selection is
done between xi and vi, which completes the update
process. The main distinction between the employed bee
phase and the onlooker bee phase is that every solution in
the employed bee phase involves the update process,
while only the selected solutions have the opportunity to
update in the onlooker bee phase. An inactive solution
refers to a solution that does not change over a certain
number of generations. In scout bee phase one of the most
inactive solutions is selected and replaced by a new
randomly generated solution.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



870 M. Tuba, I. Brajevic, R. Jovanovic: Hybrid Seeker Optimization Algorithm for Global Optimization

4 Our Proposed Approach: HSO

Hybrid seeker optimization (HSO) algorithm combines
two different solution search equations of the ABC
algorithm and solution search equation of the SOA in
order to improve the performance of SOA and ABC
algorithms. Also, HSO algorithm implements the
modified inter-subpopulation learning using the binomial
crossover operator. Therefore, HSO algorithm has
changed the phase of updating seeker’s positions and
inter-subpopulation learning phase. The initialization
phase remained the same as in SOA. Except common
control parameters (solution number and maximum
number of iterations), the HSO algorithm keeps control
parameter SubpopN (subpopulation number) from SOA,
while it does not include any other control parameter
from the ABC algorithm. The introduced modifications
are described as follows.

4.1 Modification of updating seeker’s positions

In the first 55% (determined empiricaly) of the maximum
number of iterations the HSO algorithm is searching for
candidate solutions using search formula of ABC which
is given by Eq. (7). After each candidate solution is
produced and then evaluated, its performance is compared
with the old solution and a greedy selection mechanism is
employed as the selection operation between the old and
the new candidate. If the new solution has better function
value than the old candidate solution, it replaces the old
one in the memory. In the remaining iterations, HSO
chooses between search equation Eq. (1) which is used in
SOA and the variant of ABC search equation which can
be described as:

vij =

{
xij + randi · (xij − xkj) , if Rj < 0.5

xij , otherwise (8)

where Rj is a random number within [0, 1), k is
randomly chosen index from the whole population and
has to be different from i, and randi is a random number
between [-1, 1) and j = 1, 2, ..., D. The similar search
equation is used in the ABC algorithm extended for
constrained optimization problems, but the main
difference is that in the Eq. (8) the value randi is kept
fixed for every j = 1, 2, ..., D. Also in [20], this
modification is used in order to improve the ABC
algorithm for the engineering optimization problems.

The distinction between the Eq. (7) and the Eq. (8) is
in the number of the optimization parameters which will
be changed. In the basic ABC, while producing a new
solution, vi , changing only one parameter of the parent
solution xi results in a slow convergence rate. In order to
overcome this disadvantage, we set the probability of
changing the optimization parameter to 0.5. Also, in these
iterations, the greedy selection mechanism is not used
between the old and the new candidate solution. Hence,
the diversity in the population is increased.

In the SOA search equation which is used in HSO, the
Eq. (4) for calculating vector δi is changed. In [26] it has
been concluded that the vector δ is a sensitive parameter
and that proposed calculation of its values was not
suitable for optimization of multimodal functions. In
order to overcome this obstacle, δi is calculated by:

δ = w · abs(xmax − xrand) (9)

where xrand are the positions of the seekers in the
same subpopulation where the solution i belongs. Also, in
order to further increase the diversity of the solutions, and
hence of the population, in the HSO algorithm the inertia
weight parameter w is linearly decreased from 0.9 to 0.7
during a run.

The HSO included a new control parameter which is
called behavior rate (BR) in order to select the search
equation in the following way: if a random number
between [0,1) is less then BR the SOA search equation is
used, otherwise the Eq. (8) is performed.

4.2 Modification of inter-subpopulation
learning

In the modified inter-subpopulation learning the positions
of seekers with the lowest objective function values of
each subpopulation l are combined with the positions of
seekers with the highest objective function values of
(l+t) mod SubpopN subpopulations respectively, where
t = 1, 2, 3, ..., NSC. NSC denotes the number of the
worst seekers of each population which are combined
with the best seekers. The appropriate seekers are
combined using the following binomial crossover
operator as expressed in:

xlnjworst =

{
xij ,best , if Rj < 0.5
xlnj,worst , otherwise (10)

In Eq. (10) Rj is random number within [0,1),
xlnjworst is denoted as the jth variable of the nth worst
position in the lth subpopulation, xij ,best is the jth

variable of the best position in the ith subpopulation.
It can be concluded that in the HSO algorithm we

have two new control parameters in comparison with the
original SOA: the behavior rate (BR) and the number of
seekers of each subpopulation for combination (NSC).
Behavior rate parameter controls which of the search
equations for producing new population will be used. In
the inter-subpopulation learning of SOA it has been
noticed that it may not always bring the benefits for
multimodal functions since it may attract all agents
towards a local optimal solution. Hence, in order to
provide better balance between exploitation and
exploration abilities of the algorithm, the described
modifications are introduced.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 7, No. 3, 867-875 (2013) / www.naturalspublishing.com/Journals.asp 871

Table 1 Benchmark functions used in experiments

F Name C D S fmin
f1 Sphere US 30 [-5.12, 5.12]D 0
f2 Schwefel 2.22 UN 30 [-10, 10]D 0
f3 Schwefel 1.2 UN 30 [-100, 100]D 0
f4 Schwefel 2.21 UN 30 [-100, 100]D 0
f5 Generalized Rosenbrock UN 30 [-30, 30]D 0
f6 Step US 30 [-100, 100]D 0
f7 Quartic Function with Noise US 30 [-1.28, 1.28]D 0
f8 Generalized Schwefel 2.26 MS 30 [-500, 500]D -12569.5
f9 Generalized Rastrigin MS 30 [-5.12, 5.12]D 0
f10 Ackley MN 30 [-32, 32]D 0
f11 Generalized Griewank MN 30 [-600, 600]D 0
f12 Penalized MN 30 [-50, 50]D 0
f13 Penalized2 MN 30 [-50, 50]D 0
f14 Shekel Foxholes MS 2 [-65.54, 65.54]D 0.998
f15 Kowalik MN 4 [-5, 5]D 3.075e-4
f16 Six Hump Camel Back MN 2 [-5, 5]D -1.0316
f17 Branin MN 2 [-5, 15]D 0.398
f18 Goldstein-Price MN 2 [-2, 2]D 3
f19 Hertman3 MN 3 [0, 1]D -3.86
f20 Hertman6 MN 6 [0, 1]D -3.32
f21 Shekel5 MN 4 [0, 10]D -10.1532
f22 Shekel7 MN 4 [0, 10]D -10.4029
f23 Shekel10 MN 4 [0, 10]D -10.5364

5 Benchmark functions

To test the performance of the proposed HSO algorithm a
test set of well known twenty three benchmark functions
is used. Using the large test set is usual when the test
involves function optimization, in order to assure a fair
comparison between different optimization algorithms.
When a test set is too small there is a chance that the
algorithm is optimized toward the chosen set of problems.
In that case making a general conclusion could be
difficult, since such bias might not be useful for other
problems of interest. The test suite used in our
experiments is introduced in [31], and it is large enough
to include many different types of problems such as
unimodal, multimodal, regular, irregular, separable,
non-separable and multidimensional.

The function is called multimodal if it has more than
one local optimum. Multimodal functions are used to test
the ability of algorithms to escape from local optimum
and locate a good near-global optimum. Therefore in this
case the final results are much more important than the
convergence rates. Another group of test problems is
separable/non-separable functions. A p-variable separable
function can be expressed as the sum of p functions of
one variable, while non-separable functions cannot be
written in this form. Non-separable functions are more
difficult than the separable functions, since these
functions have interrelation among their variables.

The benchmark functions are given in Table 1.
Characteristics of each function are given under the
column titled C. If the function is multimodal,
abbreviation M is used to indicate this specification, while
U means that the function is unimodal. Also, in this
column, letter S refers that the function is separable,
while letter N that indicates function is non-separable.
Further, in Table 1, D denotes the dimensionality of the
test problem, S denotes the ranges of the variables, and
fmin is a function value of the global optimum. From
Table 1 it can be seen that in this test set 16 functions are
multimodal, 7 functions are unimodal, 4 functions are
separable and 19 functions are non-separable.

6 Experimental Results

The proposed HSO algorithm has been implemented in
Java programming language. We used JDK (Java
Development Kit) version 6 and Eclipse platform SDK
3.4.2 to develop the application which includes
user-friendly graphical user interface (GUI). ABC
algorithm is also implemented and tested on these test
functions in order to compare the results. Tests were done
on an Intel(R) Core(TM) 2 Duo CPU E8500@4-GHz
computer with 4 GB RAM memory.

The performance of our proposed hybridized
algorithm is compared with the performance of SOA and
ABC algorithma. In [26] the SOA results were compared

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



872 M. Tuba, I. Brajevic, R. Jovanovic: Hybrid Seeker Optimization Algorithm for Global Optimization

with results achieved by differential evolution (DE)
algorithm [2], particle swarm optimization with inertia
weight (PSO-w) [32], PSO with constriction factor
(PSO-cf) [33], comprehensive learning particle swarm
optimizer (CLPSO) [34]. We include results for these
algorithms for comparison with the proposed HSO.

In all experiments for each algorithms the same size of
population of 100 is used and the algorithms were repeated
50 runs. The maximum number of generations (G) for each
tested problem is the same for each algorithm and their
values are listed in Tables 2, 3, 4 and 5. In ABC algorithm
the value of control parameter limit is taken SN*D*0.5.
In our proposed approach the number of subpopulations
(SubpopNum) is set to 10 and the values of new control
parameters are: the behavior rate (BR) is 0.5, the number
of seekers of each subpopulation for combination (NSC) is
0.3*SP/SubpopNum.

Table 2 shows the best, mean values and standard
deviations for 50 independent runs for functions f1 − f7.
From Tables 1 and 2 it can be seen that SOA achieved
better results for four out of seven unimodal functions
(f1, f2, f4 and f7) in terms of search precision and
robustness. For the test functions f3 and f5 HSO
algorithm has better results, while for the function f6 both
algorithms perform equally. Although HSO does not
reach better results than SOA for the majority of tested
unimodal function, its performance is significantly better
for the problem f5. If we compare the performance of
HSO algorithm with the performance of ABC algorithm,
we can see that HSO algorithm reached better or equal
results for all tested unimodal functions. Compared with
DE and three variants of PSO, we found that our
proposed approach shows better performance for the
majority of tested unimodal functions.

In [26] it was concluded that for multimodal test
functions the results of SOA were not very satisfactory
because it was noticed that for this type of problems
algorithm may be stuck at a local minimum. Table 3 show
the comparative statistical results for these algorithms,
obtained for multimodal functions with many local
minima (problems f8 − f13). From Table 3 it can be seen
that HSO algorithm enhances the performance of SOA for
functions f8, f12 and f13, but also keeps its good
performance for problems f10 and f11. For the problems
f10 and f11 SOA performs better than HSO at only
fine-grained search. For the problem f9, SOA and HSO
perform the same. When comparing our approach with
respect to ABC, we can conclude that HSO algorithm
achieved better or equal results for all tested multimodal
problems with many local minima. From Table 3, it is
clear that HSO algorithm performs significantly better
than DE, PSO-w and PSO-cf consistently for these
functions.

Table 4 and Table 5 show the comparative statistical
results of these algorithms, obtained for multimodal
functions with only a few local minima (problems
f14 − f23). From Table 4 and Table 5 it can be seen that
SOA is outperformed by HSO algorithm for functions f14

Table 2 Statistical results for 50 runs obtained by DE, PSO-w,
PSO-cf, CLPSO, ABC, SOA and HSO algorithms for functions
f1-f7

Func. Algor. Best Mean Std. Dev.
f1 DE 5.20e14 3.74e13 3.94e13
(G=1500) PSO-w 1.79e-15 1.66e-13 4.59e-13

PSO-cf 4.50e-45 2.28e-41 4.54e-41
CLPSO 3.22e-13 2.73e-12 1.68e-12
SOA 1.94e-83 1.02e-76 6.51e-76
ABC 3.04e-16 5.09e-16 4.82e-17
HSO 7.64e-26 1.42e-24 3.33e-24

f2 DE 6.17e-10 3.74e-09 2.20e-09
(G=2000) PSO-w 5.36e-12 6.67e-11 7.98e-11

PSO-cf 3.29e-29 1.60e-00 4.22e-00
CLPSO 1.63e-09 3.82e-09 1.73e-09
SOA 3.40e-65 4.22e-63 8.25e-63
ABC 1.85e-15 2.57e-15 5.01e-16
HSO 4.84e-18 1.39e-17 8.52e-18

f3 DE 1.10e-11 1.85e-10 1.49e-10
(G=5000) PSO-w 2.00e-02 2.40e-01 2.23e-01

PSO-cf 3.01e-19 3.33e+02 1.78e+03
CLPSO 3.37e-02 4.20e-01 3.62e-01
SOA 5.85e-35 4.26e-25 2.15e-24
ABC 2.65e-16 4.21e-16 8.04e-17
HSO 5.12e-86 1.21e-83 5.19E-83

f4 DE 6.83e-13 3.10e-02 8.70e-02
(G=5000) PSO-w 1.18e-02 7.02e-02 4.66e-02

PSO-cf 1.48e-16 7.13e-13 2.19e-12
CLPSO 6.88e-04 2.05e-03 1.25e-03
SOA 1.55e-53 1.02e-48 2.46e-48
ABC 6.56e-02 1.51e-01 2.12e-01
HSO 1.04e-04 1.77e-02 3.65e-02

f5 DE 0 3.47e-31 2.45e-30
(G=20000) PSO-w 1.05e-02 1.82e+03 1.27e+03

PSO-cf 1.87e-12 7.32e+03 2.46e+03
CLPSO 1.68e-01 3.63e+01 3.12e+01
SOA 2.42e+01 2.54e+01 7.87e-01
ABC 8.96e-05 3.06e-02 4.68e-02
HSO 1.90e-06 5.70e-04 1.77e-03

f6 DE 0 0 0
(G=1500) PSO-w 0 0 0

PSO-cf 0 0 0
CLPSO 0 0 0
SOA 0 0 0
ABC 0 0 0
HSO 0 0 0

f7 DE 1.97e-03 4.66e-03 1.30e-03
(G=3000) PSO-w 2.99e-03 6.28e-03 2.17e-03

PSO-cf 9.86e-04 2.45e-03 1.38e-03
CLPSO 1.03e-03 2.98e-03 9.72e-04
SOA 2.66e-05 1.08e-04 6.44e-05
ABC 1.52e-02 2.95e-02 7.35e-03
HSO 3.29e-04 8.87e-04 4.46e-04

and f19 − f23. For the rest of the tested functions with
only a few local minima, HSO achieved the same mean
values as SOA, which are equal to the optimal values, but

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 7, No. 3, 867-875 (2013) / www.naturalspublishing.com/Journals.asp 873

Table 3 Statistical results for 50 runs obtained by DE, PSO-w,
PSO-cf, CLPSO, ABC, SOA and HSO algorithms for functions
f8-f13

Func. Algor. Best Mean Std. Dev.
f8 DE -12096 -11234 455.5
(G=9000) PSO-w -10495 -9363.3 445.3

PSO-cf -10398 -9026.1 656.9
CLPSO -12569 -12271 177.8
SOA -11760 -10126 669.5
ABC -12569 -12569 4.82e-17
HSO -12569 -12569 3.33e-24

f9 DE 9.95e-00 8.10e+01 3.23e+01
(G=5000) PSO-w 7.96e-00 2.10e+01 8.01e-00

PSO-cf 2.69e+01 6.17e+01 1.84e+01
CLPSO 2.85e-10 1.34e-09 8.57e-10
SOA 0 0 0
ABC 0 0 0
HSO 0 0 0

f10 DE 5.79e-08 1.71e-07 7.66e-08
(G=1500) PSO-w 1.39e-07 1.66e-06 2.66e-06

PSO-cf 2.67e-15 5.59e-01 7.30e-01
CLPSO 3.31e-06 6.81e-06 1.94e-06
SOA -4.44e-15 -4.44e-15 0
ABC 7.44e-11 6.43e-10 4.73e-10
HSO 8.36e-11 2.13e-11 4.45e-11

f11 DE 0 4.44e-04 1.77e-03
(G=2000) PSO-w 0 1.59e-01 2.19e-02

PSO-cf 0 1.11e-02 1.25e-02
CLPSO 1.64e-14 2.96e-04 1.46e-03
SOA 0 0 0
ABC 0 8.22e-17 8.55e-17
HSO 0 6.66e-18 3.45e-17

f12 DE 3.40e-15 3.67e-14 4.07e-14
(G=1500) PSO-w 8.85e-15 2.21e-00 5.52e-00

PSO-cf 1.57e-32 1.66e+01 1.81e+01
CLPSO 8.80e-12 4.80e-11 3.96e-11
SOA 3.04e-04 1.28e-02 7.67e-03
ABC 3.31e-16 5.15e-16 6.44e-17
HSO 6.67e-25 2.11e-23 2.77e-23

f13 DE 4.13e-14 2.91e-13 2.88e-13
(G=1500) PSO-w 8.23e-07 5.72e+02 3.57e+02

PSO-cf 1.35e-32 2.40e+02 2.40e+02
CLPSO 1.18e-10 6.42e-10 4.46e-10
SOA 2.77e-03 1.89e-01 1.30e-01
ABC 4.48e-16 5.60e-13 2.09e-11
HSO 1.47e-22 2.05e-20 2.74e-20

with better standard deviations. If we compare the results
of HSO and ABC algorithms, we can conclude that both
algorithms perform very similar for problems f14 − f23.
HSO reached slightly better results for problems f15 and
f23. Compared with DE and three variants of PSO, we
found that our proposed approach shows better or equal
performance for the majority of tested multimodal
functions with only a few local minima.

Table 4 Statistical results for 50 runs obtained by DE, PSO-w,
PSO-cf, CLPSO, ABC, SOA and HSO algorithms for functions
f14-f18

Func. Algor. Best Mean Std.Dev.
f14 DE 0.998 0.998 2.88e-16
(G=100)PSO-w 0.998 1.026 1.52e-01

PSO-cf 0.998 0.998 8.69e-13
CLPSO 0.998 0.998 5.63e-10
SOA 0.998 1.199 5.30e-01
ABC 0.998 0.998 1.05e-15
HSO 0.998 0.998 2.68e-14

f15 DE 3.0749e-04 4.7231e-02 3.55e-04
(G=4000)PSO-w 3.0749e-04 2.0218e-03 5.47e-03

PSO-cf 3.0749e-04 2.0225e-03 5.47e-03
CLPSO 3.2847e-04 5.3715e-04 6.99e-05
SOA 3.0749e-04 3.0749e-04 1.58e-09
ABC 3.0824e-04 3.9940e-04 5.15e-05
HSO 3.0749e-04 3.0749e-04 5.94e-19

f16 DE -1.0316 -1.0316 6.77e-13
(G=100)PSO-w -1.0316 -1.0316 8.80e-12

PSO-cf -1.0316 -1.0316 5.92e-12
CLPSO -1.0316 -1.0316 8.50e-14
SOA -1.0316 -1.0316 6.73e-06
ABC -1.0316 -1.0316 9.47e-15
HSO -1.0316 -1.0316 1.01e-07

f17 DE 0.39789 0.39789 1.14e-08
(G=100)PSO-w 0.39789 0.39789 2.33e-12

PSO-cf 0.39789 0.39789 5.25e-12
CLPSO 0.39789 0.39789 1.08e-13
SOA 0.39789 0.39838 5.14e-04
ABC 0.39789 0.39789 8.42e-08
HSO 0.39789 0.39789 4.30e-06

f18 DE 3 3 3.31e-15
(G=100)PSO-w 3 3 2.50e-11

PSO-cf 3 3 2.05e-11
CLPSO 3 3 5.54e-13
SOA 3 3.0001 1.17e-04
ABC 3 3 6.77e-07
HSO 3 3 3.38e-11

7 Conclusion

In this paper we have presented hybridization of the
seeker optimization algorithm with the well known ABC
algorithm. At earlier stages we use search formulas from
the ABC and also modify the inter-subpopulation learning
phase by using the binomial crossover operator. Our
proposed HSO algorithm has been implemented and
tested on complete set of well-known 23 benchmark
functions taken from literature. The results show that our
algorithm performs better to SOA, ABC, standard DE and
three modified particle swarm optimization (PSO)
algorithms considering the quality of the solutions found
and robustness for the most benchmark problems. Our
hybridization successfully overcome SOA algorithm’s
tendency to prematurely converge to local optima for

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



874 M. Tuba, I. Brajevic, R. Jovanovic: Hybrid Seeker Optimization Algorithm for Global Optimization

Table 5 Statistical results for 50 runs obtained by DE, PSO-w,
PSO-cf, CLPSO, ABC, SOA and HSO algorithms for functions
f19-f23

Func. Algor. Best Mean Std. Dev.
f19 DE -3.8628 -3.8628 1.97e-15
(G=100) PSO-w -3.8628 -3.8628 2.66e-11

PSO-cf -3.8628 -3.8628 2.92e-12
CLPSO -3.8628 -3.8628 6.07e-12
SOA -3.8628 -3.8621 6.69e-04
ABC -3.8628 -3.8628 5.00e-11
HSO -3.8628 -3.8628 5.31e-11

f20 DE -3.322 -3.215 0.036
(G=200) PSO-w -3.322 -3.256 0.066

PSO-cf -3.322 -3.277 0.058
CLPSO -3.322 -3.274 0.059
SOA -3.321 -3.298 0.045
ABC -3.322 -3.322 2.24e-11
HSO -3.322 -3.322 1.45e-11

f21 DE -10.15 -10.15 4.67e-06
(G=100) PSO-w -6.57 -2.01 1.10e-00

PSO-cf -10.15 -6.23 3.25e-00
CLPSO -10.14 -9.57 4.28e-01
SOA -10.15 -9.67 4.96e-01
ABC -10.15 -10.15 6.92e-04
HSO -10.15 -10.15 1.02e-04

f22 DE -10.40 -10.40 2.07e-07
(G=100) PSO-w -4.61 -2.14 8.34e-01

PSO-cf -10.40 -6.47 3.56e-00
CLPSO -10.34 -9.40 1.12e-00
SOA -10.40 -9.79 4.48e-01
ABC -10.40 -10.40 6.92e-04
HSO -10.40 -10.40 2.07e-05

f23 DE -10.54 -10.54 3.21e-06
(G=100) PSO-w -6.63 -2.20 1.01e-00

PSO-cf -10.54 -8.11 3.47e-01
CLPSO -10.46 -9.47 1.25e-00
SOA -10.54 -9.72 4.72e-01
ABC -10.54 -10.53 3.14e-03
HSO -10.54 -10.54 7.26e-04

multimodal functions. Further tuning and adjustments can
be included in the future research.

References

[1] J. Holland, Adaptation in Natural and Artificial Systems
(MIT Press, Cambridge, MA, 1992).

[2] R. Storn, K. Price: Differential evolution-a simple and
efficient heuristic for global optimization over continuous
spaces, Journal of Global Optimization, 11(4), 341-359
(1997)

[3] M. Dorigo, L.M. Gambardella: Ant colonies for the
traveling salesman problem, BioSystems, 43(2), 73-81
(1997)

[4] J. Kennedy, R.C. Eberhart: Particle swarm optimization,
Proc. of the 1995 IEEE International Conference on Neural
Networks, 4, 1942-1948 (1995).

[5] D. Karaboga, An idea based on honey bee swarm
for numerical optimization, Technical report-tr06, Erciyes
University, Engineering FacultyMA, Computer Engineering
Department, 2005

[6] D. Karaboga, B. Akay: A comparative study of Artificial
Bee Colony algorithm, Applied Mathematics and
Computation, 214(1), 108-132 (2009)

[7] X. S. Yang, S. Deb: Cuckoo search via Lvy flights, Proc.
of World Congress on Nature & Biologically Inspired
Computing, 210 -214 (2009)

[8] R. Jovanovic, M. Tuba: An ant colony optimization
algorithm with improved pheromone correction strategy for
the minimum weight vertex cover problem, Applied Soft
Computing, 11(8), 5360-5366 (2011)

[9] R. Jovanovic, M. Tuba: Ant Colony Optimization
Algorithm with Pheromone Correction Strategy for
Minimum Connected Dominating Set Problem, Computer
Science and Information Systems (ComSIS), 9(4),
DOI:10.2298/CSIS110927038J (2012)

[10] M. Tuba, R. Jovanovic: An Analysis of Different Variations
of Ant Colony Optimization to the Minimum Weight Vertex
Cover Problem, WSEAS Transactions on Information
Science and Applications, 6(6), 936-945 (2009)

[11] R. Cheng, M. Yao : Particle Swarm Optimizer with Time-
Varying Parameters based on a Novel Operator, Applied
Mathematics & Information Sciences, 5(2), 33-38 (2011)

[12] M. Tuba, M. Subotic, N. Stanarevic: Performance of
a modified cuckoo search algorithm for unconstrained
optimization problems, WSEAS Transactions on Systems,
11(2), 62-74 (2012)

[13] M. Tuba, N. Bacanin and N. Stanarevic: Adjusted artificial
bee colony (ABC) algorithm for engineering problems,
WSEAS Transaction on Computers, 11(4), 111-120 (2012)

[14] A. Martinez-Estudillo, C. Hervas-Martinez, F. Martinez-
Estudillo, N.Garcia-Pedrajas: Hybridization of Evolutionary
Algorithms and Local Search by Means of a Clustering
Method, IEEE transactions on systems, man and cybernetics
part B: Cybernetics, 36(3), 534-545 (2005)

[15] YM. Wang, DM. Wang, XX. Zhong, GQ. Shi: Modified
Particle Swarm Algorithm for Radiation Properties of Semi-
transparent Rectangular Material, Applied Mathematics &
Information Sciences, 5(2), 227-233 (2011)

[16] HC. Li, YP. Wang: An Evolutionary Algorithm with
Local Search for Convex Quadratic Bilevel Programming
Problems, Applied Mathematics & Information Sciences,
5(2), 139-146 (2011)

[17] JH. Gao, R. Shan: A New Method for Modification
Consistency of the Judgment Matrix Based on Genetic Ant
Algorithm, Applied Mathematics & Information Sciences,
6(1), 35-39 (2012)

[18] D. Karaboga, B. Basturk: A powerful and efficient algorithm
for numerical function optimization: Artificial bee colony
(abc) algorithm, Journal of Global Optimization, 39(3), 459-
471 (2007)

[19] N. Bacanin, M. Tuba: Artificial Bee Colony (ABC)
Algorithm for Constrained Optimization Improved with
Genetic Operators, Studies in Informatics and Control,
21(2), 137-146 (2012)

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 7, No. 3, 867-875 (2013) / www.naturalspublishing.com/Journals.asp 875

[20] I.Brajevic, M. Tuba: An upgraded artificial bee colony
algorithm (ABC) for constrained optimization problems,
Journal of Intelligent Manufacturing, published Online
First, DOI: 10.1007/s10845-011-0621-6, (2012)

[21] I. Brajevic, M. Tuba, M. Subotic: Performance of the
improved artificial bee colony algorithm on standard
engineering constrained problems, International Journal of
Mathematics and Computers in Simulation, 5(2), 135-143
(2011)

[22] N. Stanarevic, M. Tuba, N. Bacanin: Modified artificial bee
colony algorithm for constrained problems optimization,
International Journal of Mathematical Models and Methods
in Applied Sciences, 5(3), 644-651 (2011)

[23] N. Bacanin, M. Tuba, I. Brajevic: Performance of object-
oriented software system for improved artificial bee colony
optimization, International Journal of Mathematics and
Computers in Simulation, 5(2), 154-162 (2011)

[24] M. Subotic, M. Tuba, N. Stanarevic: Different approaches
in parallelization of the artificial bee colony algorithm,
International Journal of Mathematical Models and Methods
in Applied Sciences, 5(4), 755-762 (2011)

[25] C. Dai, Y. Zhu, W. Chen: Seeker Optimization Algorithm,
Lecture Notes in Computer Science, 4456, 167-176 (2007)

[26] C. Dai, W. Chen, Y. Song, Y. Zhu: Seeker optimization
algorithm: a novel stochastic search algorithm for global
numerical optimization, Journal of Systems Engineering
and Electronics, 21(2), 300-311 (2010)

[27] C. Dai, W. Chen, Y. Zhu, Z. Jiang, Z. You: Seeker
optimization algorithm for tuning the structure and
parameters of neural networks, Neurocomputing, 74(6),
876-883 (2011)

[28] C. Dai, W. Chen, Y. Zhu: Seeker optimization algorithm
for digital IIR filter design, IEEE Transactions on Industrial
Electronics, 57(5), 1710-1718 (2010)

[29] C. Dai, Z. Cheng, Q. Li, Z. Jiang, J. Jia: Seeker
optimization algorithm for global optimization: A case study
on optimal modelling of proton exchange membrane fuel
cell (PEMFC), International Journal of Electrical Power and
Energy Systems, 33(3), 369-376 (2011)

[30] C. Dai, W. Chen, L. Ran, Y. Zhang, Y. Du: Human Group
Optimizer with Local Search, Lecture Notes in Computer
Science, 6728, 310-320 (2011)

[31] J. Brest, S. Greiner, B. Boskovic: Self-adapting control
parameters in differential evolution: a comparative study
on numerical benchmark problems, IEEE Trans. on
Evolutionary Computation, 10(6), 646-657 (2006)

[32] Y. Shi, R. Eberhart: Empirical study of particle swarm
optimization, Proc. of the Congress on Evolutionary
Computation, 3, 1945-1950 (1999)

[33] M. Clerc, J. Kennedy: The particle swarm - explosion,
stability, and convergence in a multidimensional complex
space, IEEE Trans. on Evolutionary Computation, 6(1), 58-
73 (2002)

[34] J. J. Liang, A. K. Qin, P. N. Suganthan: Comprehensive
learning particle swarm optimizer for global optimization
of multimodal functions, IEEE Trans. on Evolutionary
Computation, 10(3), 67-82 (2006)

Milan Tuba is Professor
of Computer Science and
Provost for Mathematical,
Natural and Technical
sciences at Megatrend
University of Belgrade. He
received B. S. in Math., M. S.
in Math., M. S., M. Ph., Ph.
D. in Computer Science from
University of Belgrade and
New York University. From
1983 to 1994 he was in the

U.S.A. at Vanderbilt University in Nashville, Courant
Institute of Mathematical Sciences, New York University
and Cooper Union Graduate School of Engineering, New
York. From 1994 he was Professor of Computer Science
and Director of Computer Center at University of
Belgrade, and from 2004 also a Dean of the College of
Computer Science, Megatrend University Belgrade. His
research interest includes mathematical, queuing theory
and heuristic optimizations applied to computer networks,
image processing and combinatorial problems. He has
been an invited speaker of number of conferences and
member of the editorial board or scientific committee of
number of scientific journals and conferences and has
published more than 100 scientific papers.

Ivona Brajevic received B.S.
in mathematics in 2006 and
M.S. in mathematics in 2008
from University of Belgrade,
Faculty of Mathematics.
She is currently Ph.D. student
at Faculty of Mathematics,
Computer science
department, University
of Belgrade and works as
teaching assistant at College

of Business and Economy in Belgrade. She is the
coauthor of seven scientific papers. Her current research
interest includes nature inspired metaheuristics.

Raka Jovanovic received
Ph. D. from University
of Belgrade, Faculty of
Mathematics in 2012. Worked
as a research associate
at the Institute of Physics,
University of Belgrade and at
Texas AM University at Qatar
2007-2011. Has published
more then 25 articles in

international journals and conference proceedings.
Research interests: Optimization Problems, Data
Compression, Image Processing, Numeric Simulation and
Fractal Imaging.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.


