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Abstract—In this paper we propose a hybridized approach
for finding high quality artificial neural network (ANN) for
calculating hourly estimates of solar irradiance. These properties
are essential for performance analysis of solar based energy
generation. To be more precise the hourly global horizontal
irradiance (GHI), direct normal irradiance (DNI) and diffuse
horizontal irradiance (DHI) are estimated based on ANNs which
are trained using satellite and ground measurement data. In
the proposed method we explore the effect of combining the
measured data with properties derived from the standard phys-
ical models. The performance of the method is improved by
using a genetic algorithm in two ways. First by selecting the
parameters that are used for training the ANN. Secondly by
adapting the size of the hidden layer of the ANN based on the
number of selected input parameters. The adaptive size based
approach proves to be especially suitable for ANN ensembles.
In our computational experiments we evaluate the effectiveness
of the proposed method on feedforward neural network. The
results show that the adaptability of the ANN manages to
notably improve the performance when compared to the standard
approach using a fixed size of the hidden layer.

Index Terms—Global solar radiation, Artificial neural net-
work, Ensemble model, Evolutionary artificial neural network

I. INTRODUCTION

In the last decade there has been an astonishing increase in

solar generated electrical energy. Information regarding global

horizontal irradiance (GHI), direct normal irradiance (DNI)

and diffuse horizontal irradiance (DHI) are essential for the

performance analysis and financial evaluation of solar power

systems. The problem comes from the fact that these values

are only measured at a small number of radiometric stations

but their values are required over vast areas, and consequently

they need to be estimated. The two most important applications

of such predictions are: first, the development of solar maps

which are used for finding optimal locations for solar facilities

[1]; and second, the forecasting of GHI, DNI and DHI which

are of utmost importance for the integration of solar generated

energy into the electrical grid [2].

These values can be predicted using different mathematical

models based on the physics and the dynamic of the atmo-

sphere [3] or by using statistical approaches. Early mathemat-

ical models considered the relation between solar radiation,

and sunshine duration as linear [4], [5]; later more effective

non-linear ones have been proposed based on the maximum

possible duration of sunshine [6], [7] and temperature [7].

One of the most successful statistical tools for this task

are artificial neural networks (ANNs), for which a systematic

review can be found in [8], [9]. In such applications there is

a general preference for feedforward neural network (FNN).

Some examples are the use ANNs for estimating hourly [10],

daily [11], [12] and monthly [13] solar irradiation properties.

Another important application is in short-term forecasting [14]

for power predication of grid-connected photovoltaic (PV)

plants. However, networks based on radial basis function

(RBF) have also been used in this field. One example is the

use of RBFs for estimating daily global solar radiation [15].

In most cases multilayer perceptron networks (MLP) manage

to out perform RBFs; one such example can be seen in article

[16] in the case of estimation of GHI. Research has also

been conducted on applying recurrent neural networks for

forecasting the solar radiation using the past solar radiation

and solar energy [17]. The performance of ANNs is commonly

improved by exploiting information about cloud conditions [1]

and using different types of preprocessing steps. For example,

the performance of ANNs was enhanced using wavelet based

denoising [18] or by using linear based filters [19], [20].

ANNs for predicting solar irradiance, in general, use visible

and/or infrared channels from satellite data in combination

with time/space based parameters. The latter group of pa-

rameters are latitude, longitude, date and time, but due to

better performance, in a vast majority of implementations,

the derived physical properties (calculated using additional

measurements for the region of interest), are used instead.

It has been shown that the predictions of solar irradiance

by ANNs can be significantly improved by selecting a good

subset of all the potential input parameters. This selection can

be done effectively by using genetic algorithms (GA) [12],

[21].

In this paper we extend the work on hybridizing ANNs
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using GA for parameter selection. In the currently published

research only the physical properties that directly affect the

solar irradiance are used as potential input parameters of

the ANN. In the proposed research we explore the effect

of extending the set of potential parameters with the basic

time/space parameters from which these values are derived.

One of the drawbacks in the existing approaches for input

parameter selection for an ANN using GA is that this is done

for networks with a fixed size of the hidden layers. It is a

well known fact that the best performance of an ANN can

be achieved if some relations between the number of input

parameters and the number of neurons in the hidden layer

are satisfied. In this approach we explore the effectiveness of

having an adaptive size of the ANN that is used in the GA.

In our computational experiments we explore the effectiveness

of such an approach on FNN and on a basic ANN ensemble.

The training of the networks is done based on hourly ground

measurements and satellite data for a period of six months.

The paper is organized as follows. In the next section we

explain the motivation for the proposed method. In the third

section the details of the hybridized method are presented.

In the last section the results of the conducted computational

experiments are shown.

II. MOTIVATION FOR METHOD

In this section we give the motivation for the hybridized

GA/ANNs method for estimating GHI, DNI and DHI. For

estimating these values we use 13 input parameters and a

single output value based on ground measurements. More

details regarding the input and output parameters will be given

in the results section. As stated in article [12], the optimal

estimations of solar irradiance, achieved by an ANN, are

dependent on the selected input parameters. This is due to the

fact that input parameters, corresponding to physical properties

of the system, potentially have redundant or nonessential

information for the values being predicted. Because of this

the performance of the ANN can be improved by choosing an

optimal selection of input parameters. The problem is that such

a selection cannot, in the case of solar irradiance estimation,

be done based only on known physical properties. It should

be understood that the use of ANNs comes from the fact that

existing physical models are not able to produce sufficiently

precise estimates.

In case of the problem of interest it is not possible, on

desktop computers, to evaluate all potential combinations

of input parameters due to the large number of potetntial

combinations and the high computational cost of training an

ANN. Because of this the selection of optimal parameters is

done using some optimization method. Published research has

proven that GAs are very suitable for this task. The problem

with existing methods is that they use the GA for selecting

the set of input parameters for training an ANN with a fixed

size of the hidden layer. There are two problems with this

approach. First, the size of the hidden layer is selected using

a rule of thumb through trial and error. Secondly, it is a well

known fact that the optimal number of neurons in the hidden

layer is dependent on the number of input/output parameters.

Some of the most common rules are

• The number of hidden neurons should be between the

size of the input layer and the size of the output layer.

• The number of hidden neurons should be 2/3 the size of

the input layer, plus the size of the output layer.

• The number of hidden neurons should be less than twice

the size of the input layer.

It is evident that a different number of input parameters will

give us a different range for the optimal number of neurons

based on the basic rules. In the proposed method we address

this issue by adapting the size of the hidden layer of the ANN

based on the number of parameters that are selected inside

the fitness function of the GA. In the following subsections

we give details on how this concept is applied.

III. HYBRIDIZED METHOD

For the sake of clarity the method will be presented in the

following way. First we will give specifics of the ANN and

the used notation, next the definition of GA and finally the

interaction between the two algorithms. In the following text

we will use the following notation. The set of input parameters

I will be a matrix n×m, where each row represents one set

of input parameters. In relation we will have the target values

O as a matrix 1 × m. Although the ANN will be used to

a large extent as a black box we will give its specifics. It

will be an FNN, using the hyperbolic tangent sigmoid transfer

function. The training method will be Levenberg-Marquardt

backpropagation. The ANN will be trained in the standard

way using a set of T training, V validation, E test rows from

I and corresponding ones in O.

A. GA Chromosome

The goal of the proposed method is to generate the best

ANN for finding estimates of solar irradiance properties. The

idea is to achieve this through using a GA for finding the best

set of parameters and have an adequate size of the hidden layer

of the ANN. We will define the chromosomes for the GA in

a natural way. A chromosome will consist of n binary values,

were each one states if a parameter is being used in designing

the ANN. This can be better understood by observing Figure

1. The adaptive size of the ANN has been calculated using

the following simple formula

N =

⌈
α

n∑
1

ci

⌉
(1)

In Eq. 1 N is the number of neurons in the hidden layer, ci
is a binary variable which states whether input parameter i
is used in the ANN. The number of the neurons will be the

ceiling function of α times the number of used parameters.

B. GA Fitness Function

The objective of the fitness function is to give us a method

of evaluating the quality of neural networks that can be

generated based on a specific chromosome. In the common

application of GA there is a unique correspondence between
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Fig. 1. Illustration of the relation between the chromosome in the GA and
the corresponding ANN. The red nodes represent potential input parameters,
the filled ones are used as input in the ANN. Blue/green nodes are used for
the hidden/output layer of the ANN. The size of the hidden layer is selected
based on α = 0.75

a chromosome and the value of the fitness function, which is

also the value that we wish to minimize. In case of the problem

of interest this relation is more complex. To be more precise

the goal of the proposed method is to find the best ANN for

estimating the output parameter based on input parameters.

The problem comes from the fact that a chromosome only

gives us information about the structure of the ANN. It is

well known that the quality of estimates that can be achieved

using an ANN depends on the training set. On the other hand

although a trained good structure will not always give us a

better estimate than a lower quality one, it is expected that

it will be better in a majority of cases. Because of this the

hybridized algorithm should aim to train promising structures

multiple times.

Let us assume that we have an available a set of input

parameters I and corresponding output values O. The set I/O
will be further divided into subsets Ig/Og for comparison

of generated ANNs and Il/Ol for training ANNs inside the

fitness function. As previously stated, for one chromosome

value an ANN can be trained in different ways depending on

the training set. Because of this each time a chromosome is

evaluated inside the fitness function the sets Il/Ol will be

partitioned into different random validation, training and test

sets.

The standard way of evaluating the quality of an estimate

for solar irradiance is by using the relative root-mean-square

error (rRMSE). For the sake of completeness we include its

definition

rRMSE =
1

ō

√√√√ n∑
i=1

(oi − ôi)2 (2)

In Eq. 2 oi is the output value corresponding to input parameter

set pi. ôi is the estimate acquired by applying the ANN to input

parameter set pi. Further, ō is the mean value of the output

value set. In the proposed method the fitness value will be

defined using the following formula.

f(c) =
1

2
(rRMSEl + rRMSEg) (3)

Eq. 3 gives the value of the fitness function from a specific

value of the chromosome c. The fitness value will be equal

to the average of two rRMSE. The first one is rRMSEl,

based on the selected training set which we can consider local.

The second one is used as a global test which is calculated

based on the sets Ig and Og which will be used for all ANNs

that are tested. The purpose of the second pair is to have an

additional measure that can be considered ”more uniform” for

all the ANNs.

C. Implementation Details

In the majority of applications of GA to specific problems,

the metaheuristic is used through existing packages or tool

boxes. In the general case only the fitness function and

chromosomes are defined and implemented by the user. On

the other hand, mutation, crossover, elitism and selection

operations of the GA are, except for specifying performance

parameters, used as a black box. Due to the fact that the pro-

posed method was implemented in this manner, we only give

the details of the fitness function for which the pseudocode

can be seen in Algorithm 1.

Algorithm 1 Fitness function implementation

1: function FITNESS(C)

2: global Il, Ol, IG, IG
3: global Best
4:

5: Normalize I ,O, and store NormParam
6: Randomly divide Il into It, Iv , Ie
7: Randomly divide Ol into Ot, Ov , Oe

8:

9: Ann = train(It, Ot, Iv, Ot, Ie, Oe)
10:

11: rRMSEl = rRMSE(Ann,O, I,NormParam)
12: rRMSEg = rRMSE(Ann,OG, IG, NormParam)
13:

14: Result = 1
2 (rRMSEl + rRMSEg)

15:

16: if Result < Best.V alue then
17: Best.V alue = Result
18: Best.NN = ANN
19: Best.Param = C
20: Best.NormParam = NormParam
21: end if
22: return Result
23:

24: end function

In the fitness function global variables are used for the

previously described sets Il, Ol, Ig , Ig . The first step is
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normalizing the data and storing the normalization parameters

NormParam. Next, the available data will randomly divided

for training the artificial neural network Ann. The trained

network Ann will be used to calculated the value of the

fitness function based on Eq. 3. As previously stated the results

of training of ANN will not always be the same as it is

dependent on the selected training set, because of this it is

necessary to store the best found one. This is done by using

a global structure Best which contains information about the

best value of the fitness function, the trained ANN, the set of

used parameters and the normalization parameters.

D. Improvement using ANN Ensemble

One of the standard and most effective ways of improving

the performance of ANNs is the use of ensembles. Ensembles

exploit the simple concept of using multiple neural networks

jointly to solve a problem. Research has shown that the

generalization capabilities of such systems can outperform

those of single networks [22]. The use of ensembles has proven

to be very effective for enhancing the performance of ANNs

for solar irradiance prediction [10], [12], [1], [23].

It is a well known fact that for such aggregate systems

to be effective the individual networks must be as accurate

and diverse as possible [24], [22]. The diversity of the used

ANNs is generally achieved in two ways: by using different

training sets and by having ANNs with different structures.

The proposed hybridized method has been designed in a

way that multiple executions of the probabilistic algorithm

generate ANNs having these properties. To be more precise,

the fitness function uses a variety of different training sets and

the adaptive size of the hidden layer provides diversity in the

structure.

Although there is a wide range of possible methods for

creating ANN ensembles even the use of simple averaging

produces a high level of improvement [25]. We have used this

simple approach to enhance the performance of the method,

based on the following equation

ANNe(k) =
1

n

n∑
i=1

ANNi(k) (4)

In Eq. 4 the notation ANNi is used for an ANN having a

specific input parameters set and training data. The estimate

acquired using the ensemble ANNe for some input parameters

k is equal to the average value of ANNi(k).

IV. RESULTS AND DISCUSSION

In this section we present results of the conducted computa-

tional experiments. The goal was to evaluate the effectiveness

of using adaptive size ANNs for input parameter selection. To

be more precise, we explore the effect of having an adaptive

size of the hidden layer of an ANN, instead of a fixed one as in

currently published research, when the set of input parameters

is selected using GA. Further, we conduct a comparison of

the quality of estimates that can be achieved with ensembles

consisting of ANNs generated in these two ways. In the further

text we first give details of the data used for training the ANNs

and later the experimental setup and discuss the results.

A. Training Data

The objective of the proposed method was to estimate the

hourly GHI, DNI and DHI values. The ground measurements

used in this study were collected with a radiometric station op-

erated by the Qatar Environment and Energy Research Institute

(QEERI) in Doha, latitude 25.33◦ N, longitude 51.43◦ E, and

altitude 10m. The station [26] is equipped with BSRN-quality

(Baseline Surface Radiation Network, http://bsrn.awi.de) in-

strumentation mounted on a Solys2 sun tracker with sun

sensor, measuring DNI with a CHP1 pyrheliometer, while GHI

and DHI are measured with separate CMP11 pyranometers,

one of them (for DHI) shaded, and both of them with ventilator

units; the station is maintained regularly by cleaning all

sensors and checking the alignment and level of the sensors

and tracker. Data are collected as one-minute averages in

W/m2, and were averaged within each hour to obtain the

hourly values of GHI, DNI and DHI used here.

The input parameters that have been used are the following:

• Year

• Month

• Day

• Hour

• Julian day

• Instantaneous albedo

• Cosine of sun zenith angle

• Scattering angle. Angle between sun and satellite

• Extraterrestrial irradiance. Top of the atmosphere irradi-

ance

• Clear sky Global Horizontal Irradiance

• Clear sky Direct Normal Irradiance

• Air Mass. Number of atmospheres the sun rays have to

traverse compared with an air mass of one, which is the

normal depth of the atmosphere for sun zenithal angle of

0.

• GEO satellites images from Meteosat First Generation

(MFG-IODC) having a 3km resolution for which the

pixel containing ground station location was extracted.

Only the visible channel has been used.

It is important to note that the available fifteen-minute satellite

raw data were averaged and converted into hourly effective

radiances in the same way as in article [23]. The data used for

training the ANNs was collected in the period from 1.1.2015

to 31.5.2015.

B. Computational Experiments

In this subsection we give details of the performed compu-

tational experiments. Both hybridized algorithms, using fixed

(fANN ) and adaptive (aANN ) size of the hidden layer of

the ANN, for estimating the solar irradiance properties have

been implemented in MatLab R2013a. The training of the

ANNs has been done using the built-in MatLab functions. The

details of the chosen ANNs are as described in Section III.

The GA has been applied using the MatLab built-in function
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using the default parameters, with the previously described

fitness function. The parameter for determining the size of the

hidden layer was α = 0.75. In case of the method having a

fixed size hidden layer the number of neurons was 10. This

value was chosen empirically from a large number of tests

that were conducted for having the best performance. In the

case of both algorithms, 15% of the available data was used

for evaluating the performance based on rRMSE as test data

IMT , OMT . The rest of the data has been used for finding

optimal ANNs in the following way. Of the remaining data,

15% was used for sets Ig, Og . All remaining data has been

used for training the ANNs in the fitness function of the GA,

out of which 15% was used for validation and another 15%
for testing. All the calculations have been done on a machine

with Intel(R) Core(TM) i7-2630 QM CPU 2.00 GHz, 4GB of

DDR3-1333 RAM, running on Microsoft Windows 7 Home

Premium 64-bit.
Due to the probabilistic nature of the algorithm multiple

runs of each of the algorithms have been conducted. To be

more precise, for each method the algorithm was executed

50 times using different random seeds. With the intention of

having a fair comparison the tests have been paired in the

following way. The same data sets IMT , OMT , Ig and Og

have been used for both methods. Each of the algorithms

was executed for a fixed time limit of 120 seconds for each

ANN. In our experiments we have explored the performance

of ensembles having from 2 to 5 ANNs. Again to have a fair

comparison we have used up to 5 pairs of ANNs, for fixed

and adaptive hidden layer size, as described in the previous

text. Such test have been done separately for DNI, GHI and

DHI.

TABLE I
COMPARISON OF HYBRIDIZED METHODS FOR ESTIMATING DNI USING

PARAMETER HAVING FIXED (F) OR ADAPTIVE (A) SIZE OF HIDDEN LAYER

OF THE ANN. N IS USED TO INDICATE THE NUMBER OF ANNS IN THE

ENSEMBLE.

N Type Avg Stdev Min Max

1 F 31.6 2.7 27.5 39.0
1 A 31.4 3.3 26.0 37.4
2 F 30.1 3.0 25.5 37.3
2 A 30.0 3.2 25.0 35.9
3 F 29.6 3.1 24.7 35.7
3 A 29.2 3.0 24.7 35.2
4 F 29.4 3.1 24.5 35.8
4 A 29.0 3.1 24.6 35.2
5 F 29.1 3.2 24.0 35.8
5 A 28.8 3.1 24.5 35.1

The evaluation of the performance of the two methods

has been done by observing the average rRMSE for the

50 performed runs. To have a better comprehension of the

performance we have also included the standard deviation,

maximal and minimal values of the rRMSE. The results

of the performed computational experiments can be seen in

Tables I, II, III. The first thing that can be observed is that

for both fANN and aANN the improvement achieved using

the simple ensemble is notable. For both methods the best

TABLE II
COMPARISON OF HYBRIDIZED METHODS FOR ESTIMATING GHI USING

PARAMETER HAVING FIXED (F) OR ADAPTIVE (A) SIZE OF HIDDEN LAYER

OF THE ANN. N IS USED TO INDICATE THE NUMBER OF ANNS IN THE

ENSEMBLE.

N Type Avg Stdev Min Max

1 F 12.9 1.9 10.0 16.5
1 A 12.5 1.5 9.7 15.0
2 F 12.7 2.2 9.3 17.0
2 A 12.3 1.6 9.4 14.8
3 F 12.6 2.0 9.1 15.6
3 A 12.2 1.6 9.3 14.8
4 F 12.3 1.9 9.0 15.2
4 A 12.1 1.7 9.4 15.1
5 F 12.3 1.9 9.1 14.9
5 A 12.0 1.7 9.2 15.0

TABLE III
COMPARISON OF HYBRIDIZED METHODS FOR ESTIMATING DHI USING

PARAMETER HAVING FIXED (F) OR ADAPTIVE (A) SIZE OF HIDDEN LAYER

OF THE ANN. N IS USED TO INDICATE THE NUMBER OF ANNS IN THE

ENSEMBLE.

N Type Avg Stdev Min Max

1 F 29.3 3.0 24.2 35.9
1 A 29.2 3.1 24.5 37.8
2 F 28.3 2.7 24.8 34.7
2 A 27.6 2.6 24.1 34.5
3 F 27.6 2.9 23.9 34.9
3 A 27.1 2.6 22.6 34.4
4 F 27.1 2.7 23.5 33.6
4 FA 26.8 2.6 22.9 34.3
5 F 27.1 2.6 23.6 32.8
5 A 26.5 2.5 23.2 34.2

estimates have been achieved for DNI, GHI and DHI when

ensembles with 5 ANNs are used and it gives an improvement

of around 10% when compared to a single ANN of the same

type. When we observe the average value of the rRMSE, for

each of the predicted values, aANN shows an improvement

compared to fANN for all estimated values and all sizes

of ensembles. In case of minimal and maximal values of

rRMSE aANN shows an overall better performance but

it is not consistent. The robustness of both methods, in the

sense of the range of quality of estimates, is not very strong.

The difference between the best and worst rRMSE is around

30− 40%. It is important to note that similar behavior can be

observed for other existing methods used to predict hourly

solar irradiance [10].

With the goal of having a more exhaustive comparison of the

fANN and aANN we have also performed tests to confirm

statistical significance. To be more precise, a paired single

tailed Student t-Test has been done with a p value of 0.05. In

the case of a single ANNs statistical significance has only

been shown in the case of GHI . In the case of ensembles

consisting of 2-5 ANNs the better performance of aANN has

been confirmed in all the cases, except for predicting DNI
with an ensemble with two ANNs.
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V. CONCLUSION

In this paper we have presented an hybridized GA/ANN ap-

proach for predicting solar irradiance properties. The proposed

method extends existing research for selecting optimal input

parameters for training the ANN using a GA. The novelty of

the approach is in using ANNs with an adaptive size of the

hidden layer. The method is designed in a way that it is es-

pecially suitable for ANN ensembles. The performance of the

method was tested using ground measured and satellite data for

predicting DNI, GHI and DHI. The conducted computational

experiments show that the use of an adaptive number of

neurons in the hidden layer outperforms the standard approach,

in the case of single ANN or ensembles. In almost all the cases

these results have proven to be statistically significant.

In the future we plan to extend the work in several direc-

tions. First by using a heuristic approach for selecting the best

ANNs to use in the ensemble since this type of approach has

shown to provide significant improvement [27]. Further, we

plan to include cloud conditions in the model and adapt it

to specifics of the Gulf Cooperation Council (GCC) region.

Finally, extend the number of potential input parameters to

include all the available channels from the satellite data and

use a larger number of ground measuring stations from the

GCC region.
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