
A Greedy Method for Optimizing the Self-Adequacy
of Microgrids Presented as Partitioning of Graphs

with Supply and Demand

Raka Jovanovic
Qatar Environment and Energy

Research Institute(QEERI)
PO Box 5825, Doha, Qatar

Email∗: rjovanovic@qf.org.qa

Abdelkader Bousselham
Qatar Environment and Energy

Research Institute(QEERI)
PO Box 5825, Doha, Qatar

Email: abousselham@qf.org.qa

Abstract—In this paper we focus on solving the problem
of maximal partitioning of graphs with supply and demand.
The interest for this problem is due to the fact that it well
represents the optimization of self-adequacy of interconnected
microgrids. The chosen method is a heuristic based greedy
algorithm which can be applied to very large problem instances in
feasible time, which best relates to potential real life applications.
To decrease the computational time of the algorithm, suitable
auxiliary structures are introduced. To get the best performance,
in the sense of finding high quality solutions, we have analyzed
the behavior of the algorithm for three different heuristics. In the
conducted experiments it has been show that the proposed method
is very efficient in the case of small problem instances, for which it
frequently manages to find optimal solutions. The performed test
have demonstrated that the proposed method generally acquires
solutions within 5-10% of the known optimal one.

Keywords—Microgrid, Graph Partitioning, Greedy Algorithm

I. INTRODUCTION

One of the main directions in smartgrid development is
in the concept of interconnected microgrids [1]. For such
systems the problems of maximizing self-adequacy [2], reli-
ability, supply-security [3] and the potential for self-healing
[4] are of the greatest importance. These issues frequently
result in hard optimization problems that can not be solved
in polynomial time. For many problems occurring in electrical
grid optimization it is not necessary to use highly detailed
models of the system, but often simplified graph ones can
give sufficiently good approximate solutions to the original
problem. One example is the use of the concept of maximum
partition to optimization of the power supply and delivery
networks [5], [6], [7], [8].

One of the goals of using interconnected microgrids is to
make each of them as independent from the rest of the system
as possible. Here we use the term independent in the sense that
there is a minimum of power exchange between the connected
microgrids. Such independence has two main advantages, first
the entire grid is less complex due to the lower number of
connections between microgrids. Secondly, each of the micro-
grids is more resistant to failures in the main grid which
results in higher power reliability. This problem is defined as
maximizing the self-adequacy of interconnected microgrids.
A very interesting approach to finding approximate solutions

to this problem has been presented in article[2]. Earlier, a
similar concept has been used for the efficient islanding of
large grids, into islands with a balanced generation/load while
satisfying certain constraints. This problem has been presented
in the article [9] in a form of a graph problem, and more
recently, in the aspect of smartgrids in [10]. In general when
optimizing certain aspects of the electrical grid, as in the
case of self-adequacy of interconnected micro-grids, one of
the main problems is that we are attempting to optimize very
large and complex systems. In practice this results in two
directions of research optimizing small detailed systems or
large simplified ones.

The problem of maximum partitioning of graphs with
supply and demand (MPGSD) is closely related to the op-
timization the self-adequacy of interconnected microgrids,
although in a simplified form. In this paper we focus on
developing a heuristic for finding approximate solution to it.
In the literature only limited research has been conducted on
solving the MPGSD and it is mostly oriented on theoretical
aspects [11], [12], [6], [13]. Even in this case, the majority
of the effort has been in developing algorithms for creating
approximated versions of the problem. Due to the complexity
of the MPGSD, the focus has been on solving the problem on
some specific graph types like trees [12], [6], [13] and series-
parallel graphs[11]. When modeling real electrical grids, mod-
els with such a constraint significantly limit their application.
On the other hand the existing methods are, to a certain extent,
constrained to solving problem instances of smaller sizes.

To fill this gap we have developed a greedy algorithm
for finding high quality solutions to the MPGSD. Although
heuristic based greedy algorithms manage to find solutions of
lower quality than more complex meta heuristics, they have a
significant advantage when computational speed is considered.
Such algorithms have proven their efficiency in a wide rang
of problems going from image compression [14], transport
logistics [15] and facility positioning [16], etc. In the case of
maximizing the self-adequacy of interconnected micro-grids
the problems that are most interesting for real life applications
are of significant size. Greedy algorithms are often capable
to find solutions for very large problems in feasible time.
Due to this fact, this type of method is very suitable for this
practical problem. The main contribution of this paper is the
development of a greedy algorithm dependent on two heuristic

functions that can be used for solving MPGSD. In our tests
we show that the proposed algorithm can find solutions that
generally have an error of 5-10% from the optimal one.

The paper is organized as follows. In the second section
we give the definition of the MPGSD. In the next section we
present the greedy algorithm for the problem of interest and
give two corresponding heuristics. In the forth sections we
show the results of our computational experiments.

II. MAXIMAL PARTITIONING OF A GRAPH WITH
SUPPLY/DEMAND

In this section we give a definition for the MPGSD as given
in article [11]. It is formulated as follows:

Let G = (V,E) be an undirected graph with a set of
vertices V and a set of edges E. V is split into two disjunct
sets Vs and Vd. Each vertex u ∈ Vs is called a supply
vertex and has a corresponding positive integer value sup(u).
Similarly, the vertex v ∈ Vd is called a demand vertex
and has a corresponding negative integer value sup(v). Each
demand vertex can receive ’power’ from one supply vertex
through the edges of G. The goal is to find the partition
Π = {S1, S2, .., Sn} of the graph G. All the subgraphs in
Π are connected subgraphs and they only have one supply
node which has a consequence |Vs| = n. Each of the Si has
to satisfy the constraint that the total demand must be less or
equal to supply. The goal is to maximize the fulfillment of
demands, or more precisely to maximize the sum

−
∑
S∈Π

∑
v∈S∩Vd

sup(v) (1)

while the following constraints are satisfied for all Si ∈ Π

∑
v∈Si

sup(v) ≥ 0 (2)

Si ∩ Sj = ∅ , i 6= j (3)
Si is connected (4)

It has been show that the MPGSD is NP-Hard even in the
case of its restriction of having only one supply node and the
graph having a star structure [11].

III. GREEDY HEURISTIC

A. Outline

In this section we present a greedy algorithm for solving
the problem of interest. From the definition, as previously
mentioned, the solution will consist of |Π| = n subgraphs,
where n = |Vs| is the number of supply nodes. The general
idea of the algorithm is to start with n disjunct subgraphs Si,
that initially contain only a supply node si. Next, at each step
(iteration) of the algorithm one vertex v ∈ Vd is selected and
added to a selected subgraph Si. The selection of both v and
Si should be performed in a way that the newly generated
subgraph is connected, each v can be a part of at most one
Si and the Eq. 2 must be satisfied. Of course, the selection of
Si and v should be done using some heuristic that we expect
will produce high quality solutions of the problem.

To formally describe such an algorithm, we shall first define
the function NV for v ∈ V

NV (v) = {u|u ∈ V ∧ (u, v) ∈ E} (5)

Here NV (v) represents the set of adjacent vertices to v in G.

The idea is to slowly grow each of the subgraphs Si by
adding new vertices v to them. To make this process simpler,
we can define the function NV for subgraphs Si.

N̂i = NV (Si) = {u|u ∈ V ∧ ∃(v ∈ Si)(u, v) ∈ E} (6)

It is obvious that if at some step of the algorithm we add a
vertex v to Si, the new subgraph will be connected if v ∈ N̂i.
The problem is that the new Si my not satisfy Eq. 2, or there
may exist such an Sj for which v ∈ Sj . To avoid this, a
corrected set of vertices Ni is defined, in a way that by adding
v ∈ Ni to Si the new subgraph will satisfy all the constraints.
Let supi be the available supply for subgraph Si as given in
Eq. 7.

supi =
∑
v∈Si

sup(v) (7)

Now we can define Ni in the following way.

Ni = {u|u ∈ N̂i ∧ sup(u) ≤ supi} \
n⋃

j=1

Sj (8)

Using the sets Ni, we can specify the greedy algorithm
for the MPGSD using two heuristic functions. At each step of
the algorithm, the first heuristic hs is used to select the best
Si, and the second heuristic hv will be used to select the best
v ∈ Ni to be added to Si.

B. Heuristics

The first heuristic function hv should give us the desirabil-
ity of adding v ∈ Ni to Si. Let us define hv

hv(v) = |sup(v)| (9)

In Eq. 9 vertices with high demand are considered more
desirable. The logic behind this, is that it gets harder to satisfy
high demands as the algorithm progresses since the available
supply decreases as new vertices are added to the subgraphs.
Because of this it is better to resolve high demands early.

The second heuristic function hs should give us the de-
sirability of subgraph Si for being expanded. There are two
main properties of Si that should be considered, the available
supply supi and the number of potential candidates |Ni|.

Subgraphs with a higher value of supi are considered more
desirable, in the sense that they should be selected earlier.
The reason for this is that it is expected that more vertices
need to be added to such subgraphs than to ones with a lower
supply. As the algorithm progresses the number of non satisfied
demand vertices drops and in later stages of the algorithm there
may not be enough available demand to reach supi. Using this
logic we define the heuristic hs1 as

hs1(Si) = supi (10)

The other potential problem with the proposed algorithm is
that a subgraph Si will not be able to expend further due to
being cut of by other subgraphs. This is a consequence of the
fact that each vertex can be a part of only one subgraph, which
creates a possibility that all of the neighbors of subgraph Si

will be added to other subgraphs. Because of this we shall
consider subgraphs with a low value of |Ni| highly desirable.
We can define a new heuristic hs2

hs2(Si) =
1

|Ni|
, |Ni| 6= 0 (11)

We can also define a third heuristic function hs3 that balances
the two effects

hs3(Si) =
si
|Ni|

, |Ni| 6= 0 (12)

At this point wish to point out that for the heuristic functions
hs2, hs3 the case when |Ni| = 0 will be considered least
desirable and will never be selected.

C. Implementation

For the iterative algorithm outlined in the previous section,
it is important to emphasize that the subgraphs Si and cor-
responding sets of neighboring vertices Ni will be changing
with the progress of the algorithm. To reflect this fact, we will
add the new notations Sj

i , N j
i and supji corresponding to the

state of Si, Ni and supi at iteration j. It is essential to have
an efficient procedure for calculating N j

i . In the following text
such a procedure is presented.

The initial state of the sets N0
i consist of all the neighbors

of the corresponding supply vertex si that are not supply
vertices, as given in Eq. 13.

N0
i = NV (si) \ Vs (13)

The N0
i correspond to the subgraphs Si = {si}

The update procedure at iteration j + 1, when a vertex
v ∈ N j

i is added subgraphs Sj
i , for N j

i , Sj
i and supji should

reflect the following changes:

1) v should not be a member of any N j+1
i

2) v should be added to Sj+1
i

3) The available supply for subgraph Sj+1
i sould be

decreased supj+i
1 = supji + sup(v)

4) Add to N j+1
i all neighbors of v that are not in any

of Sj+1
i

5) remove all elements of N j+1
i which have a demand

higher that the new available supply supj+1
i

All the necessary updates rules except the forth one are
trivial. This update rule can easily be implemented using a
brute force approach but by doing so the main advantage of
a greedy algorithm, the computational speed, is lost due to
number of checks.

Such computational cost can easily be avoided by adding
an auxiliary structure that helps tracks the used vertices by
updating the set of edges E for graph G, using a similar
procedure like in articles [17], [18]. The idea is adding a set of
edges Ei that gives only connections to non used elements of
Vd at iteration i of the algorithm. To make such a calculation

possible we shall define the functions NVi and NEi for v ∈ V
that correspond to iteration i

NVi(v) = {u|u ∈ V ∧ (u, v) ∈ Ei} (14)
NEi(v) = {(u, v)|u ∈ V ∧ (u, v) ∈ Ei} (15)

Here NVi(v) represents the set of adjacent vertices to v in
Gi(V,Ei), and analogy NEi(v) represents the set of edges in
Gi(V,Ei) which contain v. In the same way as in Eq. 8 we
define extensions of NVi(S), NEi(S) for sets. Using these
functions we have the initial set E0

E0 = E \
n⋃

j=1

NE(si) (16)

The update function for Ej , at iteration j + 1 when vertex v
is added to some subset

Ej+1 = Ej \NEi(v) (17)

Now the update rule 4, at iteration j + 1, can be expressed
trivially as

N j+1
i = N j

i ∪NVi(v) (18)

To have a more clear presentation of the propose algorithm
we give it a form of the following pseudo-code.

Ec = E
for all si ∈ Vs do

Si = {si}
Ni = NV (si, E)
Ec = Ec \NE(si, E)
supi = sup(si)

end for

Remove all si from all Ni

while (Sum(supi) > 0) and Sum(|Ni|) > 0) do

k = max hs(Π)
v = max hv(Sk)

Sk = Sk ∪ {v}
Nk = Nk ∪NV (v,Ec)
Ec = Ec \NE(v,Ec)
supk = supk − sup(v)

Remove v from all Nj

Remove all w ∈ Nk from which |sup(w)| > supk

end while

The solution of the MPGSD will be the partition Π =
{S1, S2, .., Sn}, the pseudo code calculates the elements for
each Si. In it NV and NE correspond to the appropriate func-
tions given in the previous text, but also include the set of edges
of the graph as a parameter. Functions max hs(Π) returns the
index i of the subgraph Si ∈ Π with the highest value of the
heuristic function hs. Similarly, function max hv(Sk) returns
the vertex v ∈ Sk with the highest value of hv.

TABLE I. COMPARISON OF HEURISTICS FOR THE MPGSD

Dem X hs1 hs2 hs3 Opt
Sup Avg Hit Best Avg Hit Best Avg Hit Best

2 X 6 53.5 27 33 55.3 32 38 54.4 30 36 56.9
2 X 10 77.4 8 24 81.2 14 36 79.6 11 31 85.9
2 X 20 156.2 12 25 159.1 14 32 158.0 11 28 163.5

3 X 9 68.3 12 25 72.3 19 37 71.8 17 33 75.9
3 X 15 120.2 5 25 121.2 10 27 120.5 5 23 130.3
3 X 30 246.4 4 12 249.2 3 27 252.4 5 20 259.2

5 X 15 114.3 2 19 117.2 7 31 116.5 4 28 125.1
5 X 25 183.2 0 11 194.3 4 33 190.2 2 16 202.6
5 X 50 403.0 0 3 415.2 3 25 412.0 1 15 429.0

10 X 30 224.4 1 9 231.6 3 26 228.3 1 19 246.7
10 X 50 387.0 0 8 392.0 0 19 392.2 0 15 424.1
10 X 100 808.6 0 6 821.7 0 21 823.3 0 15 852.9

25 X 75 555.4 0 5 574.7 0 22 572.0 0 14 618.6
25 X 125 954.6 0 2 982.1 0 21 979.7 0 17 1054.0
25 X 250 2005.4 0 0 2066.5 0 28 2052.0 0 13 2146.2

50 X 150 1102.8 0 1 1147.0 0 30 1134.0 0 9 1238.7
50 X 250 1914.6 0 0 1958.0 0 20 1961.7 0 20 2111.6
50 X 500 3948.0 0 2 4041.3 0 23 4034.9 0 17 4217.7

TABLE II. COMPARISON OF HEURISTICS FOR THE MPGSD

Sup X Dem hs1 hs2 hs3
Avg Max StDev Avg Max StDev Avg Max StDev

2 X 6 6.6 36.7 11.3 3.5 36.7 8.0 4.6 36.7 9.2
2 X 10 9.5 45.1 10.3 5.4 33.0 6.9 7.1 31.8 7.2
2 X 20 4.3 30.1 7.5 2.7 29.0 5.2 3.4 29.0 5.3

3 X 9 9.9 39.7 10.6 4.9 20.2 5.7 5.5 17.5 5.7
3 X 15 7.9 22.9 5.9 6.9 29.7 7.9 7.7 22.9 6.1
3 X 30 5.1 34.1 7.1 4.0 38.5 8.0 2.6 13.9 2.8

5 X 15 8.7 22.7 5.6 6.2 19.6 6.3 6.9 21.4 5.9
5 X 25 9.6 26.3 6.0 4.0 17.7 3.9 6.2 16.3 4.0
5 X 50 6.1 21.0 4.6 3.2 15.0 4.0 4.0 13.1 3.3

10 X 30 9.0 20.1 4.7 6.1 18.6 4.5 7.4 19.0 4.6
10 X 50 8.8 20.8 4.6 7.6 21.7 5.0 7.6 17.0 3.6
10 X 100 5.2 17.8 3.4 3.7 9.6 2.7 3.5 9.7 1.9

25 X 75 10.2 22.9 4.1 7.1 18.1 3.9 7.5 19.0 3.3
25 X 125 9.4 14.1 1.9 6.8 16.1 2.8 7.0 11.6 2.0
25 X 250 6.6 10.7 1.9 3.7 10.9 2.3 4.4 7.2 1.4

50 X 150 11.0 16.7 2.6 7.4 16.7 2.6 8.5 13.1 2.2
50 X 250 9.3 13.8 1.8 7.3 12.9 1.7 7.1 9.7 1.3
50 X 500 6.4 10.5 1.8 4.2 7.4 1.4 4.3 6.0 0.9

IV. RESULTS

In this section we give an evaluation of the proposed
algorithm and a comparison of the effect of using different
heuristic functions. The algorithm has been implemented in
C# using Microsoft Visual Studio 2012. The calculations have
been done on a machine with Intel(R) Core(TM) i7-2630
QM CPU 2.00 Ghz, 4GB of DDR3-1333 RAM, running on
Microsoft Windows 7 Home Premium 64-bit.

To be able to have a good comparison of the different
heuristic functions we have analyzed the behavior of each of
them for a wide range of graph sizes. We have observed graphs
having 2-50 supply nodes and 6-500 demand nodes. For each

of the test sizes 40 different problem instances are generated
and we observe the average solution quality for each size.

The problem instances (graphs) for n supply and m
demand vertices have been generated using the following
algorithm. First we would generate an array containing n+m
integer random weights uniformly distributed inside of the
interval [−1,−18]. Next (n+m)∗1.5 random edges would be
added to the graph but making sure that the graph is connected.
In the next step n random vertices would be selected to be
seeds for n subgraphs (partitions). The subgraphs would be
grown using a iterative method until (n+m) ∗ (0.95) vertices
of the original graph are contained in one of the subgraphs. The
growth of subgraph Si is done by adding a random neighboring

vertex that does not belong to any of the other subgraphs.
Finally, for each of the subgraphs Si a random vertex v ∈ Si

is selected and its weight w is set using the following formula

w = |
∑
a∈Si

sup(a)|+ sup(v) (19)

For each of the test graphs, generated using this method,
the optimal solution is known and its covered demand is equal
to the sum of supplies of all supply nodes.

To evaluate the proposed greedy algorithm, we have run
the algorithm with the three different heuristic functions on
each of the test sizes. We have observed several different
aspects of performance of the heuristics for each group of
40 problem instances. The first group of evaluations is given
in Table I, where we show the average number of covered
demand, the number of times each heuristic has found the
optimal solution and the number of times it has found the best
solution compared to the other proposed heuristics. From these
results it is evident that hs2, hs3 manage to significantly out
preform the hs1. For the 18 different pairs of (n,m) not in
one case did the heuristic based only the amount of available
supply manage to get better results that the other two methods.
Out of the two other heuristics hs2 had a better performance
but the difference is less significant. From this fact, we can
conclude that the problem of avoiding cutting off subgraphs
from the rest of the graph is of great importance. In our tests
we have also observed the number of times each heuristic has
managed to find the optimal partitioning. It is notable that
in case of small problems, the best performing heuristic has
managed to find optimal solutions in more that 25% of the
problem instances, in some cases even over 50%. For larger
graph sizes none of the proposed heuristics managed to acquire
the optimal solutions.

In the Table II, we present statistics for normalized error of
the solutions acquired by the proposed algorithm compared to
the known optimal ones. More precisely we have calculated the
error in percent corresponding to the three heuristics hs1, hs2

and hs3 compared to the optimal solution, for each of the 40
problem instances inside of one problem size. In Table II we
present the values for the average error, maximal error and the
standard deviation. This type analysis also confirms that hs2

is the best performing heuristic having average errors between
2.7% and 7.6%, which is close to hs3 and significantly better
than hs1. When we observe the average maximal error, it is
notable that although hs3 has an over all worse behavior than
hs2, it is much more robust. We say this because hs3 has had
the smallest maximal error in 14 out of 18 tested graph sizes,
which means that it rarely acquires very bad solutions when
compared to the other two heuristics.

V. CONCLUSION

In this paper, we have presented a heuristic based greedy
algorithm for solving the MPGSD which is closely related
to the optimization of self-adequacy of interconnected micro-
grids. The proposed algorithm is two step in the sense that at
each iteration two heuristic are used one for selecting which
partition should be expanded an a second one that selects
which vertex should be added. In the article we have shown

that by using some auxiliary structures it is possible to make
such an algorithm very computationally efficient.

We have performed tests on a wide range of different
graphs sizes and shown that the proposed algorithm can
find high quality solutions to the problem of interest. More
precisely the best performing heuristic has managed to have
an average error,when compared to the know optimal solution,
in between 2.7% and 7.6%. Our test have also shown that in
the case of small problem instances the proposed algorithm
can in many cases find optimal solutions.

In the future we plan to improve the proposed algorithm
by incorporating a local search method similar to 2-opt and
including a certain level of randomization. The other direction
of our work will be in adapting the MPGSD to better reflect
the problems occurring in microgrids. This would be done by
adapting the problem to a stochastic environment, removing
the constraint of uniqueness of supply and including time
dependence for supply/demand.

REFERENCES

[1] N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay, “Microgrids,”
Power and Energy Magazine, IEEE, vol. 5, no. 4, pp. 78–94, July 2007.

[2] S. Arefifar, Y. Mohamed, and T. H. M. EL-Fouly, “Supply-adequacy-
based optimal construction of microgrids in smart distribution systems,”
Smart Grid, IEEE Transactions on, vol. 3, no. 3, pp. 1491–1502, Sept
2012.

[3] S. Arefifar, Y.-R. Mohamed, and T. EL-Fouly, “Optimum microgrid
design for enhancing reliability and supply-security,” Smart Grid, IEEE
Transactions on, vol. 4, no. 3, pp. 1567–1575, Sept 2013.

[4] ——, “Comprehensive operational planning framework for self-healing
control actions in smart distribution grids,” Power Systems, IEEE
Transactions on, vol. 28, no. 4, pp. 4192–4200, Nov 2013.

[5] N. Boulaxis and M. Papadopoulos, “Optimal feeder routing in distri-
bution system planning using dynamic programming technique and gis
facilities,” Power Delivery, IEEE Transactions on, vol. 17, no. 1, pp.
242–247, Jan 2002.

[6] T. Ito, X. Zhou, and T. Nishizeki, “Partitioning trees of supply and
demand,” International Journal of Foundations of Computer Science,
vol. 16, no. 04, pp. 803–827, 2005.

[7] A. B. Morton and I. M. Mareels, “An efficient brute-force solution to the
network reconfiguration problem,” Power Delivery, IEEE Transactions
on, vol. 15, no. 3, pp. 996–1000, 2000.

[8] J.-H. Teng and C.-N. Lu, “Feeder-switch relocation for customer
interruption cost minimization,” Power Delivery, IEEE Transactions on,
vol. 17, no. 1, pp. 254–259, Jan 2002.

[9] K. Sun, D.-Z. Zheng, and Q. Lu, “A simulation study of obdd-based
proper splitting strategies for power systems under consideration of
transient stability,” Power Systems, IEEE Transactions on, vol. 20, no. 1,
pp. 389–399, 2005.

[10] J. Li, C.-C. Liu, and K. P. Schneider, “Controlled partitioning of a power
network considering real and reactive power balance,” Smart Grid, IEEE
Transactions on, vol. 1, no. 3, pp. 261–269, 2010.

[11] T. Ito, E. D. Demaine, X. Zhou, and T. Nishizeki, “Approximability
of partitioning graphs with supply and demand,” Journal of Discrete
Algorithms, vol. 6, no. 4, pp. 627 – 650, 2008, selected papers from
the 1st Algorithms and Complexity in Durham Workshop (ACiD 2005).

[12] N. S. Narayanaswamy and G. Ramakrishna, “Linear time algorithm
for tree t-spanner in outerplanar graphs via supply-demand partition in
trees,” 2012.

[13] M. Kawabata and T. Nishizeki, “Partitioning trees with supply, demand
and edge-capacity,” IEICE Transactions, vol. 96-A, no. 6, pp. 1036–
1043, 2013.

[14] R. Jovanovic and R. A. Lorentz, “Adaptive lossless prediction based
image compression,” Appl. Math, vol. 8, no. 1, pp. 153–160, 2014.

[15] R. Jovanovic and S. Voss, “A chain heuristic for the
blocks relocation problem,” Computers & Industrial Engineering,
vol. 75, no. 0, pp. 79 – 86, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0360835214001909

[16] R. Jovanovic, M. Tuba, and D. Simian, “Ant colony optimization applied
to minimum weight dominating set problem,” in Proceedings of the
12th WSEAS international conference on Automatic control, modelling
& simulation. World Scientific and Engineering Academy and Society
(WSEAS), 2010, pp. 322–326.

[17] R. Jovanovic and M. Tuba, “An ant colony optimization algorithm with
improved pheromone correction strategy for the minimum weight vertex
cover problem,” Applied Soft Computing, vol. 11, no. 8, pp. 5360 –
5366, 2011.

[18] ——, “Ant colony optimization algorithm with pheromone correction
strategy for the minimum connected dominating set problem.” Comput.
Sci. Inf. Syst., pp. 133–149, 2013.

