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Abstract
A recent study (Raspopović Z et al 2000 J. Phys. D: Appl. Phys. 33 1298) reported the
existence of negative diagonal diffusion tensor elements for electrons in a neutral gas under the
influence of crossed radiofrequency electric and magnetic fields. In this paper we demonstrate,
using a time-dependent multi-term solution of the Boltzmann equation and time-resolved
Monte Carlo simulation, that this phenomenon is a transient relaxation effect obtainable under
dc crossed field conditions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recently there has been considerable research aimed at the
prediction of electron transport in gases under the influence
of RF electric (see e.g. the reviews [2–5]) and RF electric
and magnetic fields (see e.g. [1–3]) motivated by the vast
applications of capacitively and inductively coupled plasmas
[6, 7]. These studies have unearthed a wide variety of
anomalous kinetic phenomena, i.e. phenomena that cannot
be directly extrapolated either from steady-state dc results
or from individual particle trajectories. Importantly they
indicate that more detailed models of transport in capacitively
and inductively coupled plasmas may be required in order
to account for such effects. These studies, although in the
‘swarm’ limit, provide a benchmark for plasma models in the
limit of low electron density [8].

This investigation was motivated by studies of the
anomalous behaviour of the longitudinal diffusion coefficient
DE

4 (diffusion along the electric field direction) under the

4 In this paper we label the axes along the perpendicular directions of the
electric field E, magnetic field B and along the E × B vector.

action of RF electric fields [9–12]. Recently, Petrović and co-
workers at Belgrade University extended their Monte Carlo
simulations techniques to include the combined action of
RF electric and magnetic fields [1]. The study unearthed
a striking new phenomenon—the existence of a negative
diffusion coefficient along the E×B-direction at certain phases
of the field. These results were independently validated using
a Boltzmann equation solution [3] and it was shown that the
transient negative behaviour could also appear for diffusion
in the E-direction. Although the initial results were for a
standard benchmark model interaction cross-section, these
results were subsequently shown to be present in a number
of real gases [2, 13].

The anomalous behaviour in DE in RF electric fields
[10, 11] can be best understood by a study of transient
behaviour under the action of step function electric fields [14].
In this study, we aim to extend this approach to come to terms
with the anomalous behaviour of transport coefficients in RF
electric and magnetic fields [1, 3]. Transient studies have
previously been performed in both pure dc electric fields (see,
e.g. [4, 5,15–17]), RF electric fields (see, e.g. [5, 18, 19]) and

0022-3727/08/025206+07$30.00 1 © 2008 IOP Publishing Ltd Printed in the UK

http://dx.doi.org/10.1088/0022-3727/41/2/025206
mailto: Ronald.White@jcu.edu.au
http://stacks.iop.org/JPhysD/41/025206


J. Phys. D: Appl. Phys. 41 (2008) 025206 R D White et al

in dc electric and magnetic fields [2, 13, 20]. Of particular
note for this paper is the two-term Boltzmann equation study
of Loffhagen and Winkler [20], who considered the explicit
effect of a magnetic field on the relaxation of electron swarms
in atomic gases, focusing on spatially homogeneous (or
spatially averaged) transport properties only (e.g. drift velocity
or mean energy). This study represents an extension of
their earlier work [20] by (i) considering transport properties
of spatially inhomogeneous electron swarms (in particular
diffusion tensor coefficients) and (ii) using a multi-term
solution of Boltzmann’s equation capable of handling velocity
distributions with strong anisotropy. The results are validated
using a time-resolved Monte Carlo simulation technique [2].
This paper focuses on the influence of an orthogonal magnetic
field on the transient behaviour of the diagonal diffusion
tensor elements. The relaxation of these coefficients is equally
important for a basic understanding of temporal transients
and their application in corrected plasma theories such as the
relaxation continuum model [7,21], although we do not make
any detailed comparison here.

In section 2 we present a brief description of
techniques used for the time-dependent multi-term solution
of Boltzmann’s equation and time-resolved Monte Carlo
simulation for inhomogeneous electron swarms under the
influence of electric and magnetic fields. In section 3 we
highlight some important transient behaviour of the diagonal
elements of the diffusion tensor and give a physical explanation
of the phenomena present. The results of other transport
properties including the drift velocity and mean energy are
presented in appendix A.

2. Theory

2.1. Time-dependent multi-term solution of Boltzmann’s
equation

The behaviour of electrons in gases under the influence of
electric and magnetic fields is described by the phase-space
distribution function f (r, c, t) representing the solution of the
Boltzmann equation

∂f

∂t
+ c · ∂f

∂r
+

q

m
[E + c × B] · ∂f

∂c
= −J (f, f0), (1)

where r and c denote the position and velocity co-ordinates,
q and m are the charge and mass of the swarm particle and
t is time. The electric and magnetic fields are assumed
spatially homogeneous and orthogonal with magnitudes E

and B, respectively. Swarm conditions are assumed to apply
and J (f, f0) denotes the rate of change of f due to binary
particle-conserving collisions with the neutral molecules only.
The neutral molecules are assumed to remain in thermal
equilibrium, characterized by a spatially homogeneous phase-
space distribution function f0(c0). In other words, swarm
conditions are the unperturbed limit of ionized gases, perturbed
neither by the space-charge fields nor by the effect of increased
populations of excited states produced by inelastic and non-
conservative collisions. The original Boltzmann collision
operator [22] and its semiclassical generalization [23] are used

for elastic and inelastic processes, respectively. We employ a
co-ordinate system in which −E defines the z-axis, while B is
in the y-direction.

Solution is made through the following representations of
the phase-space distribution function f :

(i) Resolution of the angular dependence in velocity space:
the angular dependence is represented in terms of a
spherical harmonic expansion

f (r, c, t) =
∞∑
l=0

l∑
m=−l

f (l)
m (r, c, t)Y [l]

m (ĉ), (2)

where Y [l]
m (ĉ) are spherical harmonics and ĉ denotes the

angles (θ, φ) of c. Note that it is imperative that for a
full spherical harmonics expansion be considered in this
situation. A simple Legendre polynomial representation
(see e.g. [20]), with dependence on just one angle, is
appropriate only for axially symmetric cases.

(ii) Projection of the space and implicit-time dependence of
f : under hydrodynamic conditions the spatial dependence
of the coefficients f (l)

m (r, c, t) may be represented by an
expansion in terms of powers of the gradient operator
acting on n(r, t), the number density of electrons, namely,
in spherical tensors, which takes the form

f (l)
m (r, c, t) =

∞∑
s=0

∞∑
λ=0

λ∑
µ=−λ

f (lm|sλµ; c, t)G(sλ)
µ n(r, t),

(3)

where G(sλ)
µ is the irreducible gradient tensor operator

defined in [24].
(iii) Resolution of the speed dependence: the speed distribution

functions are represented by an expansion about a
Maxwellian speed distribution at a temperature Tb in terms
of modified Sonine polynomials:

f (lm|sλµ; c, t) = ω(α, c)

×
∞∑

ν=0

F(νlm|sλµ; α, t)Rνl(αc), (4)

where

w(α, c) =
(

α2

2π

)3/2

exp

{−α2c2

2

}
, (5)

α2 = m

kTb
, (6)

Rνl(αc) = Nνl

(
αc√

2

)l

S
(ν)
l+1/2

(
α2c2

2

)
, (7)

N2
νl = 2π3/2ν!

	(ν + l + 3/2)
(8)

and S
(ν)
l+1/2(α

2c2/2) are Sonine polynomials and the Nνl are
defined such that the modified Sonine polynomials satisfy
the orthonormality relation∫ ∞

0
w(α, c)Rν ′l(αc)Rνl(αc)c2dc = δν ′ν . (9)

The various properties of the moments due to symmetry
and reality considerations are described in [25, 26].
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The combined spherical harmonic and Sonine polynomial
basis are the well known Burnett functions. The predominant
advantage in the use of this basis set is the ability to
consider the original Boltzmann collision operator [22] and its
generalizations for inelastic and superelastic processes [23],
without recourse to approximate forms in various limits [27].

Making use of the orthogonality properties of the basis
functions, the following complex doubly infinite coupled
differential equations are generated under conservative
conditions [3]:

∞∑
ν ′=0

∞∑
l′=0

l′∑
m′=−l′

[(
N

d

dt
δνν ′ + n0J

l
νν ′(α)

)
δl′lδm′m

+ i
qE

m
α(l′m10|lm)

〈
νl ‖ K [1](α) ‖ ν ′l′

〉
δm′m

+
1

2

qB

m

{√
(l − m)(l + m + 1)δm′m+1

−
√

(l + m)(l − m + 1)δm′m−1

}
δν ′νδl′l

]
F(ν ′l′m′|sλµ)

= X(νlm|sλµ), (10)

where

X(νlm|000) = 0, (11)

X(νlm|11µ) =
∞∑

ν ′=0

∞∑
l′=0

[(
− 1

α

)
(l′m − µ1µ|lm)

× 〈
νl ‖ αc[1] ‖ ν ′l′

〉
F(ν ′l′m − µ|000)

]

− (−1)µ

α
F(01 − µ|000)F (νlm|000). (12)

Here N is the neutral number density and (l′m10|lm) is a
Clebsch–Gordan coefficient [28]. The explicit expressions for
the reduced matrix elements of the velocity (〈νl ‖ αc[1] ‖ ν ′l′〉)
and velocity derivative (〈νl ‖ K [1](α) ‖ ν ′l′〉) are given
by [24]. Discretizing in time using an implicit finite difference
scheme converts the system of coupled differential equations
into a system of coupled matrix equations. We note that
formally ν = 0, ..., ∞, l = 0, ..., ∞ and m = −l, ..., l.
Solution of (10) is made by truncation of the ν and l indices
to νmax and lmax, respectively, and symmetry considerations
imply that only non-negative m are needed. These values are
independently increased until the desired convergence criterion
for the calculated transport properties of interest is obtained. Tb

is a basis temperature parameter used to optimize convergence
of the speed space expansion, i.e. to minimize the value of
νmax. From previous experience with steady-state calculations,
a fixedTb can give converged results only over a restricted range
of applied fields (or equivalently mean energies). Hence, it
is essential that this parameter is time-dependent to ensure
convergence under time-dependent conditions. The block
structure of the resulting equations is interesting, but has not
been exploited at this stage.

The transport coefficient of interest are obtained from the
following members of the hierarchy (s, λ, µ) = (0, 0, 0),
(1,1,0), (1,1,1). In particular, the diagonal diffusion tensor

elements of interest in this study can be expressed in terms of
the calculated moments as follows:

NDE×B = − 1

α

[�{F(011|111)} − �{F(01 − 1|111)}], (13)

NDB = − 1

α

[�{F(011|111)} + �{F(01 − 1|111)}], (14)

NDE = − 1

α
F(010|110), (15)

where E, B and E×B refer to the directions (e.g. DB = Dyy).
�{} refers to the real part of the moments. There are of course
off-diagonal elements in the diffusion tensor but they are not
considered in this paper.

This concludes our brief description of the theoretical
formalism for the time-dependent multi-term solution of
Boltzmann’s equation for electron swarms under the influence
of electric and magnetic fields. The reader is referred to the
review [3] for complete details.

2.2. Brief discussion of the time-resolved Monte Carlo
simulation

We approach the Monte Carlo simulation of this problem in
two stages. At time t < 0, electrons are initially released
from the origin with a Maxwellian velocity distribution of
1 eV under the influence of electric field only. In order to
optimize the simulation speed, the electron swarm has been
scaled at fixed time intervals, by a factor of 2. This technique
is based on simple duplication of somewhat relaxed electrons
which are later followed independently [29]. The new born
electron has the same co-ordinate and velocity as the original
one. Therefore, we follow two identical electrons that describe
the same trajectory. At the moment of the collision with
the background particles these two identical electrons scatter
into different directions and from that point their trajectories
differ but their initial properties are closer to the relaxed
swarm conditions. This technique does not change the energy
distribution and allows an improvement in statistics of sampled
properties. Some tests of this procedure over a wide range of
conditions including the electric and magnetic field strengths,
pressures and gas types have been made and results of testing
indicate the validity and the numerical integrity of such an
approach. After relaxation to the steady state in which both
the swarm transport parameters and distribution function do
not change in time, the multiplication of electrons is turned off.
The magnetic field is applied at time t = 0 and the relaxation
process is followed accurately in time. An extremely large
number of electrons (typically 107) have been followed in a
neutral gas in order to retain the good statistics of the output
data, particularly the diffusion coefficients. It is assumed that
swarm conditions hold. All calculations are performed at zero
gas temperature. In the present Monte Carlo code we follow
the spatio-temporal evolution of each electron through time
steps governed by the minimum of two relevant time constants:
mean collision time and cyclotron period for the E × B field.
These finite time steps are used to solve the integral equation
for the collision probability in order to determine the time of
the next collision. Once the moment of the next collision is
established, the nature of the collision is determined by using
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Figure 1. Temporal relaxation of the diagonal elements of the
diffusion tensor for various applied magnetic fields for electrons in
the Reid ramp model (E/N = 12 Td). The dashed lines represent
the results from the time-dependent multi-term solution of
Boltzmann’s equation while the solid lines represent those from the
Monte Carlo simulation.

the relative probabilities of the various collision types. All
electron scattering is isotropic for the model considered. It is
important to note here that in the numerical relations for the
electron trajectory in E × B fields, inaccuracies are introduced
to trajectories due to the application of finite differences. That
is often corrected by implementing a so-called Boris rotation in
its original [30] and corrected form [1]. Here we use analytic
solutions for the trajectories in between collisions. This is a
somewhat slower procedure but the accuracy of trajectories is
assured.

The definitions and corresponding formulae for the
electron transport coefficients were given in our previous
publications [2, 13]. Most importantly, sampling of various
transport properties is always performed at times fully
uncorrelated with the moments of collisions.

3. Results and discussion

In this investigation we follow [1] and use the Reid ramp
model [31]. The primary aim of this work is to investigate
the temporal response of the diffusive properties of the swarm
to the application of an orthogonal magnetic field. The initial
conditions represent the steady-state magnetic field free case
where the electron swarm is acted on solely by a dc electric
field (E/N = 12 Td, B/N = 0 Hx). At time t = 0,
a crossed magnetic field is switched on (the electric field
remains unaltered) and the relaxation properties of the swarm
are monitored as a function of the normalized time, Nt. The
steady state results are well documented [2, 19, 25, 32] and
our results are in agreement with these earlier calculations. In
this paper we focus entirely on the transient behaviour of the
diffusion coefficients, and this behaviour is demonstrated in
figures 1–3. In these figures we present and compare results
from both a time-dependent multi-term Boltzmann equation
solution and a time-resolved Monte Carlo simulation. The
comparative agreement of results for all coefficients and all

Figure 2. Temporal relaxation of NDE for various applied magnetic
fields for electrons in the Reid ramp model (E/N = 12 Td). The
dashed lines represent the results from the time-dependent
multi-term solution of Boltzmann’s equation while the solid lines
represent those from the Monte Carlo simulation.

Figure 3. Temporal relaxation of NDB for various applied magnetic
fields for electrons in the Reid ramp model (E/N = 12 Td). The
dashed lines represent the results from the time-dependent
multi-term solution of Boltzmann’s equation while the solid lines
represent those from the Monte Carlo simulation.

B/N values considered supports the accuracy and integrity of
both theories and associated codes.

As in the seminal work of Allis [33], we often find
it convenient to refer to the charged-particle trajectories
to explain certain phenomena. The following elementary
considerations apply: in the absence of collisions, charged
particles in electric and magnetic fields gyrate about the
magnetic field lines at a frequency � = qB/m with a Larmour
radius r = mcT/qB, where cT is the tangential speed of
the orbit. The guiding centres have a velocity E × B/B2.
Superimposed on this picture is a component of the velocity in
the B-direction determined by the initial velocity of the charged
particle in that direction. When collisions become important,
the picture becomes more complicated. One must compare the
gyration period (τ = �−1) with the timescales for momentum
(τm) and energy (τe) relaxation, although these vary according
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Figure 4. Comparison of the reduced cyclotron period for various
B/N (solid horizontal lines) with the reduced timescales for
momentum and energy relaxation as a function of energy.

to the energy distribution of the swarm. The timescales are
shown in figure 4. These three timescales are clearly evident in
the relaxation profiles. During each relaxation profile however,
the timescales τm and τe vary by virtue of the variation of the
swarm’s energy distribution. In general, the application of an
orthogonal magnetic field decreases the mean energy of the
swarm (see figure A2) and hence both τm and τe increase as a
result. It then follows that we have a convolution of various
processes and timescales for each, and this is demonstrated
below.

In figure 1, we display the temporal relaxation of the
E×B component of the diffusion tensor for a range of applied
reduced magnetic fields. In general the profiles exhibit a
damped oscillatory relaxation along a decaying profile for the
B/N considered. The period of the oscillation is governed
by the gyro-period τ and the timescale for the envelope of
the damped behaviour is determined by τm. The timescale
for the long term relaxation is governed by τe. By virtue of
the decrease in the mean energy as B/N is increased, there
is an associated increase in τe over each of the individual
relaxation profiles. The oscillatory nature of the profiles is
thus enhanced by increasing B/N as the inequality τ < τm

is satisfied over a larger fraction of the profile. We also
note that the time for NDE×B to respond to the magnetic
field (i.e. when the profiles depart from the initial conditions)
appears to decrease monotonically with increasing B/N . Most
importantly however, once the magnetic field reaches a certain
threshold, the profiles of NDE×B become transiently negative!
For both the 500 Hx and 1000 Hx profiles, NDE×B pass through
zero and have a the peak negative excursion occurring at
approximately at τ/2.

In figure 2, we display the temporal relaxation of the
longitudinal component of the diffusion tensor NDE for a range
of B/N . We note that a similar behaviour with respect to
the existence of oscillations exists for NDE×B . As B/N is
increased there is an increased oscillatory nature in the profiles.
However, the amplitude of the oscillatory feature is not as
pronounced as that of NDE×B . Most importantly we see that
NDE also becomes transiently negative; however, the threshold

of B/N where this happens is greater than that for NDE×B . In
addition, temporal relaxation for NDE is more complex during
the first few periods of relaxation.

The temporal relaxation of NDB is displayed in figure 3.
We note that unlike NDE and NDE×B , the profiles of NDB do
not exhibit the damped oscillatory type relaxation nature. This
is due to the fact that the Lorentz force does not act explicitly
in this direction for the crossed field configuration. In addition
the timescale for response to the application of the magnetic
field is longer than that of NDE and NDE×B . Interestingly,
however, and in contrast to NDE×B and NDE , we note for this
model that the initial response of NDB to the application of an
orthogonal field is to increase its value, leading to a transient
peak structure dictated by the energy relaxation process and
the nature of the cross-sections. In the long-time limit, i.e.
the steady-state, an increase in NDB is observed for low fields
such as 100 Hx. For this model, the time to the maximum in
the peak structure appears to decrease for increasing B/N .

So physically, why does the phenomena of transient
negative diffusion exist for the E and E × B components
of the diffusion tensor? In general there are many physical
factors that influence the diffusion when E and B fields are
operative (see [26]). Fortunately, however, for the timescales
involved, we can understand the phenomena of negative
diffusion without extensive recourse to such arguments.

First let us consider diffusion in the E × B-direction. If
we consider the case of the highest B/N shown, then when the
magnetic field is switched on the condition τ < τm is satisfied
initially and the electrons on the average undergo gyrations
about the B field before they undergo collisions. Since the
initial velocity distribution has rotational symmetry about the
E-direction, the distribution of velocities in the positive and
negative E × B-directions are equal (figure A1 illustrates this
point). If we consider pairing off all swarm particles which
have E×B velocities that are equal in magnitude and opposite
in sign, then it can be shown that the displacement in the
E × B-direction between these particles increases for the first
quarter-period of gyration and then decreases for the next half-
period, thus oscillating in time. Hence, the rate of change of
displacement between these particles in the E × B-direction
also oscillates in time. That is, we have the situation where
collectively the electrons on the average are approaching each
other in the E × B-direction and hence the swarm’s diffusion
coefficient in that direction becomes transiently negative. Of
course for times greater than a few τm, collisions begin to
destroy this signature ‘collisionless’ behaviour and the decay
of the oscillations then follows. For lower B/N the collective
‘collisionless’ gyro-orbiting swarm behaviour cannot manifest
itself since on average the electrons cannot complete orbits
before undergoing collisions. Having said all this, we need
to note that the effects of both fields are for most conditions
only small perturbations on the otherwise chaotic particle
trajectories. To support this we may note that the drift
velocities are considerably smaller than the thermal velocities.
Nevertheless, while the gyroscopic motion may be difficult to
observe if one were to look at all trajectories, its imprint on the
ensemble is distinguishable.

Now let us consider diffusion in the E-direction. We can
follow similar arguments to those used to describe diffusion
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in the E × B-direction though they must be modified by
virtue of the initial condition. At Nt = 0, we have an
anisotropic velocity distribution (i.e. the velocity distribution
in the E-direction differs from that in the perpendicular
directions) which is displaced in the −E-direction (figure A1
illustrates this point). There are more electrons travelling in
the −E-field direction than those traveling against it. If we
follow similar arguments used for the E × B-direction we
can pair off some (but not all) electrons with velocities in
the −E-direction that are equal in magnitude but opposite in
sign. We can monitor the displacement between each pair
and again observe that this displacement oscillates in time. In
contrast to the E × B-direction, however, all electrons cannot
be paired off in this case and the perturbations to the classical
damped oscillatory profiles then follow. For the highest B/N

considered, the condition τ < τm is satisfied initially and this
collisionless behaviour can manifest itself.

With this knowledge of the transient response of diffusion
coefficients, we are now better placed to understand the profiles
for RF crossed field conditions [1, 3]. It is well known that
certain temporal behaviour for RF systems definitely cannot
be understood in terms of the corresponding steady-state dc
crossed field results [2, 3, 8] or from extrapolations of the dc
results using the two distinct relaxation times for energy and
momentum balance. To demonstrate this principle, in [14] the
RF field was approximated by a series of dc step functions
fields and the individual relaxations were monitored. In that
study it was found that ‘one must consider not only the ability
of the transport property to relax on a time scale governed by
the frequency of the field but also the implications associated
with an inability to relax’ [14]. Understanding of RF behaviour
then reduces to understanding the transient behaviour and this
was partial motivation for this paper. The application to the
phenomena in [1, 3] will be addressed in future work.

4. Concluding remarks

In this paper we have investigated the temporal variation
of the diagonal diffusion coefficients in response to the
application of an orthogonal magnetic field. We have used
two independent techniques, a time-dependent multi-term
solution of Boltzmann’s equation and a time-resolved Monte
Carlo simulation. The agreement of the results of the two
techniques support the validity of both. We have demonstrated
that transiently negative values of both diffusion coefficients
NDE×B and NDE can be obtained by switching on an
orthogonal magnetic field of a sufficient strength that the gyro-
period of the electrons is less than the mean time between
collisions. Finally, it should be highlighted that although the
second law of thermodynamics implies that the diffusion tensor
must be positive definite (and hence the diagonal elements
positive) in the steady state where mechanical equilibrium has
been attained [34], there are no such limitations for the time-
dependent transient states considered here.
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Appendix A. Transient behaviour of other transport
properties

Other transport properties of interest in terms of the calculated
moments include:

ε = 3

2
kTb

[
1 −

√
2

3
�{F(100|000)}

]
(mean energy),

(A.1)

WE = 1

α

√
2�{F(011|000)} (E-drift velocity), (A.2)
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Figure A3. Temporal relaxation of WE for various applied magnetic
fields for electrons in the Reid ramp model (E/N = 12 Td). The
dashed lines represent the results from the time-dependent
multi-term solution of Boltzmann’s equation while the solid lines
represent those from the Monte Carlo simulation.

Figure A4. Temporal relaxation of ε, WE and WE×B for various
applied magnetic fields for electrons in the Reid ramp model
(E/N = 12 Td). The dashed lines represent the results from the
time-dependent multi-term solution of Boltzmann’s equation while
the solid lines represent those from the Monte Carlo simulation.

WE×B = − 1

α
�{F(010|000)} (E × B − drift velocity),

(A.3)

where �{} and �{} refer to the real and imaginary
parts, respectively. The temporal relaxation profiles for
these transport properties are displayed in figures A1–A4.
The transient phenomena is consistent with the behaviour
demonstrated in [20]. The steady-state behaviour in E × B
fields is in general well known [3, 25, 35–37].
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