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Abstract
An investigation of the spatial relaxation of the electrons and benchmark calculations of
spatially resolved non-conservative electron transport in model gases has been carried out
using a Monte Carlo simulation technique. The Monte Carlo code has been specifically
developed to study the spatial relaxation of electrons in an idealized steady-state Townsend
(SST) experiment in the presence of non-conservative collisions. Calculations have been
performed for electron transport properties with the aim of providing the benchmark required
to verify the codes used in plasma modelling. Both the spatially uniform values and the
relaxation profiles of the electron transport properties may serve as an accurate test for such
codes. The explicit effects of ionization and attachment on the spatial relaxation profiles are
considered using physical arguments. We identify the relations for the conversion of
hydrodynamic transport properties to those found in the SST experiment. Our Monte Carlo
simulation code and sampling techniques appropriate to these experiments have provided us
with a way to test these conversion formulae and their convergence.

1. Introduction

In recent years the study of spatially resolved electron
kinetics in neutral gases under the action of an electric field has
gained in importance for development and further optimization
of plasma sources used in the plasma processing industry [1].
One of the major challenges in this area is an understanding
of the spatial variations and related relaxation processes of
the electron transport properties in atomic and molecular
gases. This essentially non-hydrodynamic behaviour is often
labelled in the physics of non-equilibrium plasmas as non-
local (or transient) behaviour. The spatial variations of
the electron transport properties can be caused by various
mechanisms. These include the local disturbances of the
electron velocity distribution function, electron transport in
rapidly varying fields in space and/or time, the presence
of external sources of ionization, electron transport at very
high electric field to gas number density ratio (E/n0)
or electron transport near emitting or absorbing physical
boundaries such as electrodes, enclosing walls, internal grids

and probes. A number of theoretical methods to calculate the
electron transport properties under these ‘non-hydrodynamic’
conditions, especially those attempting to model or simulate
the cathode fall of a dc [2] or sheath of rf discharges [3],
revealed the non-local nature of electron transport. The
failure of the hydrodynamic approximation and the spatial non-
locality of electron transport has been recognized and marked
as one of the biggest difficulties in the early development of
plasma models [4, 5]. A survey of various kinetic problems
and difficulties occurring in inhomogeneous plasma regions,
their approximate kinetic treatment and range of applicability
prior to the 1990s has been reviewed in [6].

More recently, the modern non-hydrodynamic kinetic
studies on the electron spatial relaxation revealed the
complex nature of the relaxation process and associated
basic mechanisms. The groups at Griefswald (Winkler and
co-workers) and James Cook University (Robson and co-
workers) attract special attention. Unlike others, who directly
applied their methods to treat complex plasma phenomena
in various inhomogeneous plasma regions, they focused on
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the half-range free space problems including the modelling
of an idealized steady-state Townsend (SST) experiment with
the aim of understanding the fundamental mechanisms of the
spatial relaxation of electron ensemble properties. Winkler
and co-workers employed a two-term, Legendre polynomial
representation of the velocity distribution for solving the
Boltzmann equation to study the field free spatial relaxation of
the electrons and related spatially decaying plasma phenomena
[7], spatial relaxation of the electrons in uniform [8–11]
and non-uniform [12] electric fields, spatial relaxation in
spatially periodic fields [13–15] and response of the electrons
to spatial disturbance of the electric field [11, 16]. A two-
term representation of the distribution function in spherical
harmonics has been applied for a treatment of both the
non-local electron kinetics in the anode region [17] and
radially inhomogeneous electron kinetics [18]. The two-
term theory has been extended to a multi-term treatment
of spatial relaxation in spatially uniform fields [19], and
spatial relaxation in the cathode [20, 21] and anode [22]
regions of a glow discharge. Similar kinetic studies on
spatial relaxation of the electrons in uniform and spatially
periodic fields have been performed by Golubovskii et al
[23–26]. For atomic systems, it may be anticipated that the
two-term analysis is of sufficient accuracy, but in general,
a multi-term representation of the distribution function, in
full spherical harmonics, not just Legendre polynomials, is
required [27]. This was the program carried out by Robson
and co-workers in an attempt to study the effects of non-
conservative collisions on spatial relaxation of the electrons
[28], using a two-temperature moment method, whereby the
spatial dependence was treated by both finite difference and
eigenfunction techniques. However, the spectrum of problems
associated with spatial relaxation processes of the electrons is
even larger. In that respect, the effect of electron–electron
interactions [29] and effects of a magnetic field [30, 31] on
spatial relaxation of the electrons have been investigated.

The conclusions emerging from the previous studies of
Winkler and co-workers and Robson and co-workers are
consistent with each other and may be summarized as follows.
The nature of the spatial relaxation profiles of the electron
transport properties is dependent on the interplay between
the power dissipated in elastic collisional processes, power
dissipated in threshold collisional processes and the power
dissipated into the swarm by the field [28, 32, 33]. For
certain gases, there exists a ‘window’ of E/n0 strengths where
the relaxation profiles are damped oscillatory in nature, and
outside this window the profiles are monotonic. The seminal
experiment of Franck and Hertz, as discussed recently by
Robson et al [33] and Sigeneger et al [34], was the first
to provide evidence of these effects, while Holst–Oosterhuis
periodic luminous layers observed in rare gas discharges are
also a manifestation of these phenomena [35]. The non-
intrusive photon flux experiment of Fletcher [36] and Malović
et al [37, 38] provides a means of directly observing the
periodic structures of electron transport properties common
to all the above arrangements, which for present purposes
can be classified as variations on the SST experiment.
However, in spite of these well-known illustrative examples,

the spatial variations and associated relaxation phenomena
of the electron transport properties have been difficult to
quantify experimentally on a systematic basis because of
their dependence on initial and experimental conditions.
Moreover, in the swarm experiments used for measurement of
the electron transport coefficients and determination of low-
energy electron–molecule cross sections, both theoretical and
experimental work has been carried out to avoid/minimize the
detrimental action of non-hydrodynamic phenomena in order
to obtain more reliable hydrodynamic transport properties [39].
One such example is separation of the delay distance and the
hydrodynamic exponential growth in SST experiments and
analysis of the Paschen curve [40] or measurement of excitation
coefficients.

In understanding physically the spatial variations of the
electron transport parameters, the Monte Carlo simulations
and the flight-time integral method (FTI) have also played an
important role. The group led by Tagashira has demonstrated
the differences in the electron transport properties due to
the methods of observation, pulsed Townsend (PT), SST and
time of flight (TOF) following the previous work of Thomas
[41] and proposed the way of sampling of spatially resolved
electron transport data under SST conditions [42, 43]. Boeuf
and Marode employed a Monte Carlo simulation technique
to study the spatial dependence of the electron transport
parameters in a strong electronegative gas SF6, and showed that
these parameters may be position dependent throughout the
gap between electrodes [44]. The non-hydrodynamic effects
at high values of E/n0 when both runaway and boundary
effects are significant throughout the discharge were studied
by Stojanović and Petrović in nitrogen [45] and argon [46].
Sugawara and co-workers improved the propagator method of
Sommerer [47] and applied this method for calculation of SST
spatially uniform electron transport data [48, 49]. Finally, the
steady-state Townsend flight time integral (SST–FTI) method
has been employed for the similar studies of the spatially
resolved energy distribution function and electron transport
properties in CF4 [50].

The aim of this paper is to present a systematic
analysis of the effect of non-conservative collisions
(ionization/attachment) on the spatial relaxation profiles using
a Monte Carlo simulation technique. The results of the analysis
and their physical interpretation are presented for certain model
gases. The motivations for using the Monte Carlo method and
model cross sections in benchmark calculations are not always
fully appreciated. A Monte Carlo method is based on the
first principles without imposing various approximations and
boundary conditions on the electron distribution function in
velocity space which although convenient from the numerical
and mathematical point of view, are often unphysical.
The errors in Monte Carlo simulation are essentially of
statistical nature only and therefore well understood. Other
possible sources of error are oversimplification in representing
important phenomena, inaccurate input data or inadequate or
statistically biased sampling. Using simple analytic forms
of cross sections, however, we can isolate and elucidate
fundamental physical processes which govern the spatial
variations of the electron transport properties with various
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input parameters. In addition, the analytical form of the cross
sections provides no ambiguity and uncertainty generated by
the complicated structure of real cross sections. Therefore,
it is desirable and useful to apply a Monte Carlo method
to perform benchmark calculations of spatially dependent
electron kinetics and related spatial relaxation processes.
To our knowledge, there exist only a limited number of
such investigations. Kortshagen et al [51] applied a Monte
Carlo code as a benchmark tool for testing the so-called
‘non-local approximation’, a method for solving the space-
dependent Boltzmann equation. The influence of the electron
attachment process on swarm characteristics under SST
conditions in Ar : NF3 mixture has been recently studied
through a Boltzmann equation analysis and Monte Carlo
simulation by Dyatko et al [52]. In order to verify the
complex relaxation processes of the electrons studied using
two-term [53] and multi-term [22] solutions of the Boltzmann
equation, comparative Monte Carlo calculations have also been
performed. These illustrative examples are very welcome steps
in the right direction but some additional calculations may
be required to include more fundamental aspects of spatial
relaxation of the electrons, particularly when attempting to
fully understand the influence of non-conservative collisions.
The role of elastic and inelastic collisions and their energy
losses have also been investigated in spatial relaxation of the
electrons in this paper. This is the avenue we explore in
this work.

The starting point is a brief presentation of our Monte
Carlo simulation code specifically developed to model an
idealized SST experiment. Rather than present the full review
of the simulation technique, we highlight some important
points associated with the technique under the SST conditions
and refer the reader to [4, 54] for a detailed discussion of
standard Monte Carlo procedures. We also introduce a new
scheme to calculate the expansion coefficients in density
gradient expansions of average transport properties in the
hydrodynamic regime. This yields hydrodynamic transport
properties such as the flux drift velocity, flux diffusion tensor
and gradient energy parameter. We are then able to represent
SST transport properties in terms of these general quantities
calculated under hydrodynamic conditions. One of the primary
purposes here is to use Monte Carlo simulations to test
these hydrodynamic expansions under SST conditions, their
convergence and range of applicability. In order to achieve this
goal, two different sampling techniques for spatially dependent
electron transport data have been developed and employed in
our code. Sampling of hydrodynamic transport properties in
infinite electron swarms is well defined for both dc and ac
electric fields when non-conservative collisions are operative.
However, most experiments deal with SST conditions where
at any particular point along the discharge there exist electrons
originating from the cathode at different times. In particular,
it is difficult to obtain both space and time resolved data under
these conditions, and hence an important aspect of this work is
to give an outline of sampling techniques appropriate to SST
experiments. The background of these sampling techniques is
a rigorous kinetic theory and this is clearly demonstrated in this
work. Finally, we pay particular attention to the influence of

non-conservative collisions (ionization/attachment) on spatial
relaxation profiles. We have presented the importance of
treating ionization in a correct way as the non-conservative
collisional processes rather than as other inelastic processes
for the determination of spatial relaxation processes. In this
paper we make a further generalization with respect to the
work of Li et al [28] to consider the explicit effects of the
electron attachment collisional processes on spatial profiles of
the electron transport data.

2. On the connection between SST transport
properties and transport coefficients

2.1. Distribution functions, hydrodynamic regime and
transport coefficients

The behaviour of a swarm of electrons in gases under the
influence of electric and magnetic fields can be described by
the time evolution of the phase-space distribution function
f (r, v, t) where r and v define co-ordinates in position and
velocity space respectively. The phase-space distribution
function is defined such that f (r, v, t) dr dv is the number
of particles within dr of r and dv of v at time t . The
phase-space distribution function can be determined from
solution of the Boltzmann equation or from a Monte Carlo
simulation. Quantities of interest can be determined from the
appropriate integrals over velocity and/or configuration space.
For example, the average value of the property ϕ at a given
position is defined as

〈ϕ〉 =
∫

ϕf (r, v, t) dv∫
f (r, v, t) dv

= 1

n(r, t)

∫
ϕf (r, v, t) dv, (1)

where n(r, t) is the number density at that position. The mean
value of the same property over the entire swarm is

ϕ̃ =
∫

ϕf (r, v, t) dr dv∫
f (r, v, t) dr dv

= 1

N

∫
ϕf (r, v, t) dr dv, (2)

where N is the total number of swarm particles.
The experimentally measurable quantities in swarm

experiments are usually the charged particle currents or
charged particle densities. The connection between
experiment and theory can be made through the equation of
continuity

∂n(r, t)
∂t

+ ∇ · �(r, t) = S(r, t), (3)

where Γ(r, t) = n〈v〉 is the swarm particle flux and S(r, t)
represents the production rate per unit volume per unit time
arising from non-conservative collisional processes. We are
following the conventional definitions of transport coefficients
and assume that the hydrodynamic approximation pertains, so
that all space–time dependence is expressible through linear
functionals of n(r, t) [39]. A sufficient representation is a
density gradient expansion of the phase-space distribution
function [39]:

f (r, v, t) =
∞∑

s=0

f (s)(v) ⊗ (−∇)(s)n(r, t), (4)
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where the following normalization condition is satisfied∫
f (s)(v) dv = δs0. (5)

Substitution of (4) into (1) yields the density gradient
expansion of 〈ϕ〉(r, t). The density gradient expansion of the
average energy and average velocity are

ε(r, t) =
∞∑

s=0

εs(−∇)sn = ε̃ + γ · ∇n

n
+ · · · , (6)

v(r, t) =
∞∑

s=0

�s(−∇)sn = W(�) − 1

n
D(�) · ∇n + · · · , (7)

where

εs =
∫

1

2
mv2f (s)(v) dv, (8)

�s =
∫

vf (s)(v) dv. (9)

Here ε̃ is the mean energy and γ = −nε1 is the gradient energy
parameter [55], W(�) and D(�) define, respectively, the flux
drift velocity and flux diffusion tensor. Performing equivalent
representations of the fluxΓ(r, t) and source term S(r, t) (to the
orders shown), we have

Γ(r, t) = W(�)n(r, t) − D(�) · ∇n(r, t), (10)

S(r, t) = S(0)n(r, t) − S(1) · ∇n(r, t) + S(2) : ∇∇n(r, t).

(11)

Substitution of expansions (10) and (11) into the continuity
equation (3) yields the diffusion equation,

∂n

∂t
+ W · ∇n − D : ∇∇n = −Ran, (12)

which defines the bulk transport coefficients

Ra = −S(0) (loss rate), (13)

W = W(�) + S(1) (bulk drift velocity), (14)

D = D(�) + S(2) (bulk diffusion tensor). (15)

In swarm experiments the bulk transport coefficients are
generally measured and tabulated. These transport coefficients
are associated with the swarm’s centre of mass transport. The
explicit influence of non-conservative collisional processes
on the swarm’s centre of mass transport is described by the
correction terms S(1) and S(2). Obviously, in the absence
of non-conservative processes, these two sets of transport
coefficients coincide.

2.2. Transport under SST conditions

In this work we study spatial relaxation of the electron transport
properties in an idealized SST experiment with plane-parallel
geometry. A steady stream of electrons emitted from the
cathode enters and ionizes the gas and at a sufficiently large
distance z from the cathode it is usually assumed that n(z) ≈
exp(αz), where α is the first Townsend ionization coefficient
[44, 56–58]. In an electron-attaching gas, the electron number

density decreases according to the similar exponential law.
There exists a steady state in which transport properties are
independent of time and vary with the position only. It is
generally found that for a region near the cathode/source
‘non-hydrodynamic’ behaviour exists [43]. In this regime,
the continuity equation (3) still holds but representations
involving low-order density gradient expansions fail (e.g.
diffusion equation) and hence concepts of quantities like
diffusion coefficients do not necessarily apply in this region.
At sufficient distances from the cathode/source, however, the
velocity dependence (and hence average transport properties)
does not vary with position and hydrodynamic conditions
prevail.

The transport properties of interest in our SST study
are the spatial evolution of the average energy and average
velocity. Although we are not advocating the use of labels to
assign different transport properties to different experiments,
for emphasis in this paper we shall use the subscript SST to
designate that the properties have relaxed to their spatially
independent values, e.g. ‘SST average energy’ εSST and ‘SST
average velocity’ vSST. Assuming the exponential growth of
the electron number density with the distance n(z) ≈ exp(αz),
it follows from (6) and (7) that the density gradient expansion
of the average energy and average velocity are, respectively,

εSST =
∞∑

s=0

εs(−α)s = ε̃ + γα + · · · , (16)

vSST =
∞∑

s=0

Γs(−α)s = W(�) − D
(�)
L α + · · · , (17)

where D
(�)
L is the flux longitudinal diffusion coefficient. From

equations (16) and (17) we can see that the SST average energy
and SST average velocity can be calculated from the expansion
coefficients, εs and �s , in the density gradient expansions of
the average energy and velocity, respectively.

It is important to clarify a point which is often a source
of confusion introduced in part by terminology. When non-
conservative processes are operative, the SST average energy
and SST average velocity are different from those determined
from hydrodynamic calculations of the mean energy and flux
(or bulk) drift velocities, respectively (e.g. often calculated in
TOF analysis). We shall demonstrate this further in section 4.
Rather, εSST can be calculated from ε̃ and γ (plus higher
order terms if higher accuracy is required), while vSST can
be calculated from W(�) and D

(�)
L (plus higher order terms

if higher accuracy is required). Obviously, in the absence
of non-conservative collisions, εSST reduces to ε̃ while vSST

reduces to W(�).
This paper follows the traditional but rigorous kinetic

theory and in this respect strongly supports the conclusions
outlined by Robson [56]. Transport coefficients must be
independent of the experimental setup from which they were
obtained. The true transport coefficients in this sense are the
bulk transport coefficients. Other transport ‘coefficients’ (e.g.
vSST) are dependent on the experimental technique and hence
are not, strictly speaking, true transport coefficients. Likewise,
the flux transport properties are not true transport coefficients
as they are not measurable but can only be calculated in
hydrodynamic calculations.
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3. Monte Carlo method

In the following section we highlight an improved and more
efficient sampling for Monte Carlo simulations of the bulk and
flux transport coefficients. Following the pioneering works of
Sakai et al [42, 43] and Bouef and Marode [44], we develop
the set of equations appropriate for sampling of the electron
transport data in SST Monte Carlo simulations. We also
develop a technique to evaluate the expansion coefficients in
the density gradient expansion of the average energy and flux.
Similar but not identical work was performed independently in
the context of high E/n0 studies [59]. In this reference the SST
experiment was also considered, albeit at high E/n0 where
most of the gap between electrodes is in non-equilibrium.

3.1. Overview and basic assumptions

In our Monte Carlo simulation code we follow the trajectories
of a large number of electrons (typically 1 × 106–5 × 106)
which undergo collisions with background neutral particles.
The primary electrons are isotropically released one by one
from the cathode surface into the half space with an initial
energy ε0. Any new secondary electrons arising from electron
impact ionization events are followed using the following
procedure. When an ionization collision occurs, the set of
all dynamic properties (the instant of an ionization collision,
the position of new electron, the starting energy and velocity)
of a secondary electron are placed at the stack. When a
primary electron reaches the anode surface or disappears in an
attachment collision event, the first available electron from the
stack is followed. These secondary electrons from the stack are
released isotropically. In an attachment collision the electron
is consumed and hence not simulated further. If the stack is
empty, the next primary electron is released and the whole
procedure repeats. Thermal motion of the background neutral
particles and electron–electron interactions are neglected. The
electrodes are considered to be perfectly absorbing.

In the present Monte Carlo code the classical equations
of electron motion for an electric field only configuration are
employed. We follow the evolution of each electron through
time steps governed by the mean collision time. These finite
time steps are used to solve the integral equation for the
collision probability in order to determine the time of the next
collision. This can be done using either the null-collision
method [60] or the so-called direct integration method [61].
In our code, the latter approach is employed. The number
of time steps is determined in such a way as to optimize the
performance of the Monte Carlo code with no reduction in
the accuracy of the final results. Once the moment of the next
collision is established, the nature of the collision is determined
by using the relative probabilities of the various collision types.
All electron scattering are assumed to be isotropic regardless
of the collision nature, specific process and energy.

3.2. The calculation of bulk and flux transport coefficients

In Monte Carlo simulation, the bulk transport coefficients may
be determined from the rate of changes of the appropriate

averages of the positions of the electron swarm particles, in the
real space. The number changing reaction rate is defined by

ω(0) = −α = d

dt
(ln N), (18)

the drift velocity by

ω(1) = W = d

dt
〈r〉 (19)

and the diffusion tensor by

ω(2) = D = 1

2

d

dt
〈r�r�〉, (20)

where N is the total number of electrons at any time and
r� = r − 〈r〉.

In order to use Monte Carlo simulation to determine the
flux transport coefficients one may use the approach proposed
by Nolan et al [62]. They have developed explicit formulae
involving distribution functions for the correction terms S(j)

(j = 0, 1, 2, . . .) which allow the determination of the flux
transport coefficients using (14) and (15). This method
requires numerical integration and hence the accuracy of the
flux transport coefficients may be affected by the choice of
numerical procedure. One may avoid these difficulties using
the following simple formulae for the flux drift velocity and
flux diffusion tensor components [4, 54, 63]:

W(�) =
〈

dr
dt

〉
= 〈v〉, (21)

D
(�)
i = 〈rivi〉 − 〈ri〉〈vi〉, (22)

where v is the electron velocity and i = x, y, z. We shall
show below that the procedures adopted by Nolan et al [62]
and the above formulae are equivalent. It follows from
(21) that the flux drift velocity is the mean velocity of the
electrons. Formulae (18)–(22) enable direct calculation of both
sets of transport coefficients, flux and bulk, in Monte Carlo
simulation. Note that the angular brackets denote the averages
over all electrons at any moment t . When the hydrodynamic
regime is reached, the averages obtained in such a way are
independent of time.

Both sets of transport properties/coefficients, flux and
bulk, are necessary as input data in plasma modelling. The
bulk values should be used for the analysis of the validity of
the cross section. On the other hand, the flux values should
be calculated using the Boltzmann equation or Monte Carlo
simulation and then used as input data in fluid modelling of
plasma discharges [64]. However, the distinction between
these two sets of transport coefficients has often been ignored in
previous work in the plasma modelling community [64]. This
has led to a potentially serious mismatch between the input
swarm data required and used. Note that only the Boltzmann
equation analysis and/or Monte Carlo simulation can resolve
any such mismatch, by providing both flux and bulk transport
coefficients. A review of these aspects is contained in [64].
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3.3. Sampling of spatially resolved transport data

Let us consider a swarm of electrons released at time t0 = 0
at r0 = 0 with a given initial velocity distribution and let
f (r, v, t) be the distribution function of the electrons at time
t . Distribution function f (r, v, t) can be presented as a sum
of Dirac’s delta functions:

f (r, v, t) =
N(t)∑
k=1

δ(rk(t) − r)δ(vk(t) − v), (23)

where N(t) is the total number of electrons at time t .
Integrating f (r, v, t) over time (from t0 = 0 to infinity) we
get the steady-state distribution function fSST(r, v) which can
be written as

fSST(r, v) = h

∫ ∞

0
f (r, v, t) dt

= h
∑
k,l

1

|vzk(tl)|δ(xk(tl) − x)δ(yk(tl) − y)δ(vk(tl) − v),

(24)

where h is the flux normalized to 1, k is the index for all
particles of the swarm (from t0 = 0 to infinity) and l is
the number of passes of each electron through the plane
perpendicular to axis z. Using formula (24), one may obtain
any physical parameter ξ of the swarm in SST experiment at
the position z in the following way:

〈ξ〉z =
∫

ξfSST(r, v) dx dy dv∫
fSST(r, v) dx dy dv

. (25)

This is the so-called ‘membrane’s sampling’ method as it
corresponds to passages through a membrane perpendicular
to the axis of the electric field. The electron number density,
mean energy and average velocity are defined, respectively, as
follows:

n(z) =
∫

fSST(r, v) dx dy dv = h
∑
k,l

1

|vzk(tl)| , (26)

ε(z) =
(∑

k,l

1

|vzk(tl)|

)−1 ∑
k,l

εk(tl)

|vzk(tl)| , (27)

vz(z) =
(∑

k,l

1

|vzk(tl)|

)−1 ∑
k,l

vzk(tl)

|vzk(tl)| . (28)

The second way of sampling is labelled as ‘sampling in boxes’.
According to this method, the abscissa z is divided into a large
number of small boxes �z wide and infinite over perpendicular
axes. Any property may be defined in the j th box (i.e. between
zj − �z/2 and zj + �z/2) as

〈ξ〉j =
(

1

�z

∫ zj +�z/2

zj −�z/2
fSST(z, v) dr dv

)−1

× 1

�z

∫ zj +�z/2

zj −�z/2
ξfSST(z, v) dr dv

≈
(

N∑
k=1

�t
j

k

)−1 N∑
k=1

ξ
j

k �t
j

k , (29)

where fSST(z, v) is the steady state distribution function, ξ j

k is
the value of the quantity to be sampled when the kth electron
is contained in the j th box, �t

j

k is the residence time of the
electron in that box andN is the total number of electrons which
appear there. Electrons moving towards both the cathode
and the anode must be considered and sampled. The reasons
why the residence time of the electrons must be considered
in the above sampling formula are given in [42]. These two
sampling techniques must yield the same results under the same
physical conditions in simulation. Both sampling techniques
provide spatial variation of transport properties with high
spatial resolution. If it is not otherwise specified, in this work
the spatially resolved transport properties are obtained via box
sampling. The internal consistency between membrane and
box sampling has been checked and found to be very good.

The spatially resolved rate coefficients can be calculated
by determining the number of collisions of type m in the j th
spatial box located at zj [45]:

Rm(zj )

n0
= Nm

j

�zNe(zj )
, (30)

where Nm
j denotes the number of collisions m, �z is the width

of the box andNrme(zj ) represents the net number of residential
electrons. This procedure is similar to the actual experimental
measurements of spatially resolved excitation and ionization
coefficients [45]. Some tests of the procedure have been made
by comparing the ionization rate coefficients obtained from
the slope of the simulated spatial profile of electron emission
and by direct sampling (30) with the results produced by
integrating the EEDF and the corresponding cross section. In
a similar fashion excitation coefficients that may be sampled
in the Monte Carlo simulation at any point may be compared
with the integrals of the corresponding cross sections and also
compared with the experimental excitation coefficient that may
be determined only at the anode. The comparisons of the
data obtained from simulations by the two different techniques
always gave data that were in good agreement and were an
important check of internal consistency especially important
if we extend the technique to the non-hydrodynamic situation.

3.4. On the calculation of coefficients in the hydrodynamic
expansion

The question that concerns us in this work is the calculation of
the expansion coefficients in the density gradient expansion of
the transport properties, which are determined from the tensor
functions f (s)(v). In order to find these functions we follow
the previous works of Kumar et al [39], Kumar [65] and Nolan
et al [62]. We will consider the most general situation, of
which the SST case is one limiting case. By doing so, the
following tensor functions of rank k may be introduced:

N(k) =
∫

n(r, t)
(r)k

k!
dr =

∫
F (k)(v) dv, (31)

F (k)(v) =
∫

f (r, v)
(r)k

k!
dr. (32)

6
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Although these quantities have a clear physical interpretation
they cannot be measured in experiments. However, these
quantities can be calculated in Monte Carlo simulations.
Taking successive moments of the electron number density
under SST conditions we have:

N(0) =
∫

n(r, t) dr =
∫

F (0)(v) dv ≡ N, (33)

N(1) =
∫

rn(r, t) dr =
∫

F (1)(v) dv ≡ N〈r〉, (34)

N(2) =
∫

1

2
r2n(r, t) dr =

∫
F (2)(v) dv ≡ 1

2
N〈rr〉, (35)

where N is the total number of electrons at any time t and the
angular brackets denote the averages over all electrons at any
moment t . Substitution of (4) into (32) and using (33)–(35)
yield the following expressions for the lowest F (k)(v) tensors:

F (0)(v) = Nf (0)(v), (36)

F (1)(v) = Nf (0)(v)〈r〉 + Nf (1)(v), (37)

F (2)(v) = 1
2N〈rr〉f (0)(v)

+ 1
2N

[〈r〉f (1)(v) + f (1)(v)〈r〉] + Nf (2)(v). (38)

It is easily seen that the tensor functions f (s)(v) are given by

f (0)(v) = 1

N

∫
f (r, v, t) dr, (39)

f (1)(v) = 1

N

∫
rf (r, v, t) dr

− 1

N

∫
f (r, v, t) dr

1

N

∫
rf (r, v, t) dr dv, (40)

f (2)(v) = 1

2N

∫
rrf (r, v, t) dr

− 1

2N

∫
rrf (r, v, t) dr dv

1

N

∫
f (r, v, t) dr

− 1

N

∫
rf (r, v, t) dr dv

1

N

∫
rf (r, v, t) dr

+
1

N

∫
f (r, v, t) dr

[
1

N

∫
rf (r, v, t) dr dr

]2

. (41)

Under an infinite plane parallel configuration, with the electric
field in the z-direction, the spatial variations are along the z

axis only, with no variations along the x- or y-directions.
Substitution of (39)–(41) into (9) allows us to determine

the expansion coefficients in the density gradient expansion of
the particle flux, or equivalently the flux transport coefficients:

�0 = 〈vz〉 ≡ W(�), (42)

�1 = 〈zvz〉 − 〈z〉〈vz〉 ≡ D
(�)
L , (43)

�2 = 1
2 〈z2vz〉 − 1

2 〈z2〉〈vz〉 − 〈z〉〈zvz〉 + 〈z〉2〈vz〉. (44)

Expressions (42) and (43) independently confirm the validity
of using (11) and (12) in the calculation of the flux drift and
flux longitudinal diffusion coefficients. Equation (41) allows
us to calculate higher order flux terms.

Likewise, substitution of (39)–(41) into (8), respectively,
allows us to determine the coefficients in the density gradient
expansion of the average energy:

ε0 = ε̃, (45)

ε1 = 1

2
〈zε〉 − 〈z〉〈ε〉 = −γ

n
, (46)

ε2 = 1
2 〈z2ε〉 − 1

2 〈z2〉〈ε〉 − 〈z〉〈zε〉 + 〈z〉2〈ε〉. (47)

Relations (42)–(47) provide a method in MC simulations
for easily sampling the expansion coefficients in the
density gradient expansion of both the average energy and
electron flux.

In summary, we now have the tools to calculate using a
MC simulation:

• spatial profiles of the transport properties for the SST
experiment;

• bulk and flux transport coefficients under hydrodynamic
conditions;

• expansion coefficients in the density gradient expansion
of the transport properties including the gradient energy
parameter.

We are then in a position to assess the accuracy/convergence
of the density gradient expansion for the SST average energy
and SST average velocity in the far-down stream SST profiles
where hydrodynamic conditions generally prevail.

4. Results and discussion

4.1. The ionization Lucas–Saelee model

To understand the fundamental effects of ionization on spatial
relaxation profiles of the electron transport properties we
consider electrons in the ionization Lucas–Saelee model [66].
The details of this model gas are

σe(ε) = 4ε−1/2 Å2,

σex(ε) =
{

0.1(1 − F)(ε − 15.6) Å2, ε � 15.6 eV,

0, ε < 15.6 eV,

σI(ε) =
{

0.1F(ε − 15.6) Å2, ε � 15.6 eV,

0, ε < 15.6 eV,
(48)

where σe, σex and σI are the cross sections for elastic, inelastic
and ionization collisions, respectively. Other details of the
model include εi = 15.6 eV, T0 = 0 K, E/n0 = 10 Td
(1 Td = 10−21 V m2), m/M = 10−3, where m and M denote
the electron and molecular mass, respectively, while T0 is the
temperature of the background gas.

There are some interesting aspects associated with this
model. Firstly, the sum of the inelastic and ionization cross
sections is independent of the parameter F , while secondly the
threshold energies are the same for both processes. Thus, this
model can be used to isolate and separate effects of inelastic and
ionization collisions, respectively. This can be done through
the variation of a parameter F . However, it is common in
the literature on electron swarms to find ionization processes
simply as another inelastic process [10]. If this scenario was

7
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Figure 1. Spatial relaxation of the (a) mean energy, (b) average
velocity and (c) ionization rate coefficient for the ionization model
of Lucas and Saelee at E/n0 = 10 Td. The initial electron energy
is 1.5 eV.

used in our simulations there would be no variation in the
calculated transport properties with respect to variation in the
parameter F . In addition, as detailed earlier, εSST and vSST

reduce to ε̃ and W(�), respectively. One should bear this in
mind in the following discussion.

In figure 1, we display spatial relaxation of the mean
energy, average velocity and ionization rate coefficient,
respectively, for different values of F . We observe periodic
relaxation profiles for all the conditions considered and this
behaviour is consistent with previous results published by Li
et al [28]3. The average energy does not depend on F near the
cathode region, reflecting the distance required for electrons
emitted at the initial energy to obtain sufficient energy to
initiate ionization collisional processes. Figure 1(c) shows
spatial relaxation of the ionization rate. As expected, the
ionization rate increases when increasing the parameter F . In
the region near the cathode the ionization rate is significantly
reduced and it begins rapidly to grow after electrons travel
enough long distance sufficient for their energy to be higher
than the ionization threshold. The ionization rate peaks at the
positions which correspond to the peaks of the mean energy.
The explanation for this is associated with the fact that the
ionization collision frequency increases with energy for this
model and consequently electrons undergo more ionization
collisions at higher energy.

Spatial relaxation can be characterized by a spatial
relaxation length and a relaxation period if oscillatory
behaviour exists. The detailed calculations of the positions
of the extremes in transport properties for the Lucas–Saelee
model revealed a small increase in the periods of oscillations
of the various transport properties when increasing F . In
addition, it has been observed that the relaxation periods are

3 An error exists in the results presented in [28] arising from an incorrect
implementation of the boundary at infinity in the computer code.

Table 1. Comparison between the SST and mean energies, as well
as accuracy of the low-order truncations of the density gradient
expansion for the ionization model of Lucas and Saelee.

F = 0 F = 0.25 F = 0.5 F = 0.75 F = 1

ε̃ (eV) 5.57 5.39 5.22 5.09 4.97
εSST (eV) 5.57 5.30 5.11 4.95 4.82
� (%) 0.0 1.7 2.1 2.75 3.0
αε1 (eV) 0.00 0.07 0.11 0.13 0.13
ε0–αε1 (eV) 5.57 5.32 5.11 4.96 4.84
� (%) 0.0 0.4 0.0 0.2 0.4

Table 2. Comparison between the SST and flux drift velocities, as
well as accuracy of the low-order truncations of the density gradient
expansion for the ionization model of Lucas and Saelee.

F = 0 F = 0.25 F = 0.5 F = 0.75 F = 1

W(�) 7.32 7.32 7.32 7.32 7.32
(104 m s−1)

vSST 7.32 7.08 6.92 6.79 6.68
(104 m s−1)

� (%) 0.0 3.3 5.5 7.2 8.7
α�1 0.00 2.32 4.05 5.40 6.53
(103 m s−1)

�0–α�1 7.32 7.09 6.92 6.78 6.67
(104 m s−1)

� (%) 0.0 0.1 0.0 0.1 0.1

approximately one and a half times longer than the theoretical
value which can be easily calculated through �z = εi/eE,
where εi is the threshold for inelastic cross section, e is the
electron charge and E is the magnitude of the electric field.
Figures 1(a)–(c) also demonstrate that the relaxation lengths
of all transport properties increase with the parameter F . These
results independently confirm the previous calculations and the
reader is referred to [28] for details.

In what follows we restrict our discussion to the stage of
evolution in the SST experiment where the average energy and
average velocity have relaxed to their spatially independent
values εSST and vSST. We can see immediately from tables 1
and 2 that the SST values disagree with the mean energy and
flux drift velocities traditionally determined in hydrodynamic
calculations. As expected, from tables 1 and 2 we observe
that for F = 0, when conservative collisions are operative
only, εSST and vSST reduce to ε̃ and W(�), respectively. While
there are no/minimal variations in W(�) with increasing F , the
ε̃ decreases with increasing F [62]. For SST conditions, both
the εSST and the vSST decrease with F . This is illustrated in
figures 1 and 2.

A striking feature of the data presented in tables 1 and 2
is a small but noticeable discrepancy between εSST and ε̃, and
vSST with W(�) as F increases. In addition, it is clearly evident
that the differences between vSST with W(�) are more affected
by a parameter F (the degree of ionization) than the differences
between the εSST and ε̃. For the highest ionization degree of
F = 1, the differences between vSST with W(�) approaches
10%. These properties are quite general when ionization is
involved, i.e.

• the SST average velocity is always less than the flux drift
velocity, and
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Figure 2. Spatial relaxation of the (a) mean energy, (b) average
velocity and (c) ionization rate coefficient for modified attachment
model of Ness and Robson at E/n0 = 10 Td. The initial electron
energy is 1.5 eV.

• the SST average energy is always less than the mean
energy.

One can immediately see that these are general properties by
referring to relations (16) and (17). For example, from (17)
and using the fact that both DL and α are positive it follows
immediately that vSST < W(�). Likewise, from (16) since γ

(or ε1) is always negative [55] and α is positive for ionization,
it then follows that εSST < ε̃.

Physically (to first order in density gradients), the flux of
electrons in the SST experiment is a combination of the drift
due to the electric field force (nW(�)) and a diffusive flux due to
gradients in the electron density profile (−DLdn/dz). When
ionization processes are dominant in the SST experiment, the
density profile increases exponentially with distance in the
direction of the electric field force. Hence, the diffusive flux
arising from this gradient in the electron number density is then
in the opposite direction to the drifted flux due to the electric
field. It then follows that the diffusive flux acts to reduce the
field flux and hence vSST < W(�).

Likewise (to first order in density gradients) the average
energy of electrons is a combination of the mean energy ε̃ and
a contribution associated with the energy losses/gains due to
diffusive processes (γ dn/dz). The mean energy of electrons
far from the source is a balance of energy deposited by the
field and that dissipated in collisions. As electrons move
away from the source they fall through a greater potential and
hence have more energy deposited by field. Now considering
the contribution to the average energy associated with the
diffusive flux electrons: since this diffusive flux is against
the electric field force (due to the increasing electron density
profile) these electrons are going against the field force and
this contribution is acting to reduce the average energy. It then
follows that εSST < ε̃.

Table 3. Comparison between the SST and mean energies, as well
as accuracy of the low-order truncations of the density gradient
expansion for the modified attachment model of Ness and Robson.

MA0 MA1 MA2 MA3

ε̃ (eV) 5.57 5.45 5.57 5.73
εSST (eV) 5.57 5.66 5.71 6.04
� (%) 0.0 3.7 2.5 5.1
αε1 (eV) 0.00 0.21 0.14 0.28
ε0–αε1 (eV) 5.57 5.66 5.71 6.01
� (%) 0.0 0.0 0.0 0.2

4.2. Modified attachment model of Ness and Robson

To investigate spatial relaxation in the presence of the electron
attachment, the modified Ness–Robson attachment model has
been considered. The details of this gas model are [62]:

σe(ε) = 4ε−1/2 Å
2
,

σex(ε) =
{

0.1(1 − F)(ε − 15.6) Å
2
, ε � 15.6 eV,

0, ε < 15.6 eV,

σa = aεp Å
2
, (49)

where the threshold for the excitation is εi = 15.6 eV, T0 =
0 K, E/n0 = 10 Td (1 Td = 10−21 V m−2), m/M = 10−3,
where m and M denote the electron and molecular mass,
respectively, while T0 is the temperature of the background
gas (table 3). In this model the parameters a and p control the
magnitude and the energy dependence of the attachment cross
section, respectively. This paper considers zero attachment
model (MA0: a = 0, p = 0) and the case studies where
the attachment cross section is proportional to the electron
velocity (MA1: a = 5×10−4, p = 0.5), inversely proportional
to the electron velocity (MA2: a = 2 × 10−3, p = −0.5)
and inversely proportional to the electron energy (MA3: a =
8 × 10−3, p = −1.0) [62]. In figure 2 we demonstrate the
spatial relaxation of the average energy, average velocity and
attachment rate coefficient. They display the same general
behaviour in the relaxation profiles as those for ionization.
The only noticeable differences arise from the difference
in the thresholds for the ionization and attachment models.
For the attachment model, the threshold is zero and hence
the average energy and average velocity deviate from the
conservative case in the close vicinity of the cathode. In the
regime where the transport properties have relaxed to spatially
independent values, the following important general properties
for attachment in SST are observed:

• the SST drift velocity is always greater than the flux drift
velocity, and

• the SST average energy is always greater than the mean
energy.

Using similar arguments to that outlined for ionization, but
with our arguments modified with α now being negative, these
general properties can be inferred from relations (16) and
(17) (table 4). Physically, when attachment is the dominant
non-conservative process, the diffusive flux contribution to
the average velocity of the electrons is now in the direction
of the directed flux W(�) since the density profile decreases
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Table 4. Comparison between the SST and flux drift velocities, as
well as accuracy of the low-order truncations of the density gradient
expansion for the ionization model of Lucas and Saelee.

MA0 MA1 MA2 MA3

W(�) (104 m s−1) 7.32 7.32 7.32 7.32
vSST (104 m s−1) 7.32 7.89 7.72 8.17
� (%) 0.0 7.2 5.2 10.4
α�1 (103 m s−1) 0.00 5.27 3.82 7.68
�0–α�1 (104 m s−1) 7.32 7.85 7.70 8.09
� (%) 0.0 0.5 0.3 1.0

exponentially with distance from the source. It then follows
that the diffusive flux acts to enhance the field flux and hence
vSST > W(�). Likewise, since the diffusive flux is in the
direction of the field force, the contribution to the average
energy associated with diffusive processes is now positive, and
it follows that εSST > ε̃.

5. Conclusion

In this paper we have developed a Monte Carlo simulation
technique to consider the spatial relaxation of electrons for
an idealized SST experiment. The study has focused on the
explicit influence of non-conservative collisional processes on
the relaxation behaviour, and some important and quite general
properties associated with the impact of attachment/ionization
have emerged from this study. Also in this paper we
have considered the convergence of the density gradient
expansion often used in the hydrodynamic analysis of swarm
experiments. To do this, we have developed a technique that
allows us to accurately calculate expansion coefficients in the
density gradient expansion using the Monte Carlo technique.
We were able to demonstrate for the cases considered that
when hydrodynamic conditions prevailed the density gradient
expansion converged rapidly. Convergence to within 1.0% is
achieved in the SST properties using only the first two terms
in the expansion. While one could expect that these effects
will be of importance for electrons only, recently evidence of
the influence of the non-conservative processes on transport
of ions [67] and positrons [68] were found and discussed.
In the case of ions the mean energies for them to occur are
quite large but still within the range of practical discharges. In
the case of positrons extraordinarily high effects were found
which may yield an interest in performing analysis like the one
reported here.
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