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Abstract. In this paper we discuss the swarm physics based techniques including the 
Boltzmann equation analysis and Monte Carlo simulation technique for determination 
of low energy electron-molecule cross sections. A multi term theory for solving the 
Boltzmann equation and Monte Carlo simulation code have been developed and used to 
investigate some critical aspects of electron transport in neutral gases under the 
varying configurations of electric and magnetic fields when non-conservative collisions 
are operative. These aspects include the validity of the two term approximation and the 
Legendre polynomial expansion procedure for solving the Boltzmann equation, 
treatment of non-conservative collisions, the effects of a magnetic field on the electron 
transport and nature and difference between transport data obtained under various 
experimental arrangements. It was found that these issues must be carefully considered 
before unfolding the cross sections from swarms transport data. 
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INTRODUCTION 

One of the primary motivating factors behind transport theory of charged particle 
swarms in neutral gases is the determination of low energy electron-molecule cross 
sections. The swarm method falls into the category of the 'inverse' problems in physics, 
where the cross sections are adjusted until some preset agreement is obtained between 
experimentally measured and theoretically calculated transport coefficients. Perhaps the 
first use of transport theory to obtain the collision cross sections was that of Townsend 
and Ramsauer in the early 1920s. These early methods were based on measuring the drift 
velocity in a gas as a function of E/p (electric field strength divided by a gas pressure), 
and inverting the integral relating the drift velocity and momentum transfer cross section 
using an approximate expression for the energy distribution of the electrons. In the 1960s 
Phelps and many other collaborators developed algorithms for solving the Boltzmann 
equation for transport of electrons in gases to obtain the electron transport coefficients 
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and distribution functions valid for higher fields and in the presence of inelastic collisions 
(see for example Phelps (1968) and references therein). At the same time, the swarm 
experiments of the drift velocity and transverse diffusion coefficient in an electric field 
increased in accuracy and hence it became possible to make comparisons between cross 
sections obtained by the swarm method and beam experiments. The swarm methods of 
deriving cross sections developed by Phelps and collaborators became accepted as 
competitive and complementary to other established techniques, such as crossed-beam or 
total attenuation experiments, particularly in low energy range where these experimental 
techniques were faced with a wide range of systematic problems if absolute values of 
integral cross sections are required. The gas laser modeling community was the first to 
benefit from very accurate momentum transfer and lower energy (rotational and 
vibrational) inelastic cross sections that have been derived from measurements of the drift 
and diffusion of electron swarms in gases. 

The swarm technique of deriving cross sections has increased in sophistication over 
the years. The review papers of Crompton (1994) and Petrović et al. (2007) outlines the 
current status in the field. One of the most critical aspects associated with the swarm 
method is the accuracy of calculation of the electron transport coefficients from a given 
set of cross sections. The common thread among early and more recent swarm methods 
for determination of the cross sections is the use of the two term theory (representation of 
the electron velocity distribution by the first two terms of an expansion in spherical 
harmonics in velocity space) for solving the Boltzmann equation. Originally the two term 
approximation was used to unfold the transport data, but subsequent multi term 
calculations of Ness and Robson (1986), Petrović (1984) and Yousfi and Benabdessadok 
(1996) revealed large discrepancies between the cross sections obtained with these two 
techniques, particularly for molecular gases. In spite of these and many other well-known 
examples which illustrate the inadequacies of a two term theory, there are many public 
domain Boltzmann solvers based on the two term approximation and specifically developed 
for the cross section adjustments. Even the fully automated numerical optimization 
procedures to manipulate the input cross sections was based on a two term theory and have 
been developed and extensively used for a wide range of gases (Taniguchi et al. (1987); 
Morgan (1991)). One important aspect of the present work concerns the adequacy of the 
two term approximation for inversion of swarm data to obtain electron-molecule cross 
sections. The investigation is carried out for electron swarms under the influence of 
varying configurations of electric and magnetic fields. Similar studies have been 
published previously for both model and real gases (White et al. (1999,2003)) but we 
extend these studies by: (i) highlighting the explicit effects of non-conservative collisions 
on the electron transport properties and (ii) addressing the temporal relaxation of spatial 
inhomogeneities through a study of the diffusion tensor. It is important to note that the 
application of an orthogonal configuration of electric and magnetic fields gives rise to an 
additional number of transport coefficients and thus one is able to exploit this in the 
inversion procedure. Thus by varying the magnitude of a magnetic field an additional 
check on the validity of a cross section set may be made through comparison with such 
measured electron swarm data (Schmidt et al. (1994)). For an arbitrary configuration of 
electric and magnetic fields, the degrees of freedom are further increased by varying the 
angle between the fields. In such cases the number of independent transport coefficients 
is even greater. With these remarks as background, we have been motivated to investigate 
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the accuracy of the two term approximation for solving the Boltzmann equation when 
both electric and magnetic fields are present.  

The next point of confusion has arisen in connection with identification of transport 
coefficients in the presence of non-conservative collisions. Under hydrodynamic 
conditions, two distinctively different types of transport coefficients can be distinguished: 
the bulk and flux. Both of these transport coefficients are often calculated in the analysis 
of time-of-flight (TOF) swarm experiments. Physically, the bulk transport coefficients are 
associated with the swarm's centre of mass transport and should be used for comparisons 
with experimentally measured transport data. However, when non-conservative processes 
are operative, the average energy and average velocity under steady-state Townsend 
(SST) conditions are different from those determined from hydrodynamic calculations of 
the mean energy and flux (or bulk) drift velocities respectively (traditionally calculated in 
time-of-flight TOF analyses). These differences can be quite large and may induce large 
errors in cross sections if one applies the SST transport properties as input data of the 
inversion procedure. In order to avoid these difficulties, we identify the relations for the 
conversion of hydrodynamic transport properties to those found in the steady-state 
Townsend (SST) experiment. Our Monte Carlo simulation code and sampling techniques 
appropriate to these experiments has provided us with a way to test these conversion 
formulae and their convergence. 

In section 2 the multi term theory for solving the Boltzmann equation and Monte 
Carlo simulation technique valid for an arbitrary field configuration when non-
conservative collisions are operative are discussed in more detail. In section 3 we give 
numerical examples for various cases of special interest for the swarm method and 
determination of the cross sections.  

THEORETICAL METHODS 

Multi Term Theory for Solving the Boltzmann Equation 

The behavior of charged particles in neutral gases under the influence of electric and 
magnetic fields is described by the phase-space distribution function f(r, c, t) representing 
the solution of the Boltzmann equation  

 [ ] 0( , )f f q f J f f
t m

∂ ∂ ∂
+ ⋅ + + × = −

∂ ∂ ∂
c E v B

r c
 (1) 

where r and c denote the position and velocity co-ordinates, e and m are the charge and 
mass of the swarm particle and t is time. The electric and magnetic fields are assumed to 
be spatially homogeneous and time-dependent. In what follows, we employ a co-ordinate 
system in which E defines the z-axis while B lies in the y-z plane, making an angle ψ with 
respect to the E. Swarm conditions are assumed to apply where the charged particle 
number density is much less than number density of neutral species and mutual 
interactions between swarm particles are negligible compared with swarm particle-neutral 
particle interactions. The right-hand side of Eq. (1) denotes the linear charged particle-
neutral molecule collision operator, accounting for elastic, inelastic and non-conservative 
(e.g. ionizing and attaching) collisions. 
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In the present approach equation (1) is solved by decomposing f(r, c, t) in terms of 
spherical harmonics in velocity space and powers of the gradient operation acting on the 
number density n(r, t) in configuration space, i.e. 
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where [ ] ( )l
mY

∧
c  denotes the spherical harmonics and ( )sG λ

μ  denotes the sth application of 
the gradient operator in irreducible tensor notation. The value of lmax is incremented until 
some predefined accuracy criterion is satisfied. This value indicates the deviation of the 
velocity distribution function from isotropy. The two term approximation is based upon 
the setting of the upper bound on the summation to lmax = 1. Truncation at s = 2 is 
necessary to determine transport coefficients up to and including diffusion when non-
conservative collisions are operative.  

The speed dependence of the coefficients in Eq. (2) is represented by an expansion 
about a Maxwellian at an internally determined time-dependent temperature Tb(t), in 
terms of Sonine polynomials  
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and ( )
1/ 2lS ν

+  is a Sonine polynomial. Using the appropriate orthogonality relations of the 
spherical harmonics and modified Sonine polynomials the following system of coupled 
differential equations for the moments F(vlm ⏐sλμ; α(t), t) is generated 
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where '
lJνν  and 〈νl⎟⎜K[1]⎟⎜ν 'l'〉 are reduced matrix elements, ω(000) represents the net 
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creation rate and (lm | l ' m10) is a Clebsch-Gordan coefficient. The explicit expressions 
for the RHS are given in Ness (1994) for the case of crossed dc electric and magnetic 
fields. These expressions are modified in this paper in order to consider the time-
dependent fields crossed at arbitrary angles in the presence of non-conservative 
collisions. Discretising in time using an implicit finite difference scheme converts the 
system of coupled differential equations into a hierarchy of coupled matrix equations. To 
establish the transport coefficients of interest we are required to solve the following 
members of the hierarchy (s,λ,μ) = (0,0,0), (1,1,0), (1,1,1), (2,0,0), (2,2,0), (2,2,2). 

Monte Carlo Simulation Technique 

Another independent method for investigating the charged-particle transport in dc 
electric and magnetic fields is a Monte Carlo simulation technique. In the context of 
hydrodynamic studies, it is assumed that the charged-particle swarm develops in an 
infinite space. At time t = 0, electrons are initially released from the origin according to 
Maxwellian velocity distribution with the mean starting energy of 1 eV under the 
influence of electric and magnetic fields. 

Spatial relaxation of the electrons has been studied by our steady-state Townsend 
Monte Carlo simulation code. The primary electrons are isotropically released one by one 
from the cathode surface into the half space with an initial energy εo. When an ionization 
collision occurs, a set of all dynamic properties (the moment of an ionization collision, 
the position of new electron, the starting energy and velocity) of secondary electron are 
established and placed at the stack. When primary electron reaches the anode surface or 
disappears in an attachment collision event, the first available electron from the stack is 
followed. These secondary electrons from the stack are released isotropically. In an 
attachment collision the electron is consumed and hence not followed further. If the stack 
is empty, the next primary electron is released and the whole procedure repeats. Thermal 
motion of the background neutral particles and electron-electron interactions are 
neglected. The electrodes are considered to be perfectly absorbing. 

In both the hydrodynamic and non-hydrodynamic versions of Monte Carlo codes, we 
follow the spatiotemporal evolution of each electron through time steps governed by the 
minimum of two relevant time constants: mean collision time and cyclotron period for 
E×B field. These finite time steps are used to solve the integral equation for the collision 
probability in order to determine the time of the next collision. Once the moment of the 
next collision is established, the nature of the collision is determined by using the relative 
probabilities of the various collision types. All electron scattering is assumed to be 
isotropic regardless of the collision nature. 

The way of sampling of transport properties depends upon the manner of swarm 
observation. The definitions and corresponding formulae for the electron transport 
coefficients under the hydrodynamic conditions were given in our previous publications 
(Dujko et al. 2005,2006). The spatially resolved electron transport properties have been 
obtained using the following formula: 

 

/ 2

/ 2 1
/ 2

1
/ 2

1 ( , )

1 ( , )

j

j

j

j

z z
N

j jSST k k
z z k

j z z N
j

kSST
k

z z

f z dzdv tz

tf z dzdv
z

+Δ

−Δ =
+Δ

=
−Δ

ΔΔ
〈 〉 = ≈

Δ
Δ

∫ ∑

∑∫

v

v

ξ ξ
ξ , (7) 



S. DUJKO, R.D. WHITE, Z.LJ. PETROVIĆ 62 

where fSST(z, v) is the steady state distribution function, ξ j
k is the value of the quantity to 

be sampled when kth electron is contained in jth box, Δt j
k  is the residence time of the 

electron in that box and N is the total number of electrons which appear there. Electrons 
moving towards both the cathode and anode must be considered and sampled. 

RESULTS AND DISCUSSION 

The two term approximation versus multi term theory 

In this section the two term approximation is tested using an accurate multi term solution 
of the Boltzmann equation and Monte Carlo simulation code. First we employ the Reid ramp 
model (Reid 1979). The Reid ramp model has been extensively used as a benchmark for a 
variety of field configurations due to its well known illustration of the failure of the two term 
approximation (White et al. 1999). In this work we extend the previous works by illustrating 
how large errors in the determination of the cross sections can be if one applies the two term 
approximation. The Reid ramp model is defined as follows: 
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where σel(ε) is the cross section for elastic collisions, σin(ε) is the cross section for 
inelastic collisions, ε is the electron energy, m is the electron mass, N is the gas number 
density and T0 is its temperature. 
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Fig. 1.  (a) Percentage difference between the two term and multi term solution of Boltzmann 

equation in various transport properties for electrons and (b) Reid's ramp model (full 
line) and the cross sections that can be derived from the "exact" values of the transport 
coefficients (in a limited E/n0 range) if one uses the two term theory (dashed line). 
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In Figure 1 (a) we display the percentage difference between the two term and multi 
term values for the mean energy (ε), drift velocity (W), diffusion tensor components 
(n0DL, n0DT), temperature tensor components (TL, TT) and gradient energy parameter (γ). 
The inadequacy of the two-term approximation for all transport coefficients and 
properties for this model is clearly evident. The lmax = 6 is required to achieve 0.1% 
accuracy for all transport coefficients and properties. We observe that as E/n0 increases, 
the percentage difference between the two term and multi term values of various transport 
properties is increased. The largest errors are associated with the diffusion coefficients 
and are of the order of 30% in the limit of the highest E/n0 considered in this work. These 
data were then analyzed using the two term approximation in an attempt to determine the 
cross sections that would best fit the data. The result of this procedure, shown in Figure 1 
(b), clearly indicates that large errors can result from the use of inaccurate methods for 
calculating the transport coefficients. 
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Fig. 2. (a) Drift velocity and (b) transverse diffusion coefficient as a function of E/n0. 

Similar calculations have been done for CF4 (carbon tetrafluoride). The momentum 
transfer and 15 inelastic cross sections of Kurihara et al. (2000) are used. Isotropic 
scattering is assumed. Although CF4 has numerous technological applications, we 
consider it here more for illustrative purposes, particularly as we expect significant 
anisotropy of the velocity distribution function for average energies in the vicinity of the 
Ramsauer-Townsend minimum. Electron transport in CF4 is examined for E/n0 in the 
range 1-1000 Td. The results of calculations for the drift velocity and transverse diffusion 
coefficient obtained by both the two term and multi term theories for solving the 
Boltzmann equation and Monte Carlo simulation techniques are compared and shown in 
Figures 2 (a) and (b). In order to check our two term results for n0DT, the well-known 
Boltzmann solver ELENDIF developed by Morgan (1990) was used to calculate this 
transport coefficient. The lmax = 7 within the multi term calculations was required to 
achieve 0.5% accuracy for all transport coefficients and properties. From the plot of the 
drift velocity it is seen that electrons in CF4 exhibit negative differential conductivity, i.e., 
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over a range of E/n0 values the drift velocity decreases as the field is increased. 
Conditions leading to this phenomenon have been discussed by Robson (1984) and 
Petrović et al. (1984). The agreement between a multi term theory and Monte Carlo 
simulation is excellent. The comparison validates the basis of transport theory and 
numerical integrity of both approaches. 

Comparing two term and multi theory, however, we see that the maximum error in the 
two term approximation for both W and n0DT occurs for the low values of E/n0. As E/n0 
increases, the two term results for W increase in accuracy while for n0DT there still exist 
large disagreements with respect to the multi term results. For the low values of E/n0, 
disagreements up to 30% in W and 400% in n0DT exist. This large deviation between the 
two term and multi term results is a clear sign of large asymmetry in velocity space which 
makes the two term approximation inadequate for the analysis of transport data and 
determination of the cross sections. Another interesting point is associated with the fact 
that it is sometimes claimed that the two term approximation becomes increasingly 
difficult to satisfy at higher fields. This example clearly shows that this is not the case; 
Figures 2 (a) and (b) indicate that the two term results are worst for the low E/n0 values. 

The effects of non-conservative collisions 

Another issue that is highly relevant for determination of the cross sections is nature 
of the hydrodynamic transport coefficients. Care must be taken when non-conservative 
collisions are operative to ensure the calculated quantities correspond to those which are 
measured. In this context, it is the bulk and flux transport coefficients upon which we 
focus attention. At this point we wish to sound a warning to those who use swarm 
transport data for determination of the cross sections, to be aware in the differences 
between these two sets of transport data. The most appropriate procedure is to use the 
bulk values of transport coefficients for comparisons with experimentally measured 
transport coefficients and then to calculate the flux quantities which are necessary as 
input data in fluid modeling of plasma discharges. 
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Fig. 3. Variation of the bulk and flux values of the drift velocity and transverse diffusion 
coefficient as a function of E/n0.  
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In Figure 3 (a) and (b) we show the bulk and flux values of the drift velocity and 
transverse diffusion coefficients as a function of E/n0 in CF4. The effects of the ionization 
processes for the high values of E/n0 are clearly evident. The differences between the 
bulk and flux values are of the order of 30%. On the other hand, the effects of the 
electron attachment are significantly smaller. These effects can be observed in the profile 
of the drift velocity at intermediate field strengths, between 40 and 100 Td where the flux 
dominate the bulk values. In contrast, the electron attachment has no visible influence on 
the transverse diffusion coefficient. One may expect these small effects associated with 
the electron attachment due to the weak electronegative nature of the CF4 molecule. 

Transport in varying configurations of electric and magnetic fields  

One of the biggest disadvantages of the swarm technique for determination of low 
energy electron molecule cross section is non-uniqueness – various combinations of cross 
sections can generate the same set of transport data. This means that if we modify one 
inelastic cross section it is still possible to achieve a good energy balance by modifying 
another inelastic cross section. This problem can be avoided by seeking for some 
additional information about the relative magnitude of the cross sections either from 
electron scattering theory or from electron beam experiments or through the use of gas 
mixtures. As already remarked, when magnetic field is added to the electric field, the 
number of transport coefficients more than doubles and these additional transport 
coefficients can be used for the inversion procedure. In other words, the application of a 
magnetic field can be used to overcome the problem of non-uniqueness. This was the 
program of Schmidt and co-workers at Heidelberg who initiated a series of electron 
swarm experiments in crossed electric and magnetic fields (Schmidt et al. 1994). Thus it 
is important to check the validity of the two term approximation when the electron 
swarms are acted upon by both the electric and magnetic fields. In what follows, the two 
term approximation is tested within our studies of the temporal relaxation processes of 
the electrons in electric and magnetic fields crossed at arbitrary angle. 

Figure 4 displays the temporal relaxation profiles of the diagonal elements of the 
diffusion tensor as a function of B/n0 and angle between the fields. The results obtained 
by the multi-term theory are compared with those obtained by the two-term approximation 
for solving the Boltzmann equation. The inadequacy of the two-term approximation is 
clearly evident. In particular, significant deviations between temporal profiles in the early 
and intermediate stages of the relaxation process can be observed. This is a clear 
indication that the initial distribution function and its initial evolution deviates 
substantially from isotropy in velocity space (we should note that the initial distribution is 
the steady-state E-only case). In general, however, as magnetic field and the angle 
between the fields increase, the deviations between the results obtained by the two-term 
approximation and multi-term theory are significantly diminished. This suggests that the 
magnetic field acts to destroy the anisotropy of the velocity distribution function, 
consequently inducing enhanced convergence in the l-index. 

Other approximations have found their ways into mainstream Boltzmann public 
domain codes. Some of these codes/approximations avoid the mathematical complexity 
associated with an accurate solution of Boltzmann's equation, but because of assumptions 
of symmetry and/or near isotropy in velocity space they may be incorrect. Typical 
example is the use of Legendre polynomial expansion procedure for solving the 
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Boltzmann equation. For electron swarms in electric fields only, transverse spatial 
gradients can destroy rotational symmetry in velocity space and Legendre polynomial 
expansions are thus invalid for spatially inhomogeneous swarms. For electron swarms in 
electric and magnetic fields even under spatially homogeneous conditions, there exist no 
axis of symmetry in velocity space and the use of Legendre polynomials is entirely 
invalid (White et al. 2002).  
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Fig. 4. Temporal relaxation of the diagonal elements of the diffusion tensor for B/n0 of 

100 and 1000Hx and ψ of 30o and 60o for Reid ramp model (dashed lines: two 
term approximation; full lines: multi term theory). 

Nature and differences between transport data observed under different 
experimental conditions  

Another issue that is highly relevant for determination of the cross sections via swarm 
analysis concerns the nature and difference between transport data obtained under 
different experimental arrangements and conditions. In this section we discuss the spatial 
relaxation of electrons under SST conditions when non-conservative collisions are 
operative. The distinction between transport properties obtained under different 
experimental conditions has been ignored in the majority of previous works in both the 
swarm and plasma modeling communities. In particular, the majority of experiments deal 
with SST conditions and hence it is of great importance to be able to represent the SST 
transport properties in terms of general quantities calculated under hydrodynamic 
conditions. 

We investigate the spatial relaxation of electrons for the ionization model of Lucas 
and Saelee (Lucas and Saelee 1975). This model is defined as follows: 
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where σe, σex and σi are the cross sections for elastic, inelastic and ionization collisions, 
respectively. Other details of the model include εi = 15.6 eV, T0 = 0 K, E/n0 = 10 Td (1 Td = 
10-21 Vm2), m/M = 10-3 where m and M denote the electron and molecular mass, respectively 
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Fig. 5. Spatial relaxation of the (a) mean energy, (b) average velocity and (c) ionization 
rate coefficient as a function of the parameter F for Lucas-Saelee ionization model 
at E/n0 = 10 Td. 
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In Figure 5 we show the spatial relaxation of the mean energy, average velocity and 
first Townsend's ionization coefficient as a function of the parameter F. The mean energy 
and average velocity do not depend on F near the cathode region reflecting the fact that 
these transport properties are directly influenced by the cathode. However, the steady-
state values of both the mean energy and average velocity decrease for an increasing 
ionization degree. As expected, the ionization rate increases when increasing the 
parameter F. In the region near the cathode the ionization rate is significantly reduced and 
it begins rapidly to grow after electrons travel enough long distance sufficient for their 
energy to be higher that the ionization threshold. The ionization rate peaks at the 
positions which correspond to the peaks of the mean energy. 

We identify the following relations for the conversion of hydrodynamic transport 
properties to those found in the SST experiment: 
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Problems of convergence of these series can arise if α is not sufficiently small. Our 
preliminary calculations for the ionization model of Lucas and Saelee revealed that the 
truncation at s = 2 in the above equations is required to accurately calculate steady-state 
SST transport data from hydrodynamic flux transport coefficients including the mean 
energy. On the other hand, the expansion (12) requires truncation at s = 3 in order to 
achieve the accuracy criterion of 0.5%. Another interesting aspect lies with the fact that if 
the ionization processes are the dominant non-conservative processes, the SST average 
energy and SST average velocity are always less than the corresponding flux transport 
data under hydrodynamic conditions, regardless of the energy dependence of the cross 
sections. If the electron attachment dominates the ionization processes, the opposite 
situation holds (Dujko et al. 2008).   

CONCLUSION  

Using a multi term theory for solving the Boltzmann equation and Monte Carlo 
simulation technique we have tried to sound a warning to the potential users of computer 
codes for electron transport in gases in electric and magnetic fields that 

1. a multi term expansion in full spherical harmonics for solving the Boltzmann 
equation is generally required; 

2. care must be taken when non-conservative collisions are operative and it is the 
bulk values of the electron transport coefficients which should be used for the 
inversion procedure; 

3. the problem of non-uniqueness of the cross sections associated with the swarm analysis 
can be reduced by developing both the accurate experiments in E×B experiments and 
theories for solving the Boltzmann equation and/or Monte Carlo codes; 
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4. correct implementation of swarm data under SST conditions when non-conservative 
collisions are operative requires their representation in terms of general quantities 
calculated under hydrodynamic conditions.  
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ODREĐIVANJE PRESEKA ZA SUDARE ELEKTRONA I 
MOLEKULA NA NISKIM ENERGIJAMA ANALIZOM 
TRANSPORTNIH OSOBINA ROJEVA ELEKTRONA  

S. Dujko, R.D. White, Z.Lj. Petrović 

U ovom radu diskutovane su tehnike razvijene u okviru fizike rojeva elektrona koje uključuju 
rešavanje Boltzmannove jednačine i Monte Carlo simulaciju za određivanje preseka za sudare 
elektrona i molekula na niskim energijama. Razvijena je metoda za rešavanje Boltzmannove 
jednačine, bazirana na razvoju funkcije raspodele u red sa proizvoljnim brojem članova kao i 
Monte Carlo kod, koji su korišćeni za proučavanje važnih aspekata u transportu elektrona u 
neutralnim gasovima u uslovima promenljivih konfiguracija električnih i magnetskih polja kada 
nekonzervativni sudari jako utiču na transportne osobine elektrona. Ovi aspekti podrazumevaju 
proveru validnosti tehnike za rešavanje Boltzmannove jednačine bazirane na razvoju funkcije 
raspodele u red do dva člana po Legendreovim polinomima, tretman nekonzervativnih sudara, 
uticaj magnetskog polja na transport elektrona kao i prirodu i razlike između transportnih osobina 
dobijenih u različitim eksperimentalnim uslovima. Pokazano je da ovi aspekti transporta elektrona 
moraju biti pažljivo razmotreni prilikom konstrukcije skupova preseka za rasejanje elektrona na 
molekulima. 


