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Abstract
The kinetic theory of charged particles in gases has come a long way in the last 60 years or so,
but many of the advances have yet to find their way into contemporary studies of
low-temperature plasmas. This review explores the way in which this gap might be bridged,
and focuses in particular on the analytic framework and numerical techniques for the solution
of Boltzmann’s equation for both electrons and ions, as well as on the development of fluid
models and semi-empirical formulae. Both hydrodynamic and non-hydrodynamic regimes are
considered and transport properties are calculated in various configurations of dc and ac
electric and magnetic fields. We discuss in particular the duality in transport coefficients
arising from non-conservative collisions (attachment, ionization).

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The investment of resources internationally in technologies
associated with low-temperature plasmas is substantial, with
the contribution to the world economy amounting to many
billions of dollars. Given the ever increasing need for
greater precision, the full potential of this technology can
be realized only when the basic physics has been mastered
[1, 2]. Moreover there is also a need to understand more
fully such diverse scientific and technological applications
as astrophysics, lasers, atmospheric physics and high energy
particle detectors. What is required in all such cases is
first and foremost a theoretical framework capable of dealing

with highly non-equilibrium situations, and the kinetic theory
of gases, based upon the famous equation developed by
Boltzmann in 1872 [3], is ideal for this purpose. PIC
codes, Monte Carlo simulation techniques and hybrid methods
[4–6] offer complementary and sometimes more advantageous
alternatives, but for the present we deal exclusively with kinetic
theory. Our paper differs in style and substance from others in
the modern plasma literature (see, e.g. [7]) in two important
respects, in that we explore the links with (i) the literature
on swarms (the test particle limit of a plasma), particularly in
regard to solution techniques for the Boltzmann equation and
development of fluid models and (ii) the atomic and molecular
physics community, who after all provide the cross sections
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(measured in the laboratory or calculated theoretically) for
input into the Boltzmann equation or fluid models. Indeed
there is a strong connection between these two fields, since
swarm experiments have traditionally provided the most
accurate information about both ion–atom and ion–molecule
interaction potentials and low energy (<1 eV) electron impact
cross sections [8–11]. It is important to note that experimental
swarm transport coefficient data can be ‘unfolded’ to yield
these cross sections only in combination with an accurate
kinetic theory. This same kinetic theory can then be used
to understand low-temperature plasmas: in the former, one
goes from the macroscopic to the microscopic picture, and vice
versa for the latter case. This theme will be developed further
in this paper. A brief review of the modern kinetic theory
literature will serve to put the field in better perspective.

In the 1950s there were a number of seminal papers in
the kinetic theory of charged particles in gases, notably by
Wannier [12], Allis [13] and Waldmann [14], but it was not
until some time later that the modern era can truly be said to
have begun. Firstly, Kumar [15–17] introduced the ideas of
atomic and nuclear physics into kinetic theory, in particular
the techniques of irreducible spherical tensor analysis and
separation of centre-of-mass and relative velocity coordinates
through the Talmi transformation. Secondly, Viehland, Mason
and collaborators formulated the first strong field solution of
Boltzmann’s equation for ions [18, 19], which in turn laid the
basis for the first general solution of Boltzmann’s equations
for electrons [20]. This connection between ion and electron
kinetic theory is something we emphasize in this paper. These
developments were summarized in a review in 1980 by Kumar
et al [21] and have since been discussed in a number of books
[8, 22, 23] and reviews [24–26].

One thing we emphasize at the outset is that while
these days there are far more applications to low-temperature
plasmas than to experiments associated with swarms (free
diffusion limit of a plasma), there is nevertheless a considerable
overlap from a pure kinetic theory perspective. In addition,
there are many significant applications outside traditional
gaseous electronics, e.g. multi-wire drift tube detectors in
high energy particle detectors, muon catalysed fusion, Franck–
Hertz oscillations and so on. The points that we think are
particularly important are as follows:

• It is neither necessary nor desirable to arbitrarily divide
kinetic theory according to the mass of the particles
under consideration—electrons and ions may be treated
on an equal footing, starting from the same point,
namely the Boltzmann equation [3] and its semi-classical
generalization by Wang-Chang et al [27].

• These kinetic equations in phase space may now be solved
for the phase space distribution function f (r, c, t) to
high accuracy without relying on any of the traditional
approximations, e.g. assumptions of near-isotropy in
velocity space for light particles.

• Non-conservative collisions (e.g. ionization electron
attachment, ionization, ion–molecule collisions) are
now recognized to produce two fundamentally different
families of transport coefficients.

• Fluid models of plasmas are best thought of as a projection
of Boltzmann’s equation in phase space onto a set of
equivalent though approximate equations in configuration
space, with any closure Ansatz properly benchmarked
against exact results whenever possible.

Further discussion of these points, together with examples
follows in sections 2–4.

Before embarking on this task, we reiterate that other
techniques, such as Monte Carlo, PIC and hybrid modelling,
are often favoured for plasmas, because of their complexity,
and because of the difficulty in applying boundary conditions
to solutions of Boltzmann’s equation. These, like kinetic
equation treatments, should, however, be benchmarked and
their results should reduce to the swarm results in the free
diffusion limit. Considerable effort has been invested recently
by various groups in benchmarking Boltzmann equation and
Monte Carlo simulation codes for electron (and ion) swarms
in a variety of electric and magnetic field configurations and
forms to understand complex kinetic phenomena present in
low-temperature r.f and magnetized plasmas (Belgrade group
see e.g. [10, 28–31], JCU group see, e.g. [24, 25, 32–36],
Greifswald group see, e.g. [37–39] and others [40–42]). The
importance of swarms to low-temperature plasmas has been
emphasized in a number of recent papers [10, 11, 24, 25, 30]
and also the companion paper by Petrović et al in this issue
and we refer the reader to these papers for further discussion.

We begin this paper with an overview of the formalism
associated with a kinetic treatment of low-temperature
plasmas. We then discuss the general solution of the
Boltzmann equation including a unified procedure for
treating electrons and ions within these plasmas. Both the
hydrodynamic and non-hydrodynamic solution regimes are
considered and detailed, including a prescription for the
calculation of transport coefficients when non-conservative
processes such as ionization and attachment are present. This
is followed by a fluid equation description of low-temperature
plasmas in both the hydrodynamic and non-hydrodynamic
regimes, highlighting (i) the utility of momentum transfer
theory for evaluating collisional terms in the balance equations
and (ii) closure assumptions and approximations. Finally,
we conclude with results from cases of special interest,
highlighting recent new results, the generality of the theory
and associated Boltzmann and fluid codes, and accuracy of
fluid equation treatments and other approximations commonly
used.

2. Plasma kinetic theory

2.1. Formalism and the Boltzmann equation

The general problem of plasma kinetic theory is summarized
in figure 1. By definition [2, 25] a plasma comprises both
positive and negative charges, i.e. ions and electrons, and a
full kinetic treatment of a plasma therefore requires solution
of a kinetic equation for each charged species. In the very
low density ‘test particle’ or ‘swarm’ limit, such coupling
is negligible, and one can solve the ion and electron kinetic
equations separately, accounting for collisions with neutral
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Boltzmann equation for ions

Maxwell’s equations:
Self-consistent fields

Coulomb collisions

Boltzmann equation for electrons

Figure 1. Schematic diagram showing the coupling between
Boltzmann kinetic equations for ions and electrons comprising a
plasma.

atoms and molecules only. If densities are high enough for
space-charge effects to become important (but not charge–
charge Coulomb interactions) then Maxwell’s equations come
into play, but otherwise the kinetic equations we have to solve
are the same as for the swarm limit. This means that many
of the techniques and formalism developed in the past for ion
and electron swarms can be brought to bear on the plasma
problem, a fact which is still not generally recognized by the
plasma community. Of even greater concern is that ion kinetic
theory, i.e. one half of the plasma problem, is often neglected.
This is in spite of the fact that techniques for solution of
Boltzmann’s equation for ion in gases have been developed
to levels of sophistication comparable to or even exceeding
those for electrons [43] over a long period of time (see [22] for
a review). In earlier days plasma researchers recognized the
need to consider ions and electrons simultaneously—see, for
example, the seminal paper of Allis [13]—but in the meantime
there has been a divergence of the respective literatures. Real
progress in plasma kinetic theory depends upon this connection
being re-established.

We now quantify the elements of figure 1. The Boltzmann
kinetic equation for each charged component i of a weakly
ionized gas under the influence of electric E and magnetic B

fields can be written as[
∂

∂t
+ c · ∂

∂r
+

qi

mi

[E + c × B] · ∂

∂c

]
fi

= −J (fi, F0) −
∑

i ′
J (fi, fi ′), (1)

where fi(r, c, t) is the phase space distribution function at
the position r and velocity c, while qi and mi are the charge
and mass of species i respectively. Also, J (fi, F0) and
J (fi, fi ′) denote the collision terms for charged particle–
neutral molecule collisions and charged particle–charged
particle interactions, respectively, and F0 is the neutral velocity
distribution. Put in a nutshell, the problem of kinetic theory is
to solve the set of equations (1) for fi(r, c, t) with appropriate
boundary and initial conditions and coupled with Maxwell’s
equation. This is generally a formidable task.

The terms J (fi, fi ′) describe interaction between charged
particles via the Coulomb force, as represented by the Fokker–
Planck operator in velocity space, and symbolically by the
right-hand link in figure 1. As explained in text books (see,
e.g. [44]) these operators are derivable directly from the usual
Boltzmann elastic collision operator, together with a suitable
ad hoc ‘cut-off’ procedure for certain divergent integrals.
These operators are non-linear in f , making for difficult
solutions (see, e.g. [45, 46]).

In the rest of this paper we shall deal with cases where
densities are sufficiently low [47] so that such charge–charge
interactions are negligible (right-hand link in figure 1 removed)
and equation (1) simplifies to[

∂

∂t
+ c · ∂

∂r
+

qi

mi

[E(r, t) + c × B(r, t)] · ∂

∂c

]
fi

= −J (fi, F0). (2)

This is of the same form for both plasmas and swarms.
However, for plasmas, the fields are calculated self-
consistently with Maxwell’s equations (left-hand link in
figure 1), e.g. Poisson’s equation:

∇ · E = 1

ε0

∑
i

ni(r, t)qi, (3)

while for swarms the fields are completely externally
prescribed (left-hand link in figure 1 removed).

After solving (2), quantities of physical interest are
obtained as velocity ‘moments’ of the distribution functions,
starting with the number density,

ni(r, t) =
∫

fi(r, c, t) dc (4)

followed by higher order quantities,

〈φ(c)〉i = 1

ni(r, t)

∫
φ(c)fi(r, c, t) dc (5)

with φ(c) = mc, 1
2mc2, . . . furnishing the average velocity vi,

average energy εi, and so on.
In what follows, it is possible to suppress the charged

particle species index i without any ambiguity arising.
Quantities pertaining to the neutral gas will, however, still be
delineated by the subscript ‘0’.

2.1.1. Boundary conditions. Equation (2) can be solved
together with boundary and initial conditions on f (r, c, t),
appropriate to the physical circumstances. Theorems
concerning uniqueness, which have been developed in the
context of neutron transport (see, e.g. [48]), carry over to the
present problem. One has to be careful not to over-specify
f (r, c, t) on the bounding surface �: thus only the value of
the distribution function for velocities pointing into the volume
bounded by this surface should be specified, i.e. if σ is a unit
vector normal to �, pointing inwards, we can specify only

f (r, c, t), c · σ > 0 (6)
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on �. It is very difficult to solve (2) with exact boundary
conditions such as this in phase space and typically one resorts
to either approximations involving certain moments (5) of
f (r, c, t) (see, e.g. [22]) or, in the case of truncated spherical
harmonic representations of f (r, c, t) (see equation (31)
below), to the Mark conditions [49, 50] in which the expansion
coefficients are specified for either even or odd values of l.

The situation is, however, much simpler in the
hydrodynamic regime (see below), for then all the space-
dependence of the distribution function is projected onto the
number density n(r, t), symbolically

f (r, c, t) = F (c|n(r, t)), (7)

where the right-hand side denotes a linear functional of n(r, t),
e.g. the familiar density gradient expansion (see equation (17)).
In that case boundary conditions need to be specified only in
configuration space, i.e. only on n(r, t), which is in turn found
from solution of the diffusion equation (see equation (27)).

For non-hydrodynamic situations, however, no such
simplification is possible, and the kinetic equation (2) must
then be solved with boundary conditions in phase space,
approximate or otherwise. This can be the case even in simple
geometries, for example a plane surface or source in contact
with an otherwise unbounded gas [51–53]. The Franck–
Hertz experiment is an example of such a non-hydrodynamic
problem [54, 55].

2.1.2. The Boltzmann equation collision term. Collisions
between charged particles and neutral gas molecules are
described by the right-hand side of (2), which in turn has
contributions from a number of processes:

J (f, F0) = JWUB(f, F0) + JR(f, F0) + JI (f, F0) + · · · , (8)

where the Wang-Chang, Uhlenbeck, de Boer semi-classical
collision operator describing elastic, inelastic and super elastic
collisions is given by [27]

JWUB(f,F0)=
∑
jk

∫ [
f (r,c,t)F0j (c0)−f (r,c′,t)F0k(c0

′)
]

×gσ(jk;gχ)dĝ′dc0 (9)

and σ(jk; gχ) is the differential cross section for the scattering
process (j, c, c0) → (k, c′, c′

0) where cos χ = g · g′. If
the gas remains in undisturbed equilibrium, then F0j (c0) is
a Maxwell–Boltzmann distribution for neutrals with internal
state j . In that case the operator (2) is linear in f . Note that for
light particles, (9) can be approximated by the familiar quasi-
Lorentz differential form for elastic collisions and the Frost–
Phelps finite difference expression for inelastic collisions [21],
if so desired. This, however, is not necessary, and it is purely
a matter of convenience as to whether one uses the full or
approximated expressions.

On the other hand electron attachment and ion–molecule
reactions are described by operators of the form

JR(f, F0) =
∑

j

f (r, c, t)

∫
F0j (c0)gσR(j ; g) dc0, (10)

where σR(j, g) is the appropriate ‘reactive’ cross section.
Ionization is a three body problem for which the corresponding
operator is [56]

JI (f, F0) =
∑

j

noj

{
cσI (j ; c)f (r, c, t)

−2
∫

c′σI (j ; c′)B(c, c′; j)f (r, c′, t) dc′
}
, (11)

where σI (j, c) is the ionization cross section and B(c, c′; j)

is the probability of one of the two electrons after ionization
having a velocity in the range of c to c+ dc, for incident electron
velocity c′. Normalization requires

∫
B(c, c′; j) dc = 1.

2.2. Solutions regimes—hydrodynamic and
non-hydrodynamic

For weak fields and spatial gradients, with a slow time variation
and otherwise near-equilibrium conditions, the entire left-
hand side of equation (2) is small, and the Chapman–Enskog
perturbation solution technique [57, 58] can be applied. To
formally illustrate the method, we introduce a small parameter
δ and write

δ

[
∂f

∂t
+ c · ∂f

∂r
+

q

m
[E + c × B] · ∂f

∂c

]
= −J (f, F0). (12)

One then substitutes

f = nf (0) + δf (1) + δ2f (2) + · · · (13)

equates coefficients of powers of δ, and generates a hierarchy
of equations for the f (i). The first member of the hierarchy is

J (f (0), F0) = 0, (14)

which has as its immediate solution that f0 is a Maxwellian at
gas temperature. The higher order members of the hierarchy
introduce dependences upon fields and ∇n. Kihara [59] was
the first to adapt the Chapman–Enskog method for ions and
thus obtained the weak field solution of (2). Given that both
low-temperature plasmas and swarms are generally far from
equilibrium, this method is not particularly useful for most
problems of interest here.

Next suppose that while the space and (implicit) time
variation of f are still assumed to be small, the fields and
explicit time variation may be strong. Thus we associate the
small parameter δ with only the spatial term on the left-hand
side of equation (2) and develop an iterative scheme of solution
based upon

δ

[
c · ∂f

∂r

]
+

∂f

∂t
+

q

m
[E + c × B] · ∂f

∂c
= −J (f, F0), (15)

together with the expansion (13) again. The first member of
the hierarchy is now

∂f (0)

∂t
+

q

m
[E + c × B] · ∂f (0)

∂c
= −J (f (0), F0), (16)

which generally yields an f (0) which deviates significantly
from a Maxwellian. The next member of the chain of
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equations furnishes f (1) in terms of the density gradient ∇n,
the subsequent member f (2) in terms of ∇∇n, and so on. Thus
equation (13) gives in this case

f (r, c, t) = n(r, t)f (0)(c, t) + f (1)(c, t) · ∇n

+f (2)(c, t) : ∇∇n + · · · , (17)

the familiar density gradient expansion [21] generalized to
explicit sources of time dependence, where f (j)(c) denotes
a tensor of rank j. Clearly the assumption of a hydrodynamic
regime is implicit in this procedure, with (17) being a particular
example of the general representation (7). The corresponding
expansions for the most important physical quantities are found
by forming moments of this expression as in (5). Thus we
obtain

Γ(r, t) = n〈c〉 = WF(t)n(r, t) − DF(t) · ∇n(r, t) + · · · ,
(18)

S(r, t) =
∫

JR(f, F0) dc = S(0)(t)n(r, t)

+S(1)(t) · ∇n(r, t) + S(2)(t) : ∇∇n(r, t) + · · · , (19)

ε(r, t) = 〈 1
2mc2〉(r, t) = ε(t) +

γ (t)

n
· ∇n(r, t) + · · · , (20)

where

WF(t) = 1

n

∫
cf (0)(c, t) dc, (21)

DF(t) = −1

n

∫
cf (1)(c, t) dc, (22)

S(i)(t) = 1

n

∫
JR(f (i), F0) dc, (23)

ε(t) = 1

n

∫
1
2mc2f (0)(c, t) dc, (24)

γ(t) = 1

n

∫
1
2mc2f (1)(c, t) dc. (25)

Equations (21)–(25) define the most important hydrodynamic
transport coefficients and reaction rates.

In cases where a hydrodynamic description is not possible,
then all members of (2) must be treated at the same level.
One cannot project out the space–time dependence of the
distribution function onto the number density, as in (7), or
make an expansion as in (17), and transport coefficients are
not meaningful quantities. Instead of solving a hierarchy of
equations in three-dimensional velocity space only, one must
solve equation (2) with at least one additional configuration
space dimension. This makes for a very demanding
computational problem.

2.2.1. Transport coefficient duality—the Tagashira–Sakai–
Sakamoto (TSS) effect. If we integrate (2) over all velocities
there results the equation of continuity,

∂n(r, t)

∂t
+ ∇ · Γ(r, t) = S(r, t), (26)

which is exact, but not particularly useful. If the hydrodynamic
regime prevails, we can substitute for particle flux and reaction

rate from (18) and (19) respectively, to obtain the diffusion
equation

∂n

∂t
+ W (t) · ∇n − D(t) : ∇∇n = S(0)(t)n, (27)

which defines the bulk drift velocity and diffusion tensor

W (t) = WF(t) − S(1)(t), (28)

D(t) = DF (t) − S(2)(t), (29)

respectively.
The diffusion equation (27) is generally used to unfold

swarm experiments to yield W (t) and D(t), not the flux–
gradient relation (18). It is thus the bulk transport coefficients,
not the flux quantities, which are tabulated in the swarm
literature. Differences are often significant ranging from a
few percent to orders of magnitude [24, 56, 60]. In some
cases, however, bulk and flux transport coefficients may exhibit
completely different qualitative behaviour, as in cases of
negative absolute electron flux mobility (but not bulk mobility)
for strongly attaching gases [61, 62] and negative differential
conductivity (NDC) for positron bulk drift velocity (but not
flux drift velocity) [63]. In the absence of reactions, i.e.
S = 0, the two sets of coefficients coincide. It is clear that
care is required to use the correct swarm transport data in fluid
models [25]. The duality in transport coefficients is easy to
understand physically [64] and the phenomenon is referred to
in our work as the Tagashira–Sakai–Sakamoto (TSS) effect, in
recognition of those researchers who first made the distinction
between the two types of transport quantities [65, 66].

2.3. Space and time dependent multi-term solution of
Boltzmann’s equation

2.3.1. Velocity space representations. The first step in
any analysis is typically the representation of the distribution
function in directions of velocity space through an expansion
in spherical harmonics Y [l]

m (ĉ)

fi(r, c, t) =
∞∑
l=0

l∑
m=−l

f
(l)
i,m(r, c, t)Y [l]

m (ĉ), (30)

where ĉ denotes the angles of c. Note that this reduces to
an expansion in terms of Legendre polynomials Pl(cos θ) only
under very special circumstances of sufficiently high symmetry
[64]. In any practical calculation the infinite expansion (30)
must be truncated to finite size by imposing an upper limit lmax

on the l-summation:

fi(r, c, t) =
lmax∑
l=0

l∑
m=−l

f
(l)
i,m(r, c, t)Y [l]

m (ĉ). (31)

For light particles, such as electrons undergoing predomi-
nantly elastic collisions, as is the case in atomic gases at low
fields, there are good physical grounds for choosing lmax = 1,
leading to the so-called two-term approximation [64, 67]. For
ions under all circumstances, or for light particles in molecular
gases undergoing inelastic collisions, it has long been estab-
lished that a multi-term analysis is required, in which lmax must
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be varied incrementally until some convergence/accuracy cri-
terion is attained [20]. It is not at all unusual to require an
lmax > 5 to have transport coefficients accurate to better than
1%, even for electrons [56, 67]. Note that one simply incre-
ments lmax until (31) (or integrals involving it) converges to
within the desired accuracy. There are no fundamental rea-
sons for specifying it as either odd or even. The particular
numerical algorithm used for solution may well require such a
restriction, but the equations by themselves do not. These two
things should be carefully distinguished.

The next step is to represent the expansion coefficients in
(31) in speed (or energy) space, and here there are a number
of possibilities [24], e.g. following the spirit of traditional
kinetic theory [57], through an expansion in terms of Sonine
(generalized Laguerre) polynomials,

f
(l)
i,m(r, c, t) = w(α, c)

∞∑
ν=0

Fi(νlm; α, r, t)Rνl(αc), (32)

where the Maxwellian weight function is defined by

w(α, c) =
(

α2

2π

)3/2

exp

{−α2c2

2

}
(33)

and α2 = m/kTb. The modified Sonine polynomials satisfy
the orthonormality relation∫ ∞

0
w(α, c)Rν ′l(αc)Rνl(αc)c2 dc = δν ′ν . (34)

In the modern approach one sets Tb to be the ion temperature
[22] or an arbitrary basis temperature [20]. Putting (31) and
(32) together gives

fi(r, c, t) = w(α, c)

∞∑
ν=0

∞∑
l=0

l∑
m=−l

Fi(νlm; α, r, t)φ[νl]
m (c),

(35)
where φ[νl]

m (c) = Rνl(αc)Y [l]
m (ĉ) is a Burnett function [15].

2.3.2. Matrix representation of the full space–time Boltzmann
equation. After substituting (35) into (2), we eventually
obtain the following infinite set of partial differential equations
for the moments Fi(νlm; α, r, t) corresponding to species i:

∞∑
ν ′=0

∞∑
l′=0

l′∑
m′=−l′

[(
∂

∂t
+ (Ji)

l
νν ′

)
δl′lδm′m

+

〈
νlm||c · ∇ + a · ∂

∂c
||ν ′l′m′

〉

+
∞∑

ν ′′=0

∞∑
l′′=0

l′′∑
m′′=−l′′

(l′m′l′′m′′|lm)
∑

i ′
(Ji,i ′)

ll′l′′
νν ′ν ′′F

′
i (ν

′′l′′m′′)

]

×Fi(νlm; α, r, t) = 0, (36)

where 〈νlm||c · ∇ + a · ∂/∂c||ν ′l′m′〉 is a matrix element
containing field and spatial derivative terms, (l′m′l′′m′′|lm)

is a Clebsch–Gordan coefficient and (Ji)
l
νν ′ and (Ji,i ′)

ll′l′′
νν ′ν ′′ are

matrix elements of the respective collision operators in (1). All
matrix elements are either given explicitly in [15–17], or can
be readily calculated using the techniques developed therein.

This system of equations is valid in the non-hydrodynamic
regime. The quantities of physical interest are given in terms of
the solutions Fi(νlm; α, r, t) of (36), e.g. the number density
ni(r, t) = Fi(000).

The determination of the matrix elements of the collision
operator is central to the calculation, but can be very
time consuming and their computation requires attention to
accuracy. We refer the reader to [15, 17, 68, 69] for details.
It will suffice here to state that we make a general mass ratio
m/m0 (where m0 is the mass of the neutral gas constituent)
expansion of the collision operator:

J l
νν ′ =

∞∑
p=0

(
m

m + m0

)p

J l
νν ′(p) (37)

and truncate the p-summation at a level which satisfies a pre-
defined accuracy criterion. This method for the calculation
of the collision matrix elements is valid for arbitrary mass
ratios leading to a unified theory for electrons and ion swarms.
There is no benefit to assuming a priori the small mass ratio
forms of the collision operators (e.g. Davydov and Frost–
Phelps collision operators traditionally used).

2.3.3. Hydrodynamic regime—density gradient expansion.
As detailed above, in the (time-dependent) hydrodynamic
regime, the following projection of the implicit space–time
dependence onto n and its derivatives is made using a spherical
tensor equivalent of (17) for the moments F(νlm; r, t)

F (νlm; r, t) =
∞∑

s=0

∞∑
λ=0

λ∑
µ=−λ

F (νlm|sλµ; α, t)G(sλ)
µ n(r, t),

(38)
where G(sλ)

µ is the irreducible gradient tensor operator [64].
Substitution of (38) into (36), we obtain the following
hierarchy of coupled first order differential equations in time
for the moments F(νlm|sλµ; α, t) for a field configuration in
which E and B are at an angle ψ with respect to each other:

∞∑
ν ′=0

∞∑
l′=0

l′∑
m′=−l′

[({n0∂t − Ra} δνν ′ + n0J
l
νν ′(α)

)
δl′lδm′m

+i
qE

m
α(l′m10|lm) < νl||K [1](α)||ν ′l′ > δm′m

+
qB

m

{√
(l − m)(l + m + 1)

sin ψ

2
δm′m+1

−
√

(l + m)(l − m + 1)
sin ψ

2
δm′m−1 − im cos ψδm′m

}

×δνν ′δl′l − (1 − δs0δλ0δµ0)noJ
0
0ν ′(α)F (νlm|000)

]

×F(ν ′l′m′|sλµ) = X(νlm|sλµ), (39)

where the explicit expressions for the rhs are given in [33] and
Ra is the net particle loss rate

Ra = −
∞∑

ν=0

n0J
0
0νF (ν00|000). (40)
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Symmetry properties for the moments are used to minimize
the computational requirements [33]. Solution of (39) for the
moments F(νlm|sλµ) allows calculation of all quantities of
interest including the velocity distribution function, e.g.

• Bulk drift velocity vector components:

Wx = 1

α

√
2 Im{F(011|000)}

−
∞∑

ν=0

n0J
0
0ν

√
2 Im{F(ν00|111)}, (41)

Wy = 1

α

√
2Re{F(011|000)}

+
∞∑

ν=0

n0J
0
0ν

√
2 Im{F(ν00|111)}, (42)

Wz = − 1

α
Im{F(010|000)}

+
∞∑

ν=0

n0J
0
0ν

√
2 Im{F(ν00|110)}. (43)

• Bulk diffusion tensor diagonal elements:

Dxx = − 1

α

[
Re{F(011|111)} − Re{F(01 − 1|111)}

]

−
∞∑

ν=0

n0J
0
0ν

[√1

3
F(ν00|200) +

√
1

6
F(ν00|220)

−Re{F(ν00|222)}
]
, (44)

Dyy = − 1

α

[
Re{F(011|111)} + Re{F(01 − 1|111)}

]

−
∞∑

ν=0

n0J
0
0ν

[√1

3
F(ν00|200) +

√
1

6
F(ν00|220)

+Re{F(ν00|222)}
]
, (45)

Dzz = − 1

α
F(010|110)

−
∞∑

ν=0

n0J
0
0ν

[√1

3
F(ν00|200) +

√
2

3
F(ν00|220)

]
.

(46)

The terms involving the summations in the drift velocity
and diffusion tensor elements represent the explicit effects of
non-conservative collisions on the bulk transport coefficients
discussed previously. Those parts of expressions (41)–(46)
not involving the summations are the respective flux transport
properties. Note, Re{} and Im{}, respectively, represent the
real and imaginary parts of the moments. Expressions for ε,
γ , T and off-diagonal elements are available in [24]. The
spatially-averaged velocity distribution function is given by:

f (0)(c)=
∞∑
l=0

l∑
m=−l

f (lm|000)Y [l]
m (ĉ)

=
∞∑
l=0

l∑
m=0

(2−δm0)
[
Re{F̃lm}cos(mφ)−Im{F̃lm}sin(mφ)

]

×P
|m|
l (cosθ), (47)

where

F̃lm = il(−1)m

√
(2l + 1)(l − m)!

4π(l + m)!
f (lm|000). (48)

The polar and azimuthal angles of the velocity vector are
defined by θ and φ respectively while P

|m|
l is an associated

Legendre polynomial.

2.3.4. Numerical solution of the matrix equations. The
solution of (36) in the non-hydrodynamic regime and (39) in the
hydrodynamic regime proceeds after truncation to finite size by
imposing upper limits on the respective indices, with the ‘two-
term’ approximation corresponding to lmax = 1. Indications
are that the m-index may be truncated independently [32, 33].
All these indices are then successively incremented until some
prescribed accuracy criterion is met [33]. The values of νmax

vary depending on the basis temperature Tb and schemes are
available for the choice of this parameter under time-dependent
circumstances [34]. For space and time derivatives various
schemes are available. Implicit finite differencing is favoured
in time, while various finite differencing schemes have been
implemented in space [36, 51]. Sparseness and block structure
are exploited whereever possible.

2.3.5. Comparison with other methods. For light particles
such as electrons, the non-reactive collision operator (9) is
expressible to first order in m/m0 (p = 1 in equation (37)) in
differential-finite difference form [70], thus enabling standard
solution techniques for differential equation to be employed if
desired. In this case it is often seen as preferable to discretize
on a mesh of N points in speed space (see, e.g. [37]), rather
than proceed via a polynomial expansion. Nevertheless, one
still arrives at an equivalent set of matrix equations for which
truncation in three indices (N ,l,m) is required. Our view
is, however, that since one still has to solve the ion kinetic
equation, where discretization in speed or energy space does
not seem viable, it seems preferable to use the polynomial
expansion method for both the ion and electron components
from the outset.

In summary, since the aim is to develop a general method
capable of dealing with all types of particles in a low-
temperature plasma, it seems to us that it is advantageous
to use a polynomial expansion for all species, right from the
outset. We do not wish to be prescriptive in this regard, but
nevertheless stress the need to consider the kinetic theory of
all components of the plasma together, for that is the actual
problem to be faced. To consider only electron kinetic theory
in isolation, and to neglect the corresponding problem for ions,
is to avoid the true problem of plasma kinetic theory. There
exists a wealth of prior literature on swarms (electrons or ions)
that will facilitate pursuit of this goal. Finally, we reiterate:
whatever solution technique is chosen, one should always be
careful to distinguish the range of validity of the equation being
solved from the limitations of the numerical routine used to
solve it.

7
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3. Fluid modelling

The solution of (1), or equivalently (36) in matrix form, for
the full non-hydrodynamic plasma is formidable and a fluid
equation treatment is often more tractable. Here the problem
of solving the Boltzmann equation for f in phase space is
replaced by a low order set of approximate equations for the
moments of f . The recent paper [25] is directly aimed at
reconciling the swarm and plasma literature with a particular
focus on fluids models, their origin and validity.

3.1. General moment equations

The set of moment/balance equations can be found by
multiplying (1) by φ(c) and integrating over all velocities

∂[n〈φ(c)〉]
∂t

+ ∇ · [n〈cφ(c)〉]

−n
q

m

[〈
(E + c × B) · ∂φ(c)

∂c

〉]
= Cφ, (49)

where C is the collision term in the balance equation and is
given generally by:

Cφ = −
∫

φ(c)J (f ) dc. (50)

At this stage, the set of equations (49) is exact. A favoured
method of modelling plasmas is to use continuity, momentum
and energy balance equations i.e. φ(c) = 1, mc and 1/2mc2,
respectively:

∂n

∂t
+ ∇ · nv = C1, (51)

nm
∂v

∂t
+ nmv · ∇v + ∇ · P − nq(E + v × B) = Cmc, (52)

n
∂

(
ε − 1

2mv2
)

∂t
+ nv · ∇

(
ε − 1

2
mv2

)
+∇ · Jq + P : ∇v = C 1

2 mc2 , (53)

where v = 〈c〉 and ε = 〈 1
2mc2〉 is the average energy.

The heat flux vector and the pressure tensor are defined by
Jq = 1

2nm〈(c − v)2(c − v)〉 and P = nm〈(c − v)(c − v)〉
respectively. To solve this system of equations approximations
must be made to: (i) close the set of equations (since P and Jq

must be obtained from higher order equations) and (ii) evaluate
the respective collision terms. It is important that these be done
consistently for all species and that some estimate of accuracy
can be made.

3.2. Evaluating collision terms—momentum transfer theory

There should be no arbitrariness in the form of the collision
terms and further it should be clear how to modify the theory to
attain higher accuracy. References [25, 26] have discussed this
topic in detail and the various schemes involved and we refer
the reader to these references for a comprehensive discussion.
We propose here, and elsewhere, the use of momentum
transfer theory [12, 22, 71, 72] as a means of evaluating the
collision terms and satisfying the above requirements. This

method has been used extensively in swarms and we believe
its utility and accuracy can carry over to plasmas since the
approximations occur only in the collision terms and do not
affect the field terms. At its lowest level of approximation
(for particle conserving processes) the balance equations are
of the same mathematical form as for the constant collision
frequency model (point charge induced dipole interactions),
but with an energy-dependent collision frequency. For
non-conservative processes such as ionization, attachment,
ion–molecule reactions, etc. however, the next level of
approximation is required involving energy derivatives of the
collision frequency [71]. Note that Viehland and co-workers
[73–75] employ a type of momentum transfer theory with
an explicit form of f assumed, effectively (32) to low order.
However, it is neither necessary nor desirable in our opinion
to make such an assumption.

Using the momentum transfer approximation, the balance
equations (51)–(53) have the form

∂n

∂t
+ ∇ · nv = n (νI(ε̄) − νa(ε̄)), (54)

nm
dv

dt
+ ∇ · P − nq (E + v × B) = −nµνm(ε̄)v

−nmv
(
νI(ε̄) + ξν ′

a(ε̄)
)
, (55)

n
d

dt

(
ε − 1

2mv2
)

+ ∇ · Jq + P : ∇v

= −n νe(ε̄)
[
ε − 3

2kT0 − 1
2 (m + m0)v

2 + �(ε̄)
]

−nε(νI(ε̄) + ξν ′
a(ε̄)) − n 1

2mv2(νI(ε̄) + ξν ′
a(ε̄)). (56)

Here
d

dt
= ∂

∂t
+ v · ∇ (57)

denotes the convective time derivative and µ is the reduced
mass. The average collision frequencies for momentum and
energy transfer,

νm(ε̄) = n0

√
2ε

µ
σm (ε̄) (58)

νe(ε̄) = 2µ

(m + m0)
νm(ε̄), (59)

are prescribed functions of the mean energy in the centre-of-
mass frame

ε̄ = m0ε + m 3
2kT0

m + m0
, (60)

where k is Boltzmann’s constant, T0 is the neutral
gas temperature and dashed quantities represent energy
derivatives. The attachment and total ionization collision
frequencies are given by νa(ε̄) and

νI =
∑

i

ν
(i)
I , (61)

respectively, where we have summed over all possible channels
i, in which ions are produced in excited states characterized by
energies ε

(i)
I . The term � represents the average energy lost in
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one collisional energy relaxation time ν−1
e , through non-elastic

processes and is given by

� = m0

m + m0

∑
α

εα

−→να − ←−να

νe(ε̄)
−

∑
i

�ε
(i)
I

ν
(i)
I

νe(ε̄)
. (62)

The inelastic channels α are governed by threshold energies
εα and collision frequencies for inelastic and superelastic
processes −→να and ←−να respectively. The latter are also prescribed
functions of ε̄ but need to be specified more carefully in terms
of the corresponding cross sections, σI (ε̄).

3.3. Solutions regimes and closure assumptions

The closure of the system of equations (54)–(56) requires
approximations or assumptions on the form and/or magnitude
of both Jq and P since both must otherwise be obtained
from higher order moment equations (which in turn involves
higher order unknown moments). The level of approximation
is dependent on the solution regime that we are studying.
Although our theory is valid for all mass ratios and all
collisional processes, for simplicity, in what follows we will
consider light particles (m/m0 	 1) undergoing only particle
conserving collisions only. The reader is referred to [71] for
the more general cases. For light particles, ε̄ ≈ ε � 1

2mv2,
and the pressure temperature simplifies to

P = nkT ≈ 2
3nεI. (63)

Treatment of the heat flux vector however remains a little more
pivotal and dependent on the regime under investigation.

3.3.1. Time-dependent hydrodynamic regime. As detailed
in section 2.2, in the weak-gradient hydrodynamic regime
a sufficient representation of the space-(implicit) time
dependence of the phase space distribution and all velocity
moments is the density gradient expansion (17). The following
system of equations for the hydrodynamic transport properties
then follow:

• Spatially homogeneous equations:

dWF

dt
+ νm(ε)WF = q

µ
[E(t) + WF × B(t)] , (64)

dε

dt
+ νe(ε)

[
ε − 3

2kT0 − 1
2m0(WF)

2 + �(ε)
] = 0. (65)

• First order inhomogeneous equations:

dDF

dt
+νm(ε)DF = q

m
[DF ×B]+

kT

m
+ν ′

m(ε)WFγ,

(66)

dγ

dt
+νe(ε)

[
1+�′(ε)− dε

dt

ν ′
e

ν2
e

]
γ =−m0WF ·DF −Jq

. (67)

These equations can be generalized for non-conservative
processes [35]. Equations (64) and (65) represent coupled non-
linear differential equations for WF and ε, which when solved,
permit solutions of the linear coupled differential equations for
DF and γ once a closure assumption is made on the spatially

homogeneous component of the heat flux Jq . In general, under
hydrodynamic conditions this term is safe to neglect although
there are exceptions [76].

From this system of equations one can reproduce known
relations/results from swarm physics such as Wannier’s
energy relation, generalized Einstein relations [71, 22], Tonk’s
theorem [77], equivalent electric field concept (when magnetic
fields are considered) [78], Blanc’s law (mixtures), effective
dc field (when rf electric fields are present) [79] and many
others [25, 35, 71, 80].

3.3.2. Non-hydrodynamic regime—light particles. Under
non-hydrodynamic conditions, (55)–(56) in the limit of light
particles reduce to

nm
dv

dt
+

2

3
∇(nε) − nq(E + v × B) = −nmνm(ε)v (68)

and

n
dε

dt
+∇ ·Jq + 2

3nε∇ ·v=−nνe(ε)
[
ε− 3

2kT0 − 1
2m0v

2 +�(ε)
]
.

(69)
Some ansatz (postulate) is needed to close the set which in this
case means somehow specifying the heat flux Jq in terms of
lower order moments n, ε and v. This question is crucial for
the success of the fluid model, but is all too often dealt with
in a cursory, ad hoc or totally unphysical way in the plasma
literature. In [25, 81] a new ansatz is proposed which, as with
momentum transfer theory, is chosen to be exact for a particular
model and is benchmarked against known results for other
models.

4. Results and discussion

With the highly applied nature of the field of plasma
processing, modelling of the complex electron and ion kinetics
in low-temperature plasma discharges is inevitably driven
by computational efficiencies. For fluid and kinetic models
of plasmas, fundamental questions of scientific rigour often
arise regarding the foundations of the balance equations or
the ‘Boltzmann equation’ employed. In addition, solution of
these models often involve assumptions and/or approximations
and naturally questions of validity and accuracy arise here as
well. For this reason, the swarm limit plays an important
role through the provision of benchmarks for low-temperature
plasma models in the free diffusion limit. It also facilitates
the extraction of underlying fundamental physical transport
processes without the added complication of space-charge
fields. Further, swarm transport properties are often used
as input data for fluid models as a means of evaluating the
collision transfer terms in the balance equations. For these
reasons, we shall focus on the swarm limit in the rest of
this section. The swarm–plasma nexus is further detailed
in [25, 26] and in the companion paper of Petrovic et al in this
issue.

We have developed Boltzmann equation and momentum
transfer theory solutions capable of handling (i) all types
collisional processes, (ii) arbitrarily oriented electric and
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Figure 2. Configuration and velocity space coordinate systems
together with field orientations employed in this study.

magnetic fields and (iii) arbitrary time-dependence of the
electric and magnetic fields. The theories and associated
codes are valid for both electrons and ions. For the
Boltzmann equation solutions, no restrictions are imposed on
the anisotropy of the velocity distribution function nor on
the anisotropy of the cross sections. The codes have been
systematically benchmarked against independent Monte Carlo
simulations and other techniques where possible under both dc
and time-dependent conditions (see, e.g. [24, 30, 32, 82]).

Swarm transport coefficients in dc electric and/or
magnetic fields have been reviewed extensively and we refer
the reader to [24, 28, 30, 31, 32, 39] for a detailed discussion.
In the paper, we will focus attention on two important
issues in low-temperature plasma modelling, namely the
treatment of temporal and spatial non-locality. In what follows
we consider both Boltzmann equation and fluid equation
treatments, highlighting significant phenomena, assessing
accuracy of approximations and demonstrating the generality
of the theories outlined. Further, we assess the accuracy of the
momentum transfer theory fluid equation treatment through
direct comparison with multi-term Boltzmann equation results
where possible.

In this work we employ the velocity and configuration
space coordinate systems detailed in figure 2 along with
the assigned field conventions. Electric and magnetic
field strengths are presented in units of townsends (1 Td =
10−21 V m2) and Huxley (1 Hx = 10−27 T m3) respectively.
In the general case where E and B are crossed at an arbitrary
angle ψ , vector (e.g. W , γ) and tensorial (e.g. D, T ) transport
properties are full. For parallel fields, ψ = 0, the drift velocity
vector and diffusion tensor (and properties of equal rank) have
the following form:

W =

 0

0
Wz


 ; D =


 Dxx Dxy 0

−Dxy Dxx 0
0 0 Dzz


 , (70)

while for orthogonal fields, ψ = π/2, they reduce to the well-
known expressions:

W =

Wx

0
Wz


 ; D =


Dxx 0 Dxz

0 Dyy 0
Dzx 0 Dzz


 . (71)

4.1. Temporal non-locality

In this section we consider the time-resolved hydrodynamic
transport properties under the action of time-varying electric

and/or magnetic fields emphasizing the non-locality in time
of the transport properties. We will focus on two particular
systems: (i) the temporal response to the application of a
magnetic field and (ii) radiofrequency fields.

4.1.1. Transient response of electrons in E and B fields.
In this section we examine the explicit impact of magnetic
fields on the transient response of transport properties. The
arrangement initially considered in [83] and extended in [82]
has a steady state swarm under the action of an electric field
at time t = 0 subject to a magnetic field (electric field
remaining unaltered). The relaxation of the swarm properties
is monitored as a function of time (normalized time is n0t).
The results are displayed in figure 3 for electrons in CO2 over
a range of B/n0 for the orthogonal field configuration.

In the relaxation profiles we observe the existence of
three distinct timescales: (i) the gyro-period of the electrons
τ , (ii) the momentum relaxation time τm and (iii) the energy
relaxation time τe. The latter two timescales are functions
of energy. We observe that for scalar transport properties,
or those components of properties parallel to the magnetic
field (e.g. ε and n0Dyy), relaxation is in general monotonic
and occurs on a timescale governed by τe . In contrast, those
quantities with components perpendicular to the magnetic field
(e.g. drift and diffusion in the E (z) and E ×B (x) directions)
exhibit a transition from monotonic decay to damped periodic
decay as the magnetic field strength is increased to values
where τ � τm. For the damped periodic profiles, the
period of oscillations is governed by the gyro-period τ and
the envelope decays on a timescale of τm together with a
further relaxation on the timescale of τe. The existence of
the additional oscillatory behaviour in the relaxation profiles
is a reflection of the collective gyrations of the electrons
damped by collisions that exchange momentum and energy.
Perhaps the most striking phenomenon is the existence of
transiently negative deviations of the diffusion tensor elements
in both the E and E × B directions. Such behaviour was
initially observed by the Belgrade group [29] for n0Dxx when
considering radiofrequency electric and magnetic fields. This
was independently verified by the JCU group [24] and shown
to exist in n0Dzz as well. The results in figure 3 indicate
that transiently negative diffusion in both the E and E × B

directions can be achieved through the abrupt application of a
dc magnetic field of sufficient strength.

We now consider the more general case where the
magnetic field is crossed at an arbitrary angle ψ to the electric
field. In figure 4, transport properties are presented as a
function of ψ for a fixed value of B/n0. The temporal profiles
are highly sensitive to the angle between the fields. Although
scalar properties still relax monotonically, n0Dyy now has an
oscillatory nature for ψ �= 0, π/2. This oscillatory nature is
reduced as ψ increases contrasting that for n0Dzz and reflecting
oscillations in the plane orthogonal to B associated with the
Lorentz force. Importantly we see from figure 4 that the
application of a non-orthogonal magnetic field generates off-
diagonal elements of the diffusion tensor which are of the same
order of magnitude as the diagonal components. One observes
that in contrast to the diagonal elements of the diffusion tensor,
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Figure 3. Temporal relaxation of the mean energy, drift velocity and diagonal elements of the diffusion tensor for various crossed magnetic
fields for electrons in CO2 using the set of cross sections developed in [93] (E/n0 = 5 Td, T0 = 293 K).

for the fields considered, the off-diagonal elements do not
exhibit the signature oscillations on the timescale of the gyro-
orbit, although as B/n0 increases the damped oscillatory type
relaxation does indeed develop (not shown here). The drift
velocity vector and diffusion tensor are clearly anisotropic and
full and have different transient responses to the application of
a magnetic field. Such behaviour should be accounted for when
implementing such data in plasma fluid models, and can also
have important manifestations when considering time-varying
fields [85].

In figure 4 we also compare the results obtained from a
multi-term solution of the Boltzmann equation with those using
the two-term approximation. We find lmax = 4 is required

in order to achieve convergence of the transport properties
over the transient profiles to within the specified accuracy of
0.5% . The large cross sections for vibrational excitations in
CO2 are known to produce asymmetry of f in velocity space.
Consequently, for dc electric fields (i.e. the initial condition),
the two term approximation can be in error by as much as 20%.
The application of an orthogonal component of the magnetic
field impacts upon the accuracy of two-term approximation
in various ways for the various coefficients. For certain
coefficients, the accuracy of the two-term approximation is
enhanced while for others it is reduced (see, e.g. errors of
50% are observed for n0Dyz), indicating that it can enhance or
inhibit isotropy in velocity space in various directions. This
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Figure 4. Impact of the magnetic field angle ψ on the temporal relaxation of the transport properties of electrons in CO2 (E/n0: 12 Td,
T0 = 293 K, B/n0: 500 Hx (rows 1,2), 100 Hx (row 3)). (dashed lines: two term approximation; full lines: multi-term theory)

is demonstrated in figure 5 where we demonstrate the impact
of an orthogonal magnetic field on the velocity distribution
function by slicing it in various planes. At t = 0 we can
clearly see (i) anisotropy of the velocity distribution in the
direction of electric field force and (ii) rotational symmetry in
velocity space about the electric field direction. In the long-
time limit, we observe that the application of an orthogonal
magnetic field destroys the symmetry—in fact there is no
axis of symmetry in the velocity distribution, emphasizing
the futility of a Legendre polynomial expansion in velocity
space: a full spherical harmonic expansion of the velocity
distribution is generally required. For further details on the
impact of magnetic fields on the velocity distribution the reader
is referred to [84, 85].

To conclude this section, we consider the fluid equation
treatment of the same problem. A numerical solution of
the balance equations (64)–(67) using a Newton–Raphson
technique has been implemented for electrons in a gas of
cold hard spheres for simplicity. The results are presented
in figure 6. We note that standard momentum transfer theory
is capable of reproducing all qualitative features in the profiles
including transiently negative diagonal diffusion coefficients
observed for the Boltzmann equation solutions.

In summary, the transient response of drift and diffusion
in the E, E ×B and E × (E ×B) (y) directions to a magnetic
field is in general not predictable from steady state dc results.
The manifestation of these complex relaxation profiles when
considering time-dependent fields (e.g. rf and/or pulsed rf) is

12



J. Phys. D: Appl. Phys. 42 (2009) 194001 R D White et al

Figure 5. Contour plots of the initial and final velocity distribution functions for electrons in CO2 in various planes. Row 1: φ = 0, π ;
row 2: φ = π/2, 3π/2; row 3: θ = π/2. Left column and colourbar: initial distribution B/n0 = 0 Hx, Right Column and colourbar: final
distribution B/n0 = 200 Hx. The energy scale is indicated by the dashed concentric circular plots of increasing radii referring to 0.3, 0.6
and 0.9 eV, respectively. (E/n0 = 5 Td, T0 = 293 K).

behaviour which is distinctly non-local in time. Contemporary
understanding of field frequency effects (namely, reduction in
amplitude and increase in phase-lag with respect to the field)
fail or have a limited range of validity when the relaxation is
not monotonic. Understanding such effects requires recourse
to a systematic investigation of relaxation profiles such as those
presented here [85].

4.1.2. RF electric and magnetic fields. Recent developments
in plasma processing using magnetically controlled rf
discharges has led to a renewed interest in the understanding
of electron kinetics in radiofrequency electric and magnetic
fields. The groups at Belgrade, Greifswald, JCU and others
have addressed this problem in considerable detail (see,

e.g. [24, 29, 30, 38, 39, 40, 86] These studies have unearthed a
variety of new and unexpected phenomena and in what follows
we highlight but a few of them.

One of the more interesting phenomena to come out of
these studies has been that of anomalous anisotropic diffusion
[30, 40, 86]. For dc electric fields only, one may solve the
coupled equations (66) and (67) to yield the following form of
the generalized Einstein relations [22]:

DL

DT
= TL

TT

∂ ln W

∂ ln E
(72)

= TL

TT
+

µν ′
mγW

kTT
, (73)

where DL = Dzz and DT = Dxx = Dyy are the longitudinal
and transverse diffusion coefficients. Thus physically, the
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sources of anisotropic diffusion in dc electric fields only
are [85]:

(a) Thermal anisotropy (TL �= TT): dispersion of charged
particles associated with random motions is different in
the directions parallel and perpendicular to E;

(b) Differential velocity effect: the spatial variation of
local average velocities through the swarm combined
with an energy dependent collision frequency act
to influence the spread of the swarm parallel to
field [87, 86].

Figure 6. Temporal relaxation of the diagonal elements of the
diffusion tensor for various crossed magnetic fields for electrons in a
gas of hard spheres using standard momentum transfer theory
(E/n0 = 1 Td, σm = 6 Å2, T0 = 0 K).

Figure 7. A comparison between standard momentum transfer theory (solid lines) and full time-dependent multi-term solution of
Boltzmann equation (dashed lines) for various transport coefficients over a range of reduced angular frequencies ω/no for a gas of hard
spheres. (E/n0 = 1 cos ωt Td, σm = 5 Å2, T0 = 0 K, m0 = 4 amu; applied frequencies ω/n0 (rad m3 s−1): Col1—1 × 10−18,
Col2—5 × 10−18, Col3—1 × 10−16).

For the simple case of electrons in a gas of hard spheres with
TL ≈ TT, we can see from (72) that DL/DT ≈ 0.5 (actual
value is 0.492).

When one applies a radiofrequency electric field to
the system interesting anomalous behaviour in the diffusion
coefficients emerges as shown in figure 7. The signature effects
for ‘anomalous anisotropic diffusion’ are [34]:

• At low frequencies we observe the evolution of a spike
in the low field phase of the cycle. As the frequency
increases the height and temporal extent of the spike are
increased until it becomes the dominant feature in the
temporal profile of DL;

• There exist phases in the field where DL/DT �= 0.5
and indeed cases where DL > DT in contrast to the dc
steady state case. The fraction of the field where the latter
relation holds increases with increasing frequency until
they are anti-phase. Instantaneously for a given frequency
diffusion is isotropic four times per cycle;

• In a cycle averaged sense, DL/DT increases from 0.5 at
low frequencies to 1 at high frequencies.

It is interesting in this case that diffusion is instantaneously
isotropic at those phases of the field where drift velocity is
zero and the first order spatial variation of the average energy,
as characterized by γ , is zero. The phases of the field where
DL > DT correspond to phases where γ (t)W(t) > 0. Due
to the differences in the timescales for energy and momentum
exchange, γ and W do not respond to a change in the field
direction on the same timescale [88]. From (73), one can see
in these phases that the differential velocity effect now acts
to enhance longitudinal diffusion [85, 86] and consequently
DL > DT. To fully understand this phenomenon one needs
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Figure 8. Time-dependent multi-term solution of Boltzmann’s equation for the periodic steady state profiles of n0DL and n0DT for various
reduced angular frequencies ω/n0 (in brackets—units m3 s−1) for two different mass ratios m/m0 = 10−4, 10−1. (E/n0 = 1 cos ωt Td,
σm = 6 Å2, T0 = 0 K).

to understand and implement the temporal relaxation profiles
(for electric fields) such as those considered above [85].

To highlight the effects for ion transport in radiofrequency
electric fields, we present and compare in figure 8 the results
for two different mass ratio m/m0 of 10−4 and 10−1. For
m/m0 = 0.1, we increment the upper bound in the mass
ratio expansion of the collision matrix elements (37) until
convergence is achieved. For this larger mass ratio of 10−1,
although there is different (quasi-) dc behaviour, we note that
there is no longer the signature anomalous spike in the DL

profile. The timescales for energy and momentum exchange
are no longer distinctly separated for this mass ratio and
consequently there is no longer the separation in response times
of γ and W required for anomalous diffusion. In addition,
thermal anisotropy exists with TL > TT and there are now two
separate contributing effects to anisotropic diffusion.

To conclude this section on transport in radiofrequency
electric fields we now consider the accuracy of a fluid
model treatment of this problem. We again consider the
numerical solution of (64)–(67), and the results are presented
in figure 7 for all coefficients over a range of field frequencies.
The fluid model using standard momentum transfer theory
is able to reproduce all relevant qualitative features of the
Boltzmann equation results including the phenomenon of
anomalous anisotropic diffusion. Accuracies again appear to
be within about 10-20%. One can improve the accuracy of the
scheme by implementing the lookup table approach detailed in
[25, 88]. In this procedure, we replace approximate collision

frequencies by dc swarm transport coefficients (measured
or calculated) and thus avoid the approximations associated
with conventional momentum transfer theory. The associated
improvement in agreement with the full Boltzmann solution
is evident in figure 9 and emphasizes the potential of the
technique for improved accuracy. Similar schemes have been
utilized elsewhere [89] and the RCT (relaxation continuum
theory) model is of particular note [90, 91].

Figure 10 illustrates the Tagashira–Sakai–Sakamoto
(TSS) effect on the drift velocity of electrons under conditions
of strong electron attachment. We employ the simple

attachment benchmark model [56] where attachment collision
frequency increases with energy. For the low-frequency quasi-
dc regime we find that the bulk drift velocity is instantaneously
less than the flux drift velocity. The origin of this effect is
well understood and is a consequence of the retardation of the
centre-of-mass brought about by preferential attachment of the
higher energy electrons at the front of the swarm. In the high
frequency regime we note that the TSS effect is reduced/non-
existent. In this regime, the frequency of the field is such
that the first order spatial variation of the average energy γ

cannot respond to changes in the field and the swarm essentially
has a symmetric energy profile. As a consequence, there
is no preferential spatial attachment through the swarm and
the two drift velocities coincide. At intermediate frequencies,
however, we have a somewhat counter-intuitive effect, namely
the phase lead of the bulk drift velocity, where the bulk
drift velocity changes sign before the field changes sign.
The origin of this behaviour is the same as for anomalous
anisotropic diffusion. The difference in timescales for energy
and momentum exchange leads to the situation where although
the field is reducing in magnitude (and so too the flux drift
velocity), the first order spatial variation in the average energy
γ (and hence non-symmetric spatial variation in the attachment
processes) is still high, and the rate of change of the centre-
of-mass of the swarm due to the loss processes is now greater
than the velocity of the centre-of-mass brought about by the
field. The bulk drift velocity then changes sign before the field
(and flux drift velocity) and the phase lead then follows. This
behaviour again is not predictable from traditional descriptions
of rf behaviour nor from dc swarm data.

In figure 11 we now consider the impact of an orthogonal
rf magnetic field applied out of phase by π/2 with respect
to the electric field, focusing on the drift in the electric field
direction. Interestingly we note that the application of the
orthogonal rf magnetic field acts to induce, and indeed enhance
with increasing magnetic field, a resonance type structure in the
profiles around the phase where B(t) = 0. As detailed above,
the TSS effect arises due to the non-symmetric attachment of
electrons caused by a first order spatial variation in the average
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Figure 9. A comparison between the standard momentum transfer theory (dashed), modified momentum transfer theory using look-up dc
data (dotted) and a full multi-term solution of the Boltzmann equation (full) for the drift velocity and mean energy for the model in figure 7.

Figure 10. Frequency dependence of the instantaneous TSS effect
for the drift velocity in a radiofrequency electric field using the
attachment model [56]. Note: the instantaneous flux drift velocity
profiles do vary appreciably over this range of frequencies and for
clarity only the low-frequency case is presented.
(E/n0 = 0.4 cos ωt Td, attachment amplitude: 0.1 Å2 eV−1/2,
power law: p = 0.5).

energy through the swarm. In this case, the rf orthogonal
magnetic field reduces γz which in turn acts to reduce the
explicit TSS effect on the amplitude, although there are again
phase-delay effects with respect to the flux drift velocity.
Interestingly, in the E × B direction the spatial variations are
essentially symmetric (γx is very small) and the TSS effect is
minimal in this direction.

4.2. Spatial non-locality—Steady state Townsend and
Franck–Hertz experiments

The idealized steady state Townsend (SST) experiment
consists of an infinite plane cathode source emitting electrons

Figure 11. TSS effects for Wz as a function of magnetic field
amplitude for orthogonal radiofrequency electric and magnetic
fields out of phase by π/2 using the modified attachment
model [30]. The solid and dashed lines represent the flux and bulk
temporal profiles respectively. (E/n0 = 10 cos ωt Td,
B/n0 = B0 sin ωt Td, ω/n0: 10−16 m3 s−1, attachment amplitude:
0.5 Å2 eV−1/2, power law: p = 0.5).

at a steady rate into a gas in equilibrium. The anode is at
a large distance from the source, effectively at infinity, and
there is a static, uniform electric field E directed normal to the
electrodes, and possibly a magnetostatic field B perpendicular
to E (see figure 12). The system eventually reaches a steady
state, in which the rate of emission from the source is balanced
by the diffusion away from the source. The essence of the
seminal experiment of Franck and Hertz ([92]) is embodied in
the SST experiment (with B = 0), for although in the actual
experiment there is a grid placed before the anode, this grid is
supposed to act in a non-intrusive way, by passing through only
electrons above a certain energy without actually perturbing the
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Figure 12. Schematic representation of the idealized state-state
Townsend experiment. Charged particles emitted at a constant rate
from an infinite plane source at z = z0 interact with the background
neutral gas under static external electric and magnetic fields and
evolve downstream z � z0.

distribution function. The current Ia measured at the anode,
plotted as a function of the anode voltage Va is meant to reflect
the properties of free electrons in the gas in the Franck–Hertz
chamber. The fact that the Ia–Va characteristic oscillates is a
reflection of the existence of the spatially periodic nature of the
electron transport properties within the gas. The oscillations
have nothing to do with the properties of the grid per se,
nevertheless the complex fields produced in the region of the
latter are of some interest. The existence of such structures,
and the ‘window’ of reduced field strengths E/n0 in which
the periodicity occurs, are on the other hand of considerable
interest [55, 81], not in the least because this determines the
conditions under which the experiment can actually operate as
desired, to reflect quantization of the atoms.

The SST experiment is a deceptively simple example to
treat theoretically, since there is no possibility of a reduced,
hydrodynamic description through the diffusion equation [25]:
although (∂f /∂t) = 0, the full Boltzmann equation (1)
must be solved without any approximation of the spatial
terms. The question of boundaries is a vexed one for
charged particle kinetic theory, for even idealized problems,
such as a perfectly absorbing boundary, are very difficult to
handle, and approximations seem inevitable. As detailed in
section 2.1.1, the Boltzmann equation requires only the values
of f on the boundary for velocities directed into the region
under investigation. For the truncated spherical harmonics
representation (31), it is impossible to satisfy this sort of
condition accurately, and one replaces it by certain conditions
upon one half of the expansion coefficients, upon f (l)

m for either
even or odd l. For the SST arrangement, for example, one
specifies odd-l components at the source cathode, and even-
l components at the anode [51]. For conservative collisions
considered here the Legendre projections of the distribution
function satisfy:

f (l)
m (z0, c) = f

(l)
DM,m(c) (l = 1, 3, . . . ,

but (l �= 1, m �= 0)), (74)

f (l)
m (z0, c) = f (l)

s,m(c) (l = 1, m = 0), (75)

∂

∂z
f (l)

m (zmax, c) = 0 (l = 0, 2, . . .), (76)

Figure 13. Spatial relaxation of the mean energy for the step
function collision model (78) for various E/n0 using a Boltzmann
equation solution. Length is scaled according to λ = √

2n0σ0 where

σ0 = 1 Å
2
. The disturbing source is introduced via (77) with

Ti = 2.0 × 103 K and vi = 103 m s−1.

where f (l)
s,m(c) is the distribution under steady state

hydrodynamic conditions. Thus effectively half the
information about f is specified at each boundary. In (74),
f

(l)
DM,m(c) is the spherical harmonic component of the source

distribution function, assumed to be a drifted Maxwellian,

fDM(c) = A

(
m

2πkTi

)3/2

exp

[
−m(c − vi)

2

2kTi

]
, (77)

with prescribed temperature and drift velocity parameters Ti

and vi, respectively, and amplitude A. Condition (76) merely
says that a constant value is reached at large distances from the
source. For the fluid model, the choice concerns either even
velocity moments (such as mean energy) or odd moments (such
as mean velocity) at the respective boundaries.

To illustrate these considerations, we consider electrons
in a model gas, using an inelastic step function model [54]:

σm = 6 Å
2
,

σi = 0.1 Å
2
, εi = 2 eV ,

m0 = 4 amu, T0 = 0 K, (78)

where the inelastic collisions are characterized by a cross
section σi and a threshold εi. Figure 13 displays the spatial
evolution of average energy for a variety of E/n0. The
‘window’ of electric field strengths for which the average
energy (and other transport properties) exhibit oscillatory
behaviour as they relax to the spatially uniform state is clearly
in evidence, while the period of oscillation can be related to the
threshold energy for the inelastic process and the field strength.
The reader is referred to [36, 54, 81] for details.

Both the Franck–Hertz and SST experiments can also be
analysed by a carefully formulated fluid model, particularly
if a physical, semi-quantitative understanding is required as
detailed below. The asymptotic profiles of the average energy
using momentum transfer theory are displayed in figure 14
for the same system as considered in figure 13. We see that
there is qualitative agreement in the structure of the profiles
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Figure 14. Spatial relaxation of the mean energy for the step
function collision model (78) for various E/n0 using momentum
transfer theory. Conditions are as per figure 13.

and semi-quantitative agreement in both the window and the
asymptotic periods of the oscillations within the window. The
envelope for the damped periodic oscillations are, however,
only qualitatively in agreement. Further details are given
in [81].

An additional advantage of momentum transfer theory,
however, is that it is particularly useful for explaining the
window phenomenon in terms of the ratio of inelastic to elastic
cross sections, through � as defined in equation (62), and the
function

η = (1 + �′) ε∞
ε∞ + � − 3

2kT0
, (79)

where ε∞ is the asymptotic, spatially uniform mean energy.
For values of E/n0 such that η exceeds some critical value
(see figure 3 of [81]), electronic properties are oscillatory,
while outside this range, the same properties approach their
asymptotic limits monotonically.

We are currently working on extending the non-
hydrodynamic fluid treatment to include ions, parameterizing
the heat flux term and benchmarking against a known analytic
solution of Boltzmann’s equation. This will facilitate a full
fluid treatment of low-temperature plasmas using momentum
transfer theory.

5. Conclusion

In this paper we have reviewed the application of Boltzmann
and fluid equation methods to the transport of charged particles
in low-temperature plasmas. In particular, we have focused
on the unified treatment of electrons and ions, outlining a
space and time-dependent multi-term solution of Boltzmann’s
equation valid for both electrons and ions. We have outlined
the equivalent fluid equation treatment, proceeding directly
from Boltzmann’s equation and systematically outlining the
necessary assumptions that must be made to close the
system of equations and evaluate the collision terms involved.
The momentum transfer approximation has been used to
approximate collision terms in the fluid model, and the
approximation has been benchmarked through comparison

with Boltzmann equation solutions where possible. We have
considered application of both Boltzmann equation and fluid
equation treatments on problems of temporal and spatial
non-locality, highlighting interesting and sometimes counter-
intuitive behaviour in the associated transport properties,
as well as focussing on the accuracy of commonly used
approximations and assumptions.
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