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A multiterm solution of the Boltzmann equation has been developed and used to calculate transport coeffi-
cients of charged-particle swarms in gases under the influence of electric and magnetic fields crossed at
arbitrary angles when nonconservative collisions are present. The hierarchy resulting from a spherical-
harmonic decomposition of the Boltzmann equation in the hydrodynamic regime is solved numerically by
representing the speed dependence of the phase-space distribution function in terms of an expansion in Sonine
polynomials about a Maxwellian velocity distribution at an internally determined temperature. Results are
given for electron swarms in certain collisional models for ionization and attachment over a range of angles
between the fields and field strengths. The implicit and explicit effects of ionization and attachment on the
electron-transport coefficients are considered using physical arguments. It is found that the difference between
the two sets of transport coefficients, bulk and flux, resulting from the explicit effects of nonconservative
collisions, can be controlled either by the variation in the magnetic field strengths or by the angles between the
fields. In addition, it is shown that the phenomena of ionization cooling and/or attachment cooling/heating
previously reported for dc electric fields carry over directly to the crossed electric and magnetic fields. The
results of the Boltzmann equation analysis are compared with those obtained by a Monte Carlo simulation
technique. The comparison confirms the theoretical basis and numerical integrity of the moment method for
solving the Boltzmann equation and gives a set of well-established data that can be used to test future codes
and plasma models.
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I. INTRODUCTION

Studies of transport processes of charged-particle swarms
in neutral gases in varying configurations of dc electric and
magnetic fields have applications in diverse areas of science
and technology ranging from swarm experiments used to de-
termine electron- and ion-neutral interaction cross sections/
potentials �1–5� to plasma processing �6,7�, gas lasers �8�,
and drift chambers �9� used in high-energy physics. In
plasma processing, large classes of plasma devices utilize
magnetic fields with goal of enhancing plasma density or
improving electron confinement. Examples include magne-
trons �see, e.g., �10,11� and reference therein�, Hall-effect-
thruster discharges �12–14�, inductively coupled plasma
�15–19�, neutral loop discharge plasma �20–23�, magneti-
cally enhanced parallel plate �24� and magnetically enhanced
inductively coupled plasmas �25�, electron cyclotron reso-
nance sources, and helicon plasma discharges �25�. Although
these devices operate in different geometries and different
regimes, the common thread among these devices is a key
role of magnetic field on both the electron heating mecha-
nism and charged-particle species transport. A number of
methods to treat this problem have been developed and have
been applied to a variety of realistic multidimensional dis-
charge configurations, e.g., the particle in cell/Monte Carlo

collision technique, hybrid and fluid methods or kinetic mod-
els based on the Boltzmann equation. In particular, fluid
models and/or fluid parts of hybrid models of such magne-
tized plasma discharges often require swarm transport coef-
ficients as a function of electric and magnetic field strengths.
As an illustrative example, in a recently developed two-
dimensional hybrid model of a magnetron discharge �26,27�
the low-energy electrons and ions in the collision-dominated
bulk plasma region are treated using a fluid model while the
fast nonequilibrium electrons in the cathode region are
treated by a Monte Carlo simulation. The fluid part is based
on the local-field approximation and requires the tabulation
of electron-transport coefficients as a function of the reduced
electric �E /n0� and magnetic �B /n0� fields and the angle �
between the fields, where n0 is the neutral number density.
Other illustrative examples include the fluid modeling of
electron transport in various magnetized plasma discharges
carried out by Hagelaar �19,28� and two-dimensional time-
dependent modeling of the collision-dominated ICP, based
on the relaxation continuum theory developed at Keio Uni-
versity �16�. Both of these numerical models employ scaled
transport coefficients in electric and magnetic fields, particu-
larly those that describe the drift and diffusion normal to the
direction defined by the electric field. Clearly, further ad-
vancements of such and similar fluid models are directly
dependent on accurate modeling of charged particles trans-
port in electric and magnetic fields, particularly under condi-
tions where the angle between the fields varies and when the*sasa.dujko@ipb.ac.rs
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transport properties are significantly affected by the presence
of nonconservative collisions. In addition to collisional non-
equilibrium plasmas, a similar procedure and phenomenol-
ogy may be employed to model various designs of gaseous
detectors of elementary particles �9,29�. In this case it is even
more important to have information on charged-particle
transport in electric and magnetic fields at different angles as
it affects the principle of operation even more directly �30�.
This is the main avenue we explore in this work.

Studies of charged-particle swarm transport properties in
spatially homogeneous electric and magnetic fields have
been the subject of interest for a number of years. Both ex-
perimental and theoretical early works prior to 1980 on
charged-particle swarms in electric and magnetic fields have
been reviewed by Allis �31�, Heylen �32�, and Huxley and
Crompton �33�. More recent results with particular emphasis
on theoretical and numerical methods for solving the Boltz-
mann equation for charged-particle swarms in electric and
magnetic fields have been reviewed by White et al. �34,35�
while the application of a Monte Carlo simulation technique
in the same field has been reviewed by Dujko et al. �36�.
Other methods including path-integral methods �37,38� have
also been applied. Experimental investigations of charged-
particle swarms in electric and magnetic fields are rarely re-
ported in the literature. To date, most of the experimental
research for swarms in electric and magnetic fields has fo-
cused on designing and optimizing the drift chambers used in
high-energy physics �39–41�. Of special note are the experi-
mental investigations of Brennan and Garvie �42� under the
steady-state Townsend conditions and those carried out at
Heidelberg by Schmidt et al. �2,3�. The magnetic field was
introduced in these experiments with the goal of: �i� refining
the accuracy of low-energy scattering cross-section data and
�ii� removing the lack of uniqueness in the determination of
these cross sections. While the fluid plasma models require
the transport coefficients as input data, kinetic models and/or
kinetic segments of hybrid models of plasma discharges re-
quire good and reliable sets of cross sections.

The significant turning point in the development of the
kinetic theory for charged-particle swarms in gases under the
influence of electric and magnetic fields was the work of
Ness �43�, who presented a general formalism for solving the
Boltzmann equation in the presence of nonconservative col-
lisions. The formalism used was based on a spherical-
harmonic expansion in velocity space of the charged-particle
phase-space distribution function. In a subsequent paper
�44�, Ness expanded the speed �energy� dependence in terms
of Sonine polynomials and thereby carried out the numerical
solutions for electrons and light ions undergoing conserva-
tive collisions in a crossed field configuration. The formalism
and software developed by Ness have been applied in a num-
ber of areas �44–46� and in particular were used to analyze
the swarm data of the Heidelberg group �2,3�. In 1999, White
et al. �47� extended the numerical solution of the conserva-
tive Boltzmann equation by: �i� considering the effects of the
angle between the fields and �ii� representing the speed de-
pendence of the phase-space distribution function in terms of
an expansion in Sonine polynomials about a weighted sum of
Maxwellian distributions at different temperatures �the so-
called multi-Maxwellian expansion�. The effect of the angle

between the fields on both transport coefficients and distri-
bution function and the inadequacies of expansions in terms
of Legendre polynomials and effective-field approximations
have been also addressed by White et al. �47–49�. In 2000,
Ness and Makabe �50� extended the numerical solution to
include ionization by electron impact, a nontrivial extension
of the associated code. They considered the synergism of
ionization processes and magnetic field on electron transport
in pure argon. The calculated transport coefficients of Ness
and Makabe �2000� have been used in modeling of an argon
magnetron plasma �27�. The further extension of the numeri-
cal solution includes the recent work of White et al. who
considered the electron-transport coefficients required for the
modeling of bulk electron transport in an O2 magnetron dis-
charge. Considerable contributions have been also made by
Li and Chen �8� and Loffhagen and Winkler �51� under con-
ditions of spatially homogeneous number density. For
swarms under nonhydrodynamic conditions when both the
electric and magnetic fields are present, one ought to men-
tion the recent works of Li et al. �52�, Nicoletopoulos and
Robson �53�, and Winkler et al. �54�. Other theoretical and
numerical methods have also been applied to this problem.
These include the semiquantitative momentum-transfer
theory �55,56� and Monte Carlo simulation �29,36,57–59�.
The large and diverse literature associated with this type of
problem has already been reviewed in �34,60,61� and will
not be repeated here.

The aim of this paper is to present the systematic multi-
term solution of the Boltzmann equation for spatially inho-
mogeneous charged-particle swarms in gases under the influ-
ence of spatially uniform electric and magnetic fields crossed
at arbitrary angles to each other when nonconservative col-
lisions are operative. In this paper, we extend previous work
involving the Boltzmann equation on transport coefficient
calculations in dc electric and magnetic fields crossed at ar-
bitrary angle by considering the implicit and explicit effects
of nonconservative collisions on the various transport prop-
erties. Following the previous work of White et al. �34,47�,
the starting point for the present discussion is a spherical
harmonics decomposition of the Boltzmann equation and the
hierarchy of kinetic equations derived by Ness �43�. In con-
trast to White et al. �47� who solved numerically Boltz-
mann’s equation by representing the speed dependence of the
phase-space distribution function in terms of an expansion in
Sonine polynomials about a weighted sum of Maxwellian
distributions at different temperatures, it is found in this
work that for electron swarms the two-temperature method is
generally sufficient with a single weighting Maxwellian. For
a rigorous treatment of nonconservative collisions in varying
configurations of electric and magnetic fields a second-order
density gradient expansion of the distribution function was
required. A nontrivial extension of the code for numerical
solution of Boltzmann’s equation has been made and calcu-
lations have been performed for special collisional models
which involve nonconservative collisions. The results ob-
tained by a multiterm theory for solving the Boltzmann equa-
tion are compared with those obtained by a Monte Carlo
method, and hence the most comprehensive benchmark cal-
culations of electron transport in electric and magnetic fields
for arbitrary angles in the literature are made and presented
in this work.
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In Secs. II A and II B, we give a brief discussion of the
theoretical multiterm solution of the Boltzmann equation and
Monte Carlo simulation technique, respectively, under non-
conservative conditions for arbitrary angles between electric
and magnetic fields. In Sec. III, we present results of bench-
marking. Transport properties are presented as a function of
magnetic field strength and angle between the fields for cer-
tain model nonconservative gases. The variation and basic
trends of behavior in the various transport properties with
magnetic field strength and angle between the fields under
nonconservative collisions are addressed using physical ar-
guments.

II. THEORY

A. Multiterm solution of Boltzmann’s equation

The behavior of charged-particle swarms in gases under
the influence of electric and magnetic fields is described by
the phase-space distribution function f�r ,v , t� representing
the solution of the Boltzmann equation

� f

�t
+ c ·

� f

�r
+

q

m
�E + c � B� ·

� f

�c
= − J�f , fo� , �1�

where r and c denote the position and velocity coordinates
while q and m are the charge and mass of the swarm particle
and t is the time. The electric and magnetic fields are as-
sumed to be spatially homogeneous with magnitudes E and
B, respectively. In what follows, we employ a coordinate
system in which E defines the z axis while B lies in the y-z
plane, making an angle � with respect to the E. Swarm con-
ditions are assumed to apply where the charged-particle
number density is much less than number density of neutral
species and mutual interactions between swarm particles are
negligible compared with swarm particle-neutral particle in-
teractions. The right-hand side �RHS� of Eq. �1� denotes the
linear charged-particle-neutral molecule collision operator,
accounting for elastic, inelastic and nonconservative �e.g.
ionizing and attaching� collisions. For elastic collisions we
use the original Boltzmann collision operator �62�, while for
inelastic collisions we prefer the semiclassical generalization
�63�. The attachment and ionization collision operators em-
ployed are detailed by Ness and Robson �64�.

The theoretical foundations for solution Eq. �1� under
nonconservative conditions and arbitrary angles were formu-
lated by Ness �43�. The hierarchy of kinetic equations de-
rived by Ness �43� has universal validity under hydrody-
namic conditions and forms the starting point for the present
investigation. In brief, the hierarchy is derived through a
series of three expansions:

�i� the angular component of the velocity dependence of
the phase-space distribution function f is represented in
terms of an expansion in spherical harmonics,

f�r,c,t� = �
l=0

�

�
m=−l

l

fm
�l��r,c,t�Ym

�l��ĉ� , �2�

where Ym
�l��ĉ� are spherical harmonics and ĉ denotes the

angles of c;

�ii� under hydrodynamic conditions the spatial depen-
dence of the coefficient fm

�l��r ,c , t� may be represented by an
expansion in terms of powers of the gradient operator acting
on n�r , t�, the number density of electrons,

fm
�l��r,c,t� = �

s=0

�

�
�=0

�

�
�=−�

�

f�lm�s��;c�G�
�s��n�r,t� , �3�

where G�
�s�� is the irreducible gradient tensor operator �65�;

and
�iii� the speed distribution function is represented in terms

of modified Sonine polynomials about a Maxwellian at a
temperature Tb,

f�lm�s��;c� = ���,c��
	=0

�

F�	lm�s�	;��R	l��,c� , �4�

where

R	l��c� = N	l��c
�2

	l

Sl+1/2
�	� ��2c2

2 	 , �5�

���,c� = � �2

2

	3/2

exp
−
�2c2

2
� , �6�

�2 =
m

kTb
, �7�

N	l
2 =

2
3/2	!

��	 + l + 3/2�
, �8�

and Sl+1/2
�	� ��2c2 /2� are Sonine polynomials.

Performing the appropriate “matrix element” operations
allows the Boltzmann equation to be converted into a hierar-
chy of doubly infinite coupled complex matrix equations,

�
	�=0

�

�
l�=0

�

�
m�=0

� ��n0J		�
l ��� + Ra�		���ll��mm�

+ i
qE

m
��l�m10�lm�
	l��K�1������	�l��

+
qB

m

��l − m��l + m + 1�

sin �

2
�m�m+1

− ��l + m��l − m + 1�
sin �

2
�m�m−1 − im cos ��m�m�

��		��ll� − n0J0	�
0 ���F�	lm�000��1 − �s0��0��0�

��l�0�m�0�F�	�l�m��s�	� = X�	lm�s�	� , �9�

where Ra is the net creation rate. The reduced matrix ele-
ments of the collision operator J		�

l ��� and velocity deriva-
tive 
	l��K�1������	�l�� are defined by Eqs. �11� and �12� in
�64� while �l�m10 � lm� is a Clebsch-Gordan coefficient. The
explicit expressions for the RHS are given in �47� for the
case of conservative collisions only. For the purpose of this
paper, these expressions are further modified and extended to

BENCHMARK CALCULATIONS OF NONCONSERVATIVE… PHYSICAL REVIEW E 81, 046403 �2010�

046403-3



consider the explicit influence of nonconservative collisions
on the diagonal elements of the diffusion tensor and are
given in Appendix A and in Ref. �61�. Solution of Eq. �9� is
made by truncation of the 	 and l indices to 	max and lmax,
respectively. These values are independently increased until
the desired convergence is obtained. Tb is not equal to the
neutral gas temperature �the two-temperature method� and is
used as a free parameter to optimize the convergence. After
truncation, we have a hierarchy of coupled complex equa-
tions. This sparse system of equations is solved using stan-
dard sparse inversion routines.

The net creation rate is given by

Ra = n0�
	=0

�

J0	
0 ���F�	lm�000� , �10�

where the matrix elements of the collision matrix, J0	
0 , are

nonzero only when ionization and/or attachment are opera-
tive. The eigenvalue nature of the spatially homogeneous
member of the hierarchy ��s ,� ,��= �0,0 ,0�� for nonconser-
vative processes has been previously discussed �43,44,65�.
The spatially homogeneous member of hierarchies �9� and
�10� constitute a nonlinear system of equations for the spa-
tially homogeneous moments F�	lm �000�. This system is
solved iteratively using the similar method initially devel-
oped by Ness and co-workers �34,43,50,66�.

In the absence of nonconservative collisions, it is suffi-
cient only to solve the members of the hierarchy up to first
order in the density gradients to determine all quantities of
interest. However, in order to investigate the explicit influ-
ence of nonconservative collisions on both the drift and dif-
fusion a second-order density gradient is required and the
following members of hierarchy �9� must be considered:
�s ,� ,��= �0,0 ,0�, �1,1,0�, �1,1,1�, �2,0,0�, �2,2,0�, �2,2,1�,
and �2,2,2�. The bulk drift velocity components are related to
the calculated moments via

Wx =
�2

�
Im�F�011�000;���

− �2 �
	�=0

�

n0J0	�
0 Im�F�	�00�111;��� , �11�

Wy =
�2

�
Re�F�01 − 1�000;���

+ �2 �
	�=0

�

n0J0	�
0 Re�F�	�00�111;��� , �12�

Wz = −
1

�
Im�F�010�000;���

+ �
	�=0

�

n0J0	�
0 Im�F�	�00�110;��� , �13�

and the bulk diagonal elements of the diffusion tensor are
given by

Dxx = −
1

�
�Re�F�011�111;��� − Re�F�01 − 1�111;����

− �
	�=0

�

n0J0	�
0 � 1

�3
F�	�00�200;�� +

1
�6

F�	�00�220;��

− Re�F�	�00�222;���� , �14�

Dyy = −
1

�
�Re�F�011�111;��� + Re�F�01 − 1�111;����

− �
	�=0

�

n0J0	�
0 � 1

�3
F�	�00�200;�� +

1
�6

F�	�00�220;��

+ Re�F�	�00�222;���� , �15�

Dzz = −
1

�
F�010�110;�� − �

	�=0

�

n0J0	�
0 � 1

�3
F�	�00�200;��

−�2

3
F�	�00�220;��� . �16�

The off-diagonal elements of the diffusion tensor, D1=Dxy
+Dyx, D2=Dxz+Dzx, and D3=Dyz+Dzy are given by

D1 =
2

��Im�F�01 − 1�111;���

+ �
	�=0

�

n0J0	�
0 ���2 Im�F�	�00�222;���� , �17�

D2 =
�2

�
�Re�F�010�111;��� − Re�F�01 − 1�110;����

− �
	�=0

�

n0J0	�
0 ���2 Re�F�	�00�221;��� , �18�

D3 =
�2

�
�Im�F�010�111;��� − Im�F�01 − 1�110;����

− �
	�=0

�

n0J0	�
0 ���2 Im�F�	�00�221;��� . �19�

Note that the expressions for the individual off-diagonal el-
ements of the diffusion tensor are not directly obtainable
from the diffusion equation but rather must be obtained from
the flux-gradient relation �47�. This is a result of the parity
and symmetry properties imposed on the distribution func-
tion, independently of the configuration of electric and mag-
netic fields. As a consequence, the explicit effects of noncon-
servative collisions cannot be found for the individual off-
diagonal elements of the diffusion tensor. In other words, one
may calculate only the flux components of the individual
off-diagonal elements of the diffusion tensor and only the
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implicit effects of nonconservative collisions can be isolated.
However, in a crossed field configuration, the off-diagonal
elements of the diffusion tensor are usually reported as a
sum, e.g., D2=DHall=Dxz+Dzx, which is the quantity appear-
ing in the continuity equation. Reactive corrections can thus
be found for the Hall diffusion coefficient only.

The terms involving the summations in the drift velocity
components and diagonal elements of the diffusion tensor
represent the explicit effects of nonconservative collisions
while the reminder constitute the flux contribution. Note,
Re� · � and Im� · �, respectively, represent the real and imagi-
nary parts of the moments. Other transport properties of in-
terest for this work are defined in some of our previous pub-
lications �34,47,61�.

B. Monte Carlo simulation technique

The Monte Carlo simulation technique for electron
swarms under the influence of spatially homogeneous elec-
tric and magnetic fields crossed is discussed in our previous
papers �36,59,60�. Rather than present a full review of the
simulation technique, we highlight below some important
points associated with the technique. In this work, Monte
Carlo method is employed as a tool to confirm the numerical
accuracy and integrity of a multiterm theory for solving the
Boltzmann equation. For the purpose of benchmarking pre-
sented here, it is assumed that an electron swarm develops
under the influence of spatially uniform electric and mag-
netic fields in an infinite space. At t=0, electrons are initially
released from the origin according to Maxwellian velocity
distribution with the mean starting energy of 1 eV. Electrons
gain the energy from the external electric field and dissipate
it through various types of collisions including elastic, in-
elastic, and nonconservative �ionization/attachment� colli-
sions. Thermal motion of the background neutral particles is
neglected, and all simulations are performed for the low
space-charge limit according to the standard definition of
charged-particle swarms.

In the present Monte Carlo code we follow the spatiotem-
poral evolution of each electron through time steps governed
by the minimum of two relevant time constants: mean colli-
sion time and cyclotron period for the E�B field. These
finite time steps are used to solve the integral equation for
the collision probability in order to determine the time of the
next collision. This can be done using either the null colli-
sion �67� or integration technique �68�. In our code, an up-
graded version of the latter approach is employed. The num-
ber of time steps is determined in such a way as to optimize
the performance of the Monte Carlo code without reducing
the accuracy of the final results. All dynamic properties of
each electron such as the position, velocity, and energy are
updated between the collisions. The equations of motion are
solved analytically and the reader is referred to �59,61� for
their explicit form. Once the moment of the next collision is
established, the nature of the collision is determined by using
the relative probabilities of various collision types. The next
critical step is an accurate treatment of electron collision dy-
namics. All electron scatterings for the model gases used are
assumed to be isotropic regardless of the nature of specific

processes or energy. Therefore, the change in direction of the
electron velocity may be expressed by uniformly distributed
scattering angle within the interval �0,
� and by the azi-
muthal angle uniformly distributed within the interval
�0,2
�. In case of nonconservative collisions, the following
procedure was adopted. In an attachment collision the elec-
tron is consumed and another electron is randomly selected
in its place from the ensemble of the remaining electrons.
Thus number of test particles and statistical quality remain
constant without affecting the average properties �69�. When
an ionization collision occurs, however, the implemented
procedure allows an increase in the number of electrons upon
reaching the limit set by memory resource. When the
memory limit is reached a random electron is removed, again
without affecting the averaged properties �69�. Both of these
procedures have been tested in great detail for swarms under
the influence of an electric field only and found to be correct
�58,69,70�.

Another critical issue when considering the electron
swarms in electric and magnetic fields when nonconservative
collisions are operative is the simulation speed. In general,
one needs to follow a large number of electrons to achieve
a good statistics of the final results and also to make sure
that the relaxation to the steady-state conditions has been
achieved. When magnetic field dominates the collisions, the
energy transfer between the swarm particles and background
molecules is not efficient. As a consequence, the relaxation
process of various transport properties is much slower com-
paring to an electric field only situation. In order to optimize
the simulation speed in the presence of nonconservative col-
lisions and when both the electric and magnetic fields are
present, the present code has been improved in the following
way. Usually simulations were started with a small number
of electrons �typically 1�104� and after relaxation to the
steady state the electron swarm has been scaled at fixed time
intervals. The scaling factor is a flexible parameter but usu-
ally this parameter was set to 2 in our simulations. In other
words, this technique is based on simple duplication of
somewhat relaxed electrons which are later followed inde-
pendently �70�. The new born electron has the same dynamic
properties �coordinate, velocity, and energy� as the original
one and both of these identical electrons that describe the
same trajectory were followed. At the moment of the colli-
sion with the background particles these two identical elec-
trons scatter into different directions and from that point their
trajectories differ but their initial properties are closer to the
relaxed swarm conditions. This technique �69� does not
change the energy distribution and allows an improvement in
statistics of sampled properties. Some tests of this procedure
over a wide range of conditions including the electric and
magnetic field strengths and gas types have been made and
results of testing indicate its validity and numerical integrity.
Similar but not identical techniques are developed by Nolan
and co-workers under hydrodynamic conditions �71� and by
Dyatko and Napartovich under steady-state Townsend condi-
tions �72�. This technique should not be confused with the
already-mentioned technique to scale up or scale down the
number of particles �71–73� as that was so far implemented
under relaxed conditions only. We have tested the technique
of speeding up the relaxation �69� and have shown that it
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does not affect the final results while speeding up the relax-
ation considerably.

Transport coefficients and other transport properties are
determined after relaxation to the steady state. In Monte
Carlo simulation, the bulk transport coefficients may be de-
termined from the rate of changes of the appropriate aver-
ages of the positions of the swarm particles in the configu-
ration space �36,58–60,71,74�. The number changing
reaction rate is defined by

��0� = − � =
d

dt
�ln N� , �20�

the drift velocity by

��1� = W =
d

dt

r� , �21�

and the diffusion tensor by

��2� = D =
1

2

d

dt

r�r�� , �22�

where N is the total number of electrons at any time and r�

=r− 
r�. In the absence of nonconservative collisions, flux
drift velocity components and diagonal elements of the dif-
fusion tensor can be obtained by a direct sampling technique,
e.g., �36,58–60�,

Wi = � dri

dt
� , �23�

Dii = 
rivi� − 
ri�
vi� , �24�

where vi is the electron velocity and i=x ,y ,z.

III. RESULTS AND DISCUSSION

In this section we investigate the transport properties of
an isolated swarm undergoing model ionization interactions
in gases under the influence of electric and magnetic fields
crossed at arbitrary angle. Attachment results are presented
in Appendix B.

Ionization model of Lucas and Saelee

For the consideration of ionization processes on the
electron-transport coefficients and properties, we consider
the benchmark model of Lucas and Saelee �75�. The details
of this model are


el��� = 4�−1/2 Å2,


ex��� = 
0.1�1 − F��� − 15.6� Å2, � � 15.6 eV

0, � � 15.6 eV
� ,


I��� = 
0.1F�� − 15.6� Å2, � � 15.6 eV

0, � � 15.6 eV
� ,

P�q,��� = 1, m/mo = 10−3, E/no = 10 Td, To = 0 K,

�25�

where 
el, 
ex, and 
I represent the cross sections for elastic,
inelastic, and ionization collisions, respectively. In the above
cross-section definitions energy is in eV, T0 is the tempera-
ture of the neutral gas molecules, while M and m denote the
molecular and electron mass, respectively. The parameter F
controls the magnitude of the excitation and ionization cross
sections. All scattering events are assumed isotropic and the
cross sections listed above are “total” cross sections, that is,
integrated over all angles. The ionization partition function
P�q ,��� �where q is the fraction of the available energy after
ionization given to the ejected electron and �� is incident
energy� is set equal to unity implying that all the fractions
0�q�1 are equiprobable. As Ness and Robson pointed out
�64�, for sufficiently weak electric fields, the ionization rates
are low and hence the electron-transport properties are rela-
tively insensitive to the magnitude of the partition function.
Therefore, the above assumption is justified. Conversely, for
high ionization rates, accurate knowledge of the partitioning
of the available energy between the incident and ejected
electrons is required. The sensitivity of the electron-transport
coefficients to postionization energy partitioning has been
studied using a Monte Carlo method �76� and multiterm
theory for solving the Boltzmann equation �77�.

Calculations have been made for a carefully selected set
of input parameters. We consider the reduced electric field of
10 Td �1 Td=10−21 Vm2�, the reduced magnetic field range:
100–1000 Hx �1 Hx=10−27 Tm3�, and angles between 0
and 
 /2 rad. The symmetry properties outlined by White et
al. �47� can be used to consider angles greater than 
 /2 rad.
Calculations are performed for different values of F. If the
model parameter F is set to zero, no ionization occurs. This
gas model is then reduced to elastic and excitation cross
sections where the number of particles is conserved. If the
model parameter F is set to 0.5, the cross sections for ion-
ization and excitation have the same magnitude, and finally
if the model parameter F is set to unity, no excitation occurs.
Thus, we use the ionization model of Lucas and Saelee to
isolate and separate effects of inelastic and ionization colli-
sions, respectively, without affecting the total cross section.

Independent of the parameter F, convergence to within
0.5% was achieved for lmax=2, indicating that inelastic col-
lisions had little effect on the anisotropy of the velocity dis-
tribution function. For this model, the two-term approxima-
tion �lmax=1� however generally fails to provide the correct
values for the diffusion coefficients. In all cases, agreement
is very good within the statistical uncertainty of Monte Carlo
results.

In Fig. 1 we show the variation in the mean energy � with
� for B /n0 of 100, 200, and 1000 Hx at E /n0 of 10 Td. In
Fig. 1 one can immediately see that the results obtained by a
multiterm theory for solving the Boltzmann equation indicate
strong agreement with those obtained by a Monte Carlo
simulation technique. The mean energy monotonically de-
creases with � and/or B /n0 for all F. This is the well-known
phenomenon of “magnetic cooling” and it results from an
inability of the electric field to efficiently pump the energy
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into the system �44� because the electrons change the direc-
tion of motion due to the magnetic field. This phenomenon is
enhanced as the component of the magnetic field perpendicu-
lar to the electric field is increased. It is interesting to note
that this phenomenon is generally independent of the gas
considered and has been observed previously for all model
�44,47,56� and real �36,49,59,66� gases. Only recently it has
been shown that for a very narrow range of conditions the
mean energy may begin to rise with the magnetic field �50�.
In particular, for parallel fields ��=0�, on average the elec-
trons are traveling in the direction of the electric and mag-
netic field and hence the magnetic field has no explicit effect.
Consequently the mean energy is independent of B /n0.

In Fig. 1 we observe that mean energy decreases with
increasing F for fixed B /n0 and � in the collision-dominated
regime. After an ionization process, the remaining energy is
always shared between two electrons while in the case of
inelastic collision, the remaining energy is held by only one
electron. As a consequence, the mean energy after ionization
is lower than that after inelastic collision, a phenomenon

usually called energy dilution due to ionization �78�. The
phenomenon of ionization cooling of the swarm is well
known in dc electric fields and is shown in Fig. 1 to carry
over directly to crossed dc electric and magnetic fields but
only in the collision-dominated regime. As the angle between
the fields increases for B /n0 of 1000 Hx �magnetic field-
controlled regime� this phenomenon is significantly reduced.
The application of a magnetic field leads to the Maxwelliza-
tion of high-energy electrons, and as a result the influence of
both the excitation and ionization processes is significantly
reduced. The reduction in the ionization rate for an increas-
ing B /n0 and/or � is clearly evident from Fig. 2.

For the ionization model of Lucas and Saelee, the drift
speed is a one-to-one function of the mean energy, and hence
the drift speed shows the same trends as the mean energy, as
shown in Fig. 3. For this model, the implicit effect of ioniza-
tion on the drift velocity is weak, and the flux components
for F=0.5 and F=1 are essentially equal to the F=0 profile.
Therefore, in Fig. 3 the flux component for F=0 is shown
only. As B /n0 and/or � increase, both the bulk and flux val-

FIG. 1. �Color online� Variation in the mean energy as a func-
tion of B /n0 and � for the ionization model of Lucas and Saelee.
The solid lines represent the mean energies for F=0 while the other
lines represent the mean energy for F=0.5 and F=1, as indicated on
the graph. Monte Carlo results are given by symbol �.

FIG. 2. �Color online� Variation in the ionization rate as a func-
tion of B /n0 and � for the ionization model of Lucas and Saelee.
Monte Carlo results are given by symbol �.

FIG. 3. �Color online� Variation in the drift speed as a function
of B /n0 and � for the ionization model of Lucas and Saelee. The
solid lines represent the flux values while the other lines represent
the bulk values for F=0.5 and F=1 as indicated on the graph.
Monte Carlo results are given by symbol �.

FIG. 4. �Color online� Variation in the z-drift velocity compo-
nent as a function of B /n0 and � for the ionization model of Lucas
and Saelee for the same conditions as those in Fig. 3.
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ues of the drift speed monotonically decrease. This is not a
general rule; the exceptions are the gases which give rise to
negative differential conductivity. Typical examples include
methane �49,77,79� and carbon tetrafluoride �36,59�.

The drift velocity components Wx and Wy satisfy the fol-
lowing symmetry properties �47�: Wx=Wy =0 for �=0 and
Wy =0 for �=90°. In Fig. 4 we show the bulk and flux values
of the drift velocity component along the z direction, while in
Figs. 5 and 6 the drift velocity components along the x and y
directions are shown. For clarity, in Fig. 5 we show only the
flux values of Wx since there are no differences between flux
and bulk components for this drift velocity component for all
� considered �34,36,50,59�. We discuss this point further be-
low. Two interesting properties are clearly evident from these
profiles: �i� for an increasing �, Wx monotonically increases,
Wy has a maximal property and Wz monotonically decreases;
�ii� for a fixed angle between the fields �, the magnitudes of
Wx, Wy, and Wz display respectively the maximal property,
monotonically increase and monotonically decrease as B /n0
is increased. These properties are quite general and have
been previously observed for model �47� and real gases
�59,66�. It is interesting to note that the flux Wy profiles
follow the sin 2� dependence while the corresponding pro-

files of the bulk components are slightly shifted to the right,
indicating the complex variation in the averaged energy
along the swarm in the y direction. As expected, the devia-
tions between the flux and bulk components of Wz are dimin-
ished as the angle � is increased for all B /n0 considered. In
particular, in the magnetic field-controlled regime �B /n0 of
1000 Hx and ��70°� there are no differences between the
bulk and flux components of both Wy and Wz. For the flux
drift velocity components agreement with Monte Carlo re-
sults is within 0.5% while for the bulk the results agree to
within 1% with those obtained by a Monte Carlo simulation.
The same applies for the drift speed.

Let us consider now the origin of differences between the
bulk and flux components of the drift velocity components.
To study in detail the effect of nonconservative collisions on
electron transport, we need to consider the spatial profile of
the average energy through the swarm. As pointed out in
�56�, the gradient energy vector plays a key role in physical
understanding of the effects of nonconservative collisions on
electron-transport coefficients. For an arbitrary field configu-
ration studied here, the gradient energy vector � satisfies the

FIG. 5. �Color online� Variation in the flux x-drift velocity com-
ponent as a function of B /n0 and � for the ionization model of
Lucas and Saelee for the same conditions as those in Fig. 3.

FIG. 6. �Color online� Variation in the y-drift velocity compo-
nent as a function of B /n0 and � for the ionization model of Lucas
and Saelee for the same conditions as those in Fig. 3.

FIG. 7. �Color online� Variation in the x-component of the
gradient energy vector as a function of B /n0 and � for the ioniza-
tion model of Lucas and Saelee for the same conditions as those in
Fig. 1.

FIG. 8. �Color online� Variation in the y-component of the
gradient energy vector as a function of B /n0 and � for the ioniza-
tion model of Lucas and Saelee for the same conditions as those in
Fig. 1.
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following symmetry conditions: �x=�y =0 for �=0 and �y
=0 for �=90°. These symmetry properties are independent
of the gas considered. In Figs. 7–9 we display the y and z,
the gradient energy vector components as a function of B /n0
and �. As can be observed, �y �see Fig. 8� displays a maxi-
mal property for all B /n0 considered here with respect to �
while �z �see Fig. 9� monotonically increases for B /n0 of 100
and 200 Hx and displays a maximal property for B /n0 of
1000 Hx. In the collision-dominated regime and for the
angles up to �=60°, �y is an increasing function of B /n0 and
decreasing function of the parameter F. However, as � is
further increased, there are no differences between the �y
profiles for all F considered. Similar behavior can be ob-
served in the profiles of �z but only for B /n0 of 1000 Hx.
Both �y and �z are negative �or zero� for all �, indicating the
average energy increases through the swarm in these direc-
tions in the direction that the swarm is drifting.

In Fig. 7 we show the x component of the gradient energy
vector �x, as a function of B /n0 and �. We observe that in
contrast to the y and z directions, there is a very little spatial
variation in the average energy along the x axis �E�B di-
rection�. Further and in contrast to �y and �z, the spatial

variation in the average energy in the E�B direction is in
the opposite direction to the drift in that direction. This un-
expected behavior of �x supports the previous works of Li
et al. �56� and Dujko et al. �36,59�.

Generally speaking, the distinction between flux and bulk
components of the drift velocity vector elements is a conse-
quence of spatially dependent nonconservative collisions re-
sulting from a spatial variation of average electron energies
within the swarm �64�. If the ionization rate is an increasing
function of electron energy, electrons are preferentially cre-
ated in regions of higher energy resulting in a shift in the
centre of mass position as well as a modification of the
spread about the centre of mass. For the ionization model of
Lucas and Saelee and field configuration studied here, the
electrons are preferentially created at the front of the swarm
in the z direction and hence the magnitude of the bulk drift
component in this direction is greater than the equivalent flux
component. The same physical picture applies for drift in the
y direction.

When we consider the drift velocity component along the
E�B direction, the picture is not as simple. The drift veloc-
ity component along the E�B direction Wx appears in gen-
eral to be less sensitive to the effects of ionization processes.

FIG. 9. �Color online� Variation in the y-component of the
gradient energy vector as a function of B /n0 and � for the ioniza-
tion model of Lucas and Saelee for the same conditions as those in
Fig. 1.

FIG. 10. �Color online� Variation in the Dxx as a function of
B /n0 and � for the ionization model of Lucas and Saelee for the
same conditions as those in Fig. 1.

FIG. 11. �Color online� Variation in the Dyy as a function of
B /n0 and � for the ionization model of Lucas and Saelee for the
same conditions as those in Fig. 1.

FIG. 12. �Color online� Variation in the Dzz as a function of
B /n0 and � for the ionization model of Lucas and Saelee for the
same conditions as those in Fig. 1.
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This weak sensitivity of Wx to the ionization processes is
indicative of an essentially symmetric spatial profile �with a
slight bias� of average energy about the centre of mass of the
swarm in the E�B direction. Consequently, the essentially
symmetric production of electrons about the centre of mass
by ionization process does not have a major impact on the
position of the centroid, and the small differences between
bulk and flux components in this direction then follow. These
small differences are due to the slight nonsymmetrical bias in
the spatial variation of the average energy in that direction.
Further and in contrast to both the y and z directions, where
the average energy increases in the direction of the drift in
these directions �independent of the electric-field strength�,
in the x direction the spatial variation is dependent on the
magnitude of the electric field. Recent studies on nonconser-
vative electron transport in the presence of electric and mag-
netic fields for CF4 using a Monte Carlo simulation tech-
nique �59� and for argon using a multiterm Boltzmann
analysis �34� have revealed that for low E /n0 the average
energy decreases in the direction of the drift. Hence, for CF4

at fields where attachment is the dominant nonconservative
process, the bulk is greater than the flux while for argon due
to the absence of attachment the opposite situation holds: the
flux is greater than the bulk. In the case of CF4, as E /n0
increases and the ionization becomes dominant nonconserva-
tive process, there is a transition process where the flux is
greater than bulk to the normal situation where the average
energy increases in the direction of the drift and, conse-
quently, the bulk is greater than the flux. It is important to
note that this transition can be controlled by the angle be-
tween the fields. In any case, the synergism of large energy
losses in inelastic collisions and strong influence of the ion-
ization processes restore the regime where the bulk is greater
than flux which is consistent with the other directions.

Figures 10–12 display the variation in the flux diagonal
elements of the diffusion tensor with B /n0 and �. In contrast
to the drift velocity components, the implicit effects of the
ionization processes on the diagonal elements of the diffu-
sion tensor are quite strong, and hence we observe different
profiles for different ionization degrees F. Due to the com-
plexity and interplay of various factors which influence the

FIG. 13. �Color online� Variation in the diagonal elements of the
temperature tensor as a function as a function of B /n0 and � for the
ionization model of Lucas and Saelee for the same conditions as
those in Fig. 1.

FIG. 14. �Color online� Variation in the of-diagonal elements of
the diffusion tensor as a function as a function of B /n0 and � for the
ionization model of Lucas and Saelee for the same conditions as
those in Fig. 1.

FIG. 15. �Color online� Variation in the flux Hall diffusion co-
efficient as a function of B /n0 and parameter F for the ionization
model of Lucas and Saelee.

FIG. 16. �Color online� Variation in the flux and bulk Hall dif-
fusion coefficient as a function of B /n0 for the ionization model of
Lucas and Saelee. The parameter F is set to 1.
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diffusion tensor it is often hard to fully understand and elu-
cidate even the basic trends in the profiles of the diffusion
tensor components. These factors include: �a� the thermal
anisotropy effect resulting from different random electron
motion in different directions, �b� the magnetic anisotropy
effect which acts to inhibit diffusion in the plane perpendicu-
lar to the magnetic field, and �c� the anisotropy induced by
the electric field resulting from a spatial variation of the av-
erage energy and local average velocities throughout the
swarm which act so as to either inhibit or enhance diffusion.
In addition, to this triple anisotropy, the effects of collisions,
energy-dependent total collision frequency, and couplings of
these factors can further complicate the physical content of
this issue. A convenient way to isolate and elucidate the phe-

nomena associated only with the field effects is using a
simple analytical form of cross sections in the calculations
�47�. For the ionization model of Lucas and Saelee the
electric-field-induced anisotropy is almost absent by virtue of
the almost energy independent collision frequency. In addi-
tion, the thermal anisotropy is also significantly reduced in-
dicating the fact that this model enables us to study the syn-
ergism of the anisotropy introduced by explicit orbital effects

FIG. 17. �Color online� Variation in the bulk �dashed line� and
flux �full line� values for Dxx as a function of B /n0 and � for the
ionization model of Lucas and Saelee. The parameter F is set to 1.
The results obtained by a Monte Carlo simulation technique are
presented by symbol �.

FIG. 18. �Color online� Variation in the bulk �dashed line� and
flux �full line� values for Dyy as a function of B /n0 and � for the
ionization model of Lucas and Saelee. The parameter F is set to 1.
The results obtained by a Monte Carlo simulation technique are
presented by symbol �.

FIG. 19. �Color online� Variation in the bulk �dashed line� and
flux �full line� values for Dzz as a function of B /n0 and � for the
ionization model of Lucas and Saelee. The parameter F is set to 1.
The results obtained by a Monte Carlo simulation technique are
presented by symbol �.

FIG. 20. �Color online� Variation in the mean energy as a func-
tion of B /n0 and � for the modified attachment model of Ness and
Robson. The solid lines represent the mean energies for conserva-
tive �no attachment� case while the other lines represent the mean
energy for nonconservative cases when the attachment cross section
is directly proportional to the electron velocity �attachment cooling:
p=0.5, a=0.5� and when the electron attachment is inversely pro-
portional to the electron energy �attachment heating: p=−1�, as in-
dicated on the graph. The results obtained by a Monte Carlo simu-
lation technique are presented by symbol �.
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�the magnetic field anisotropy effect� and the effects of ion-
ization processes. The previous study of �47� revealed some
generic features of the diffusion tensor components which
are again observed for the ionization model of Lucas and
Saelee. We highlight these features and focus on a unique
aspect for the ionization model of Lucas and Saelee and the
explicit effects of nonconservative collisions on the diagonal
diffusion tensor components.

From Figs. 10–12 we observe that for a fixed B /n0, n0Dxx
and n0Dzz are monotonically decreasing functions of �, while
n0Dyy displays a nonsymmetrical maximal property with �.

For a given �, we observe that both n0Dxx and n0Dyy are
monotonically decreasing functions of B /n0, as is n0Dzz pro-
vided ��0. For parallel fields ��=0°�, the diffusion is iso-
tropic in the plane perpendicular to B, i.e. n0Dxx=n0Dyy
which can be expected from the symmetry properties �47�. In
addition, for parallel field configuration n0Dzz is independent
of B /n0 while n0Dxx and n0Dyy are monotonically decreasing
functions of B /n0. On the other hand, in a crossed field con-
figuration ��=90°� and magnetic field dominated regime, the
diffusion approaches isotropy in the plane perpendicular to
B. These are typical examples of the magnetic field aniso-
tropy of the diffusion tensor.

The variation in the diagonal diffusion tensor elements
with B /n0 and � for the ionization model of Lucas and
Saelee is predominantly induced by the thermal and mag-
netic field anisotropy effects. The thermal contribution is a
decreasing function of both B /n0 and � �see the components
of the temperature tensor displayed in Fig. 13�. On the other
hand, the magnetic field acts to inhibit diffusion in a plane
perpendicular to itself. This effect is further strengthened as
the magnetic field is increased due to the fact that the elec-

FIG. 21. �Color online� Variation in the drift speed as a function
of B /n0 and � for the modified attachment model of Ness and
Robson. The solid lines represent the drift speed for conservative
�no attachment� case �flux� while the other lines represent noncon-
servative cases when the attachment cross section is directly pro-
portional to the electron velocity �attachment cooling: p=0.5, a
=0.5� �bulk� and when the electron attachment is inversely propor-
tional to the electron energy �attachment heating: p=−1� �bulk�, as
indicated on the graph. The results obtained by a Monte Carlo simu-
lation technique are presented by symbol �.

FIG. 22. �Color online� Variation in the Wz as a function of B /n0

and � for the modified attachment model of Ness and Robson for
the same conditions as those in Fig. 21

FIG. 23. �Color online� Variation in the Wy as a function of B /n0

and � for the modified attachment model of Ness and Robson for
the same conditions as those in Fig. 21

FIG. 24. �Color online� Variation in the flux n0Dxx as a function
of B /n0 and � for the modified attachment model of Ness and
Robson for the same conditions as those in Fig. 20
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tron completes a greater fraction and number of orbits before
undergoing a collision. Note that as B /n0 increases, both Dxx
and Dzz may vary over several orders of magnitude. While
the inhibiting explicit orbital effect is strengthened with � for
Dzz, the same effect is much less pronounced for Dxx. Con-
sequently, Dzz monotonically and markedly decreases with �
while Dxx is less sensitive to �. The diffusion coefficient Dyy,
shown in Fig. 11 stands in contrast to both Dxx and Dzz. The
variation in Dyy with B /n0 is relatively small when compared
to that for diffusion perpendicular to the magnetic field. The
reason for this is that there is no explicit orbital effect on
diffusion parallel to the magnetic field, and diffusion is
purely thermal. For nonorthogonal field configurations, the
variations in thermal and orbital effects with � tend to op-
pose each other, and hence n0Dyy shows the maximal prop-
erty with �.

In Fig. 14 we show the variation in the off-diagonal ele-
ments of the diffusion tensor as a function of B /n0 and � for
the ionization model of Lucas and Saelee. For illustrative
purposes, Dxy, Dzx, Dyx, and Dxz are shown. The implicit

effects of the ionization processes on the off-diagonal ele-
ments of the diffusion tensor are quite strong and hence dif-
ferent profiles for different ionization degrees F are clearly
evident. The profiles are a monotonically decreasing function
of the parameter F.

So physically, why do the off-diagonal elements of the
diffusion tensor exist in electric and magnetic fields crossed
at an arbitrary angle? Independently of the gas considered,
the off-diagonal elements of the diffusion tensor arise from
the interaction of the gradient-induced fluxes with the mag-
netic field. Consider, for example, orthogonal field configu-

FIG. 25. �Color online� Variation in the flux n0Dyy as a function
of B /n0 and � for the modified attachment model of Ness and
Robson for the same conditions as those in Fig. 20

FIG. 26. �Color online� Variation in the flux n0Dzz as a function
of B /n0 and � for the modified attachment model of Ness and
Robson for the same conditions as those in Fig. 20

FIG. 27. �Color online� Variation in the bulk n0Dyy as a function
of B /n0 and � for the modified attachment model of Ness and
Robson when the attachment cross section is directly proportional
to the electron velocity �p=0.5�. The results obtained by a Monte
Carlo simulation technique are presented by symbol �.

FIG. 28. �Color online� Variation in the bulk n0Dyy as a function
of B /n0 and � for the modified attachment model of Ness and
Robson when the electron attachment is inversely proportional to
the electron energy �p=−1�. The results obtained by a Monte Carlo
simulation technique are presented by symbol �.
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ration. A density gradient in the x direction will cause a dif-
fusive flux in the x direction. This flux could then interact
with the magnetic field to again produce a flux in the z di-
rection. Therefore, a gradient in the x direction can cause a
flux in the x direction �described by Dxx� and the z direction
�described by Dzx� but not one in the y direction. Hence for
the orthogonal field configuration, symmetry properties fol-
low and the coefficient Dyx is zero. These effects may be
generally categorized as Hall currents, familiar in the plasma
physics literature �44,47�.

In Fig. 15 we display the variation in the flux Hall diffu-
sion coefficient as a function of B /n0 for all F considered.
For the weak values of B /n0, we observe different profiles
for different ionization degrees F indicating a strong implicit
effect of the ionization processes on this transport property.
For an increasing B /n0, however, these effects are signifi-
cantly reduced. As can be observed, the Hall diffusion coef-
ficient exhibits a nonsymmetrical profile, peaks at B /n0 of
around 80 Hx, and then decreases markedly. In fact, the Hall
diffusion coefficient may vary over several orders of magni-
tude with B /n0. The bulk and flux Hall diffusion coefficients
for F=1 are shown in Fig. 16. The explicit effects of the
ionization processes are obvious through the difference be-
tween the flux and bulk data.

In what follows the explicit influence of ionization on the
diagonal elements of the diffusion tensor is analyzed by con-
sidering the difference between the bulk and flux values. In
Figs. 17–19 we show the variation in the bulk and flux com-
ponents of the diagonal elements of the diffusion tensor as a
function of B /n0 and � for the ionization model of Lucas and
Saelee. For illustrative purposes, the parameter F is set to 1
to ensure the strongest effects of ionization. From Figs.
17–19 it is seen that differences between the bulk coeffi-
cients and their flux components can be greater than 25%
and that the bulk is always greater than the corresponding

flux components. The physical mechanism for this is dis-
cussed below. Similar but not identical trends have been re-
cently observed for certain real gases in a crossed field con-
figuration �59,66�.

In contrast to the drift velocity components, the explicit
effects of ionization on the diagonal elements of the diffusion
tensor are dependent on both the first- and the second-order
variations of the average energy through the swarm. As a
consequence, there exists preferential creation of the elec-
trons in certain directions if the ionization rate is energy
dependent. This is the reason for the explicit modification of
diffusion. The application of a magnetic field at arbitrary
angle with respect to the electric field further modifies the
spatial variation of the average energy profile, and in general
both the first- and the second-order variations of the average
energy are complex functions of B /n0 and �. We may ob-
serve that the differences between the bulk and flux compo-
nents for all diagonal diffusion elements are relatively insen-
sitive with respect to the angle between the fields for low
B /n0. This is due to the small variations in the average en-
ergy along the swarm with �. However, if B /n0 is increased,
then the sensitivity of the difference between the bulk and
flux values is greatly increased. It is interesting to note that
various diagonal elements of the diffusion tensor show dif-
ferent sensitivities to the first- and second-order spatial varia-
tions in the average energy. As an illustrative example, the
difference between the bulk and flux components for n0Dyy
and n0Dzz can be associated with the first-order variation of
the average energy ���. However, as emphasized above,
there is very little spatial variation in the average energy
along the x axis. To understand the effect of ionization on
n0Dxx a comprehensive investigation of spatially dependent
average energy and velocity is inevitable. In particular, the
variation in the diffusive energy tensor associated with the
second-order spatial variation in the average energy with

FIG. 29. �Color online� Variation in the bulk n0Dzz as a function
of B /n0 and � for the modified attachment model of Ness and
Robson when the attachment cross section is directly proportional
to the electron velocity �p=0.5�. The results obtained by a Monte
Carlo simulation technique are presented by symbol �.

FIG. 30. �Color online� Variation in the bulk n0Dzz as a function
of B /n0 and � for the modified attachment model of Ness and
Robson when the electron attachment is inversely proportional to
the electron energy �p=−1�. The results obtained by a Monte Carlo
simulation technique are presented by symbol �.
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both B /n0 and � must be studied. This is beyond the scope of
this paper and we defer this to a future study.

IV. CONCLUSION

A multiterm theory for solving the spatially inhomoge-
neous Boltzmann equation has been developed to investigate
the behavior of nonconservative charged-particle swarms in
an unbounded neutral gas under the influence of spatially
homogeneous electric and magnetic fields crossed at arbi-
trary angle. The numerical results for various transport coef-
ficients obtained by a multiterm theory for solving the Bolt-
zmann equation are presented for electron swarms in certain
model gases and compared with those obtained by a Monte
Carlo simulation technique. The excellent agreement be-
tween these two entirely independent techniques validates
the theoretical basis and numerical integrity of the moment
method for solving the Boltzmann equation and supports the
application of the code in real gases. The duality in transport
coefficients, the bulk and flux, arising from nonconservative
collisions has been addressed, particularly for diffusion co-
efficients where similar studies are rare in the literature. The
explicit and implicit effects of nonconservative collisions on
the diagonal elements of the diffusion tensor are investigated
by going to second order in the density gradient expansion.
When considering the effects of nonconservative collisions
on the off-diagonal elements of the diffusion tensor, it was
shown that only the implicit effects can be isolated due to the
parity and symmetry properties imposed on the distribution
function. In particular, the bulk corrections of the Hall diffu-

sion coefficient in a crossed field configuration have been
highlighted. As for the drift velocity components, it was
shown that the explicit and implicit effects of nonconserva-
tive collisions on the diffusion coefficients can be controlled
either by the variation of the magnetic field strengths or by
the angles between the fields. In general, knowledge of
electron-transport coefficients and in particular the values of
electric and magnetic field strengths and angles between the
fields for which nonconservative collisions �attachment/
ionization� may or may not have a significant effect on the
drift and diffusion properties will be important for the opera-
tion or control of magnetically assisted plasma devices. In
that respect, although this study was performed in the swarm
limit, it provides a benchmark for plasma models in the limit
of low electron density �80�.
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APPENDIX A: THE EXPLICIT FORM
OF THE RHS EQUATIONS

In this appendix we present the explicit expressions for
the RHS of a hierarchy of doubly infinite coupled complex
matrix Eq. �21�. The general expression is given by

X�	lm�s��;��

= �
	�=0

�

�
l�=0

�

�
m�=−l�

l� �−
1

�
�

�1=0
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�
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��1�1�2�2������s − s1�2�2��1 − �ss1
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�− 1��̄

��t�
�1�̄�1� − �̄����F�01 − �̄�s − 1�1� − �̄;��F�	�l�m��000;���1 − �s0��0��0��		��ll��mm�� , �A1�

where the reduced matrix elements of velocity are given by Eq. �12a� of Ref. �64�. The expansion coefficients ��s�	� are given
by

��s��;�� =
1

�
�

�̄=−1

1

�
�1=0

s−1

�− 1��̄�1�̄�1� − �̄����F�01 − �̄�s − 1�1� − �̄;�� − n0 �
	�=0

�

J0	�
0 ���F�	�00�s��;�� , �A2�

where J0	�
0 ��� denotes the nonconservative part of the collision operator. Using the fundamental properties of the Clebsch-

Gordon coefficients �see for example Ref. �81��, the following explicit general expression for the RHS of a hierarchy of kinetic
equations and first order in density gradient �19� follows

BENCHMARK CALCULATIONS OF NONCONSERVATIVE… PHYSICAL REVIEW E 81, 046403 �2010�

046403-15



X�	lm�11�;�� = −
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Similarly, the explicit expressions for the RHS and second order in the density gradients are given by
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APPENDIX B: BENCHMARK RESULTS
FOR THE MODIFIED ATTACHMENT

MODEL OF NESS AND ROBSON

To test the multiterm theory for solving the Boltzmann
equation outlined in Sec. II when electron attachment is
present, in this appendix we present benchmark results for
modified attachment model of Ness and Robson �64�. The
details of this model are


el��� = 4�−1/2 Å2,


ex��� = 
0.1�� − 15.6� Å2, � � 15.6 eV

0, � � 15.6 eV
� ,


a��� = a�p, m/mo = 10−3, E/no = 10 Td, To = 0 K,

�B1�

where 
el, 
ex, and 
a represent the cross sections for elastic,
inelastic, and attachment, respectively. In the above cross-
section definitions energy is in eV, T0 is the temperature of
the neutral gas molecules, while M and m denote the mo-
lecular and electron mass respectively. The parameter a de-
termines the magnitude while the parameter p determines the
energy dependence of the attachment cross section. This pa-
per considers p=0.5,−0.5,−1, that is, case studies of attach-
ment cross sections directly proportional to the electron ve-
locity, inversely proportional to the electron velocity, and

inversely proportional to the electron energy. When employ-
ing the attachment cross section directly proportional to the
electron velocity, we consider a=0.5. Since inelastic colli-
sions play an important role in this model, independent of the
power p and attachment amplitude a, convergence was
achieved in for lmax=2. As pointed out by Ness and Robson
�64�, attachment has little effect on the isotropy of the veloc-
ity distribution function. The anisotropy of the velocity dis-
tribution function is induced by an active role of inelastic
collisions and hence the two-term approximation generally
fails for this model. It has been observed that diffusion co-
efficients are the most sensitive to the variation of the l in-
dex. The deviations between diffusion coefficients between
the two- and three-term calculations could be up to 20%.

Another important aspect for this model is the case p=
−0.5, where the attachment collision frequency is indepen-
dent of energy. For such a power law, all bulk transport co-
efficients �aside from the attachment rate� were found to be
independent of the attachment amplitude and equal to the
corresponding flux values. This supports the numerical integ-
rity of the present code in the presence of attachment colli-
sions. For clarity, the electron-transport properties for this
particular case will not be shown and explicitly labeled.

The results of benchmarking are displayed in Figs. 20–30.
The physical properties can be understood from the suitable
adaptation of those considered in Sec. III and for this reason
only the results are presented in the Appendixes A and B.
The results are in excellent agreement with those obtained by
a Monte Carlo simulation technique.
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