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Abstract
The transport properties of positron and electron swarms in gases and liquids find application
in many and varied fields. In this paper we present a time-dependent multi-term solution of
Boltzmann’s equation valid for electrons and positrons, and benchmark it against an
independent Monte-Carlo simulation where possible. The transport properties of positrons in
dilute gaseous and liquid argon are considered and compared. The sensitivity of the
macroscopic transport properties to the anisotropic nature of elastic scattering is highlighted.
The temporal non-locality of diffusion for electron swarms in gases under the influence of
time-dependent electric and magnetic fields is addressed through the consideration of their
associated relaxation profiles.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

What is meant by the term ‘swarm’? Firstly, it is normally
(but not exclusively) used in connection with an ensemble of
charged particles, such as electrons, positrons, muons or ions
interacting with a background medium comprising gaseous
or condensed matter, often under the influence of applied
fields. Secondly, the key requirement is that the ensemble is of
sufficiently low-density so that (i) mutual interactions between
swarm particles can be neglected; (ii) the background medium
as a whole remains essentially undisturbed—specifically the
distributions of molecular translational and internal states
are not modified and (iii) space-charge fields are negligible
in comparison with the applied fields. In plasma physics,
this is designated as the free diffusion or test particle limit.
Whatever the terminology used, the behaviour of the ensemble
is determined by (a) collisions between the swarm particles
and background molecules; (b) the applied fields and (c) the
properties of the background medium, such as temperature,
pressure, molecular mass, molecular velocity distribution
function and (for a condensed medium) structural properties.

In swarm experiments (b) and (c) can be fixed, and
measurements of certain macroscopic properties (transport
coefficients) of the swarm can then be unfolded to yield
information about (a), specifically collision cross-sections
or interaction potentials. Variation of field strength and
temperature allows a whole range of energies to be scanned,
right down to thermal energies of about 1/40 eV. This
forms the basis of what is sometimes called the swarm
method for indirect determination of cross-sections [1–4],
and complements the direct procedure in which a beam of
particles at a fixed energy is scattered from a target. The
golden era of swarm experiments occurred to a large extent
in the period 1960–1990, during which time much important
and unique data were reported in the literature [1–4]. In
recent times, however, the number of groups performing swarm
measurements has decreased markedly, while ironically the
demand for accurate low energy cross-section data, which
only swarm experiments can provide, has increased. Beam
experiments can fill the gap up to a point, but the low
energy regime still remains the preserve of swarm experiments.
Further, such studies are needed to test the cross-sections
obtained by other means/techniques not only in terms of their
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accuracy but also in terms of the completeness. The lack
of experimental swarm measurements inhibits this important
process. Further suggestions for future swarm experiments are
detailed in [3].

There is another side to swarm experiments which
is relevant to the modern era: in addition to furnishing
experimental data per se, the overall programme produced a
spin-off in the form of a comprehensive and highly accurate
transport theory used to analyse and unfold the swarm data (see
the review [5]). This extended the older but now superseded
theory of the 1940s and 1950s, as typified, for example, by Allis
[6]. That same transport theory is of sufficient generality so that
it now finds application in many and varied applications from
low-temperature plasmas to high energy particle detectors,
positron traps and medical imaging (see the reviews [3, 7–10]),
to name just a few examples, and as highlighted in this paper.

The annihilation of a positron and the electron to
yield a pair of gamma rays directed back-to-back is a
fundamental process routinely used as a tool in a wide variety
of fields ranging from material science to medicine, e.g.
positron emission tomography (PET) in diagnosing cancer
and degenerative brain diseases [11]. Full utilization of
these technologies and success in general in anti-matter
frontiers is pivotally dependent on an accurate knowledge
of the underlying positron physics from scattering processes
through transport. For scattering, the development of improved
positron trapping systems (Penning–Malmberg–Surko traps)
has led to the development of high resolution positron beams
which when combined with new scattering techniques enable
unparalleled accuracy in the determination of positron impact
cross-sections [12, 13], complementing the many advanced
ab initio calculations [14, 15].

One of the key elements in optimizing positron-based
technologies is an understanding of low-density positron
transport in gaseous and condensed systems. With the recent
availability of accurate positron scattering cross-sections the
field of positron swarm transport in dilute gases has recently
been revitalized for non-equilibrium systems [16, 17] and in
the context of modelling the Penning–Malmberg–Surko traps
[18]. The positronium formation process has given rise to
new phenomena including Ps-induced negative differential
conductivity [16, 17, 19]. While the transport theory of
positrons in dilute gaseous systems is fairly well established,
there have been limited investigations of positrons in liquids
and soft-condensed matter. In a recent study, a multi-term
solution of Boltzmann’s equation was developed and applied
to positrons in liquid argon [19].

For low-temperature plasmas, in contrast to swarms,
charge densities are sufficiently high so that space-charge
fields, Coulomb collisions and disturbance of the neutral
gas may be significant. Importantly, however, there is
considerable overlap with the transport theory used in swarm
physics. Moreover, the results of swarm studies provide a
benchmark in the free diffusion limit of a plasma, and thus
more sophisticated/elaborate kinetic, fluid and hybrid theories
that model low-temperature plasmas can be validated in this
limit. In recent times, various groups (Belgrade group see, e.g.,
[3, 10, 20–22], JCU group see, e.g., [8, 9, 23–27], Greifswald

group see, e.g. [7, 28, 29] and others [30–32]) have focused
on the developed Boltzmann equation solutions and MC
simulations in the swarm limit, with the aim of understanding
the complex kinetic phenomena present for radio frequency
(rf). and magnetized plasmas including temporal and spatial
non-locality. Further to this, swarm transport data are also used
to evaluate collisional transfer rates in fluid and hybrid models.
This swarm–plasma nexus has been explored and highlighted
in various recent studies [3, 8–10, 33].

We begin this paper with a brief overview of
swarm transport theory including a time-dependent multi-
term solution of the Boltzmann equation for electric and
magnetic fields and the equivalent time-resolved Monte Carlo
simulation. We split the applications into two sections,
positron and electron swarms. In section 3.1, we apply
these techniques to positrons in gaseous argon where we
highlight the impact of the elastic differential cross-section on
the macroscopic transport properties. Comparisons are made
with an independent Monte Carlo simulation where possible.
Diffusion processes in liquid argon are then presented where
they are compared with the dilute gas-phase results. For
electron swarms in section 3.2, we focus on the establishment
of benchmarks for electron swarms in rf electric and magnetic
fields, through a direct comparison of the time-dependent
multi-term Boltzmann equation solution and a time-resolved
Monte Carlo simulation. The temporal non-locality of electron
swarm transport in rf fields is discussed in terms of transient
relaxation profiles.

2. Transport theory

2.1. Transport coefficient definitions

Experimental investigations of swarm behaviour are generally
made by sampling charged particle currents or charged particle
density n(r, t). The connection between experiment and
theory is made through the equation of continuity

∂n(r, t)

∂t
+ ∇ · Γ(r, t) = S(r, t) , (1)

where Γ(r, t) = n〈c〉 is the swarm particle flux and S(r, t)

represents the production rate per unit volume per unit time
arising from non-conservative collisional processes such as
Ps-formation, annihilation, ionization, etc.

In carefully controlled swarm experiments, spatial
gradients are designed to be small so that the hydrodynamic
regime in general prevails, and the space–time dependence
can be projected onto the number density [34]. Transport
coefficients obtained from swarm experiments in this manner
are essentially independent of the geometry of the experiment,
since all spatial dependences are accounted for by functionals
of n(r, t) which are in turn found through the solution of the
diffusion equation. In the hydrodynamic regime the space-
time dependence of quantities (e.g. flux, source) is projected
out through a density gradient expansion. The flux Γ(r, t) and
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source term S(r, t) in (1) are expanded as follows:

Γ(r, t) = WFn(r, t) − DF · ∇n(r, t) + · · · , (2)

S(r, t) = S(0) − S(1) · ∇n(r, t) + S(2) : ∇∇n(r, t) + · · · ,
(3)

where WF is the flux drift velocity and DF is the flux diffusion
tensor. Substitution of expansions (3) into the continuity
equation (1) yields the diffusion equation

∂n

∂t
+ W · ∇n − D : ∇∇n + · · · = −Rn, (4)

where we define the bulk transport coefficients

R = S(0), (5)

W = WF + S(1), (6)

D = DF + S(2) . (7)

The physical origin of the difference between the two sets
of coefficients has long been known and we will refer to
it as the TSS (Tagashira–Sakai–Sakamoto) effect [35]. We
should highlight that while it is the bulk coefficients, not
flux coefficients, which are generally determined in swarm
experiments, it is often the flux coefficients that are required
in fluid models [9] and hence care must be taken in applying
such data.

2.2. Space and time-dependent multi-term solution of the
Boltzmann’s equation

The behaviour of electron and positron swarms in gases under
the influence of electric and magnetic fields is described by
the phase-space distribution function f (r, c, t) representing
the solution of the Boltzmann equation

∂f

∂t
+ c · ∇f +

q

m
[E + c × B] · ∂f

∂c
= −J (f, f0), (8)

where r and c denote the position and velocity co-ordinates,
q and m are the charge and mass of the swarm particle and
t is the time. The electric and magnetic fields are assumed
spatially homogeneous and orthogonal with magnitudes E and
B, respectively. Swarm conditions are assumed to apply and
J (f, f0) denotes the rate of change of f due to binary collisions
with the neutral molecules. The original Boltzmann collision
operator [36] and its semiclassical generalization [37] are used
for elastic and inelastic processes, respectively. For ionization
we implement the operator detailed in [5] while for particle
loss processes we use the direct part only of the Boltzmann
collision operator. In what follows, we employ a co-ordinate
system in which qE is in the z-direction, while qB is in the
y-direction.

2.2.1. Representation of the velocity dependence. The
velocity dependence of f is represented in terms of a combined
spherical harmonic and Sonine polynomial expansion (Burnett
functions):

f (r, c, t)

= w(α, c)

∞∑
ν=0

∞∑
l=0

l∑
m=−l

F (νlm|r, α, t)Rνl(αc)Y [l]
m (ĉ), (9)

where

w(α, c) =
(

α2

2π

)3/2

exp

{−α2c2

2

}
, (10)

Rνl(αc) = Nνl

(
αc√

2

)l

S
(ν)
l+1/2

(
α2c2

2

)
, (11)

N2
νl = 2π3/2ν!

�(ν + l + 3/2)
, (12)

Y [l]
m (ĉ) are spherical harmonics, ĉ denotes the angles of c,

S
(ν)
l+1/2(α

2c2/2) are Sonine polynomials and α2 = m/kTb.
The modified Sonine polynomials satisfy the orthonormality
relation∫ ∞

0
w(α, c)Rν ′l′(αc)Rνl(αc)c2 dc = δν ′νδl′l . (13)

The various properties of the moments due to symmetry and
reality considerations are outlined in [24].

Using the appropriate orthogonality relations, the
following system of coupled differential equations for the
moments F(νlm; r, t, α) is generated:

∞∑
ν ′=0

∞∑
l′=0

l′∑
m′=−l′

[(
∂

∂t
δνν ′ + n0J

l
νν ′(α)

)
δl′lδm′m

+i
qE

m
α(l′m10|lm)〈νl||K [1]||ν ′l′〉δm′m

+
1

2

qB

m

{√
(l − m)(l + m + 1)δm′m+1

−
√

(l + m)(l − m + 1)δm′m−1

}
δl′lδν ′ν

−i
1

α
(l′m10|lm)〈νl||αc[1]||ν ′l′〉δm′m∇

]

×F(ν ′l′m′; r, t, α) = 0 , (14)

(ν, l) = 0, 1, 2, . . . ,∞,

m = −l, −l + 1, . . . , l − 1, l,

where n0 is the neutral gas number density. The reduced
matrix elements J l

νν ′(α), 〈νl||αc[1]||ν ′l′〉 and 〈νl||K [1]||ν ′l′〉
of the collision operator, velocity and velocity derivative are
given by (11), (12a) and (12b) of [5], respectively. For further
details the reader is referred to [8].

2.2.2. Representation of the spatial dependence in
the hydrodynamic regime. The treatment of the spatial
dependence of the phase-space distribution function is
dependent on the conditions under which the experiment is
performed. As detailed above, for studies of transport in
the hydrodynamic regime the spatial dependence is projected
onto the number density through a (time-dependent) density
gradient expansion:

F(νlm|r, t, α) =
∞∑

s=0

∞∑
λ=0

λ∑
µ=−λ

F (νlm|sλµ; t, α)G(sλ)
µ n(r, t),

(15)

where G(sλ)
µ n(r, t) is the irreducible gradient tensor operator

[38]. Substituting into (14) and equating coefficients of
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G(sλ)
µ n(r, t) yields the following hierarchy of equations for

the calculation of time-dependent transport coefficients:
∞∑

ν ′=0

∞∑
l′=0

l′∑
m′=−l′

[([
d

dt
+ R

]
δνν ′ + n0J

l
νν ′(α)

)
δl′lδm′m

+i
qE

m
α(l′m10|lm)〈νl||K [1](α)||ν ′l′〉δm′m

+
1

2

qB

m

{√
(l − m)(l + m + 1)δm′m+1

−
√

(l + m)(l − m + 1)δm′m−1

}
δl′lδν ′ν

]

×F(ν ′l′m′|sλµ; t, α) = X(νlm|sλµ) , (16)

where

X(νlm|000) = 0, (17)

X(νlm|11µ) =
∞∑

ν ′=0

∞∑
l′=0

[ (
− 1

α

)
(l′m − µ1µ|lm)

×〈νl||αc[1]||ν ′l′〉F(ν ′l′m − µ|000)

]

− (−1)µ

α
F(01 − µ|000)F (νlm|000). (18)

Truncation of the ν and l summations to νmax and lmax,
respectively, and discretizing in time using an implicit finite
difference scheme converts the hierarchy of systems of coupled
differential equations into a hierarchy of coupled matrix
equations. To establish the transport coefficient of interest
in this paper we are required to solve the following members
of the hierarchy (s, λ, µ) = (0, 0, 0), (1, 1, 0), (1, 1, 1). The
lowest member is a non-linear equation when non-conservative
processes are operative. Symmetry properties for the
moments are used to minimize the computational requirements
[24]. Solution of (16) for the moments F(νlm|sλµ) allows
calculation of all quantities of interest including the velocity
distribution function. The quantities νmax and lmax are adjusted
until some predetermined accuracy condition is achieved.
The coefficients of interest in this paper for a crossed field
configuration are the following.

• Bulk drift velocity vector components:

Wx = 1

α

√
2 Im{F(011|000)}

−
∞∑

ν=0

n0J
0
0ν

√
2 Im{F(ν00|111)}, (19)

Wz = − 1

α
Im{F(010|000)}

+
∞∑

ν=0

n0J
0
0ν

√
2 Im{F(ν00|110)} . (20)

• Flux diffusion tensor diagonal elements:

Dxx = − 1

α

[
Re{F(011|111)} − Re{F(01 − 1|111)}

]
,

Dyy = − 1

α

[
Re{F(011|111)} + Re{F(01 − 1|111)}

]
,

Dzz = − 1

α
F(010|110).

The terms involving the summations in the bulk drift velocity
represent the explicit effects of non-conservative collisions on
the bulk drift velocity discussed previously. Those parts of
expressions (19) and (20) not involving the summations are
the respective flux drift velocity components. Note Re{} and
Im{}, respectively, represent the real and imaginary parts of the
moments. Expressions for mean energy ε and gradient energy
parameter γ defined by a density gradient expansion of the
average energy ε(r, t) = ε(t) + (γ(t)/n) · ∇n are available
in [8].

2.3. Monte Carlo simulation technique

Another method for investigating swarm particle transport in
neutral gases is a Monte Carlo simulation technique. For the
purpose of developing simulation presented here, it is assumed
that a swarm develops under the influence of spatially uniform
electric and magnetic fields in an infinite space. Electrons
gain the energy from the external electric field and dissipate
it through collisional transfer to the neutral gas molecules
by elastic and different types of inelastic collisions including
the non-conservative collisions (e.g. impact ionization and
attachment). Thermal motion of the background neutral
particles is neglected and all simulations are performed for
the low space-charge limit according to the standard definition
of charged particle swarms outlined in the introduction of this
work. The code has been verified for a number of benchmarks
[39] which prove the accuracy and the correctness of the code.

In the context of relaxation studies, the following scenario
is applied. At the time t = 0, swarm particles are released
from the origin with an initial Maxwellian velocity distribution
having the mean energy of 1 eV. They continue their motion
under the influence of an electric field only. After relaxation to
the steady state in which both the swarm transport parameters
and the distribution function do not change in time, the
magnetic field is applied and the relaxation process is followed
accurately in time. An extremely large number of swarm
particles (typically 107) has been followed in a neutral gas in
order to retain the good statistics of the final data, particularly
the diffusion coefficients.

Temporal variation of the various transport coefficients
with the field frequency and electric/magnetic field amplitude
has been studied using a similar but not identical scenario.
Electrons are released from the origin with the Maxwellian
velocity distribution and with the mean starting energy of 1 eV
under the influence of both the rf electric and magnetic fields.
Transport coefficients are determined after relaxation to the
steady state. The period of the field oscillations is divided by
400 (in order to meet the same resolution of the data given
by the Boltzmann equation analysis and in order to have good
representation of the changing fields) and these moments are
also used to sample the transport coefficients.

In both scenarios we follow the evolution of each swarm
particle through time steps determined by the mean collision
time, the cyclotron period and period of the field. These
finite time steps are used to solve the integral equation for
the collision probability in order to determine the time of the
next collision. This can be done using either the null-collision
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method [40] or the so-called direct integration method [41].
In our code, the latter approach is employed. The number
of time steps is determined in such a way as to optimize
the performance of the Monte Carlo code without reducing
the accuracy of the final results. All dynamic properties of
each swarm particle such as the position, velocity and energy
are updated between the collisions. The equations of motion
are solved analytically and the reader is referred to [42] for
their explicit form. Once the moment of the next collision is
established, the nature of the collision is determined by using
the relative probabilities of the various collision types. All
swarm particle scattering is assumed to be isotropic regardless
of the collision nature of specific process or energy. The
definitions and corresponding formulae for the swarm particle
transport coefficients were given in our previous publications
[22], e.g. the flux drift velocity components and the flux
diagonal elements of the diffusion tensor are given by

Wi =
〈

dri

dt

〉
= 〈vi〉 , (21)

Dii = 〈rivi〉 − 〈ri〉〈vi〉 , (22)

where vi is the electron velocity and i = x, y, z. Most
importantly, sampling of various transport properties is always
performed at times fully uncorrelated with the moments of
collisions.

3. Results and discussion

In this section we present results for positron and electron
swarms. For positrons, we restrict our discussion to non-
equilibrium transport of positrons under the influence of
an electric field in gases and liquids, assessing the impact
of anisotropic elastic scattering on the transport properties.
For electron swarms, we consider temporal non-locality in
diffusion associated with time-varying electric and magnetic
fields. Electric and magnetic fields are in the z and y

directions, respectively, and their strengths are presented in
units of Townsends (1 Td = 10−21 V m2) and Huxley (1 Hx =
10−27 T m3).

3.1. Non-equilibrium transport of positron swarms in gases
and liquids

3.1.1. Positron swarm transport in gaseous argon—impact
of anisotropic elastic scattering. Recently, a complete set
of cross-sections for positrons in Ar were presented and
detailed in [16]. This is one of the few full sets of cross-
sections available for swarm calculations. The set of cross-
sections contain elastic, excitation, ionization as well as the
functional Ps-formation processes and are shown in figure 1.
All scattering processes were assumed to be isotropic. In
this study, we extend their work to examine the impact of the
anisotropic nature of the elastic differential cross-section for
positrons in argon using results of a new relativistic polarized-
orbital calculation which includes an ab initio optical potential
[43, 44]. The real part of this complex optical potential
describes the polarization interaction while the imaginary

Figure 1. (a) Isotropic cross-sections for elastic, inelastic,
Ps-formation and ionization for positrons in dilute gaseous Ar
(see [16] and references therein) (b) Elastic partial cross-sections
(23) representing the anisotropic nature of the elastic differential
scattering cross-section [43, 44].

part accounts for the loss of flux from the elastic channel to
those inelastic channels which are accessible at a particular
energy. For implementation in the multi-term solution of the
Boltzmann equation, we consider the ‘partial’ cross-sections
defined by

σl(c) = 2π

∫ 1

−1
σ(c, χ)Pl(cos χ) d(cos χ), (23)

where χ is the scattering angle and Pl is a Legendre
polynomial. We note that the quantity σ0 is the total cross-
section, while σ0 − σ1 is the momentum transfer cross-section
σm. If scattering is isotropic then σl = 0 for l �= 0. In multi-
term solutions of the Boltzmann equation, these partial cross-
sections occur in the combination of σ0 − σl , where l ranges
from 0 to lmax. The first few sets of these partial cross-section
combinations are shown in figure 1. For comparison, the elastic
cross-section used in [16] is also included.

In this section we study the impact of anisotropic elastic
scattering on the transport of positrons in dilute gaseous argon
at a temperature of 85 K. We present results from a multi-
term solution of Boltzmann’s equation for positrons in dilute
gaseous argon and compare them where possible with those
from the original independent Monte Carlo simulation and
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Figure 2. The variation with E/n0 of mean energy ε and
Ps-formation rates RPs/n0, bulk and drift velocities, for positrons in
dilute gaseous Ar at 85 K. These results are compared where
possible with the dilute gas-phase results using Monte Carlo
simulation [16].

cross-section set [16]. In figures 2 and 3, the comparisons are
made between transport properties calculated using isotropic
elastic scattering and those using full anisotropic elastic
scattering. The differences between the two sets are quite large,
particularly in the electric field range from 0.1 to 1 Td. In this
region of electric fields, the mean energy of the swarm is in
the vicinity of the Ramsauer minimum and it is here where the
differences between the momentum transfer (and higher order)
cross-section and the total cross-section are the largest. These
differences are masked somewhat by virtue of the logarithmic
scale. Perhaps the most sensitive coefficients to anisotropic
scattering processes are the flux diffusion coefficients shown
in figure 3. For a given E/n0 in this range, differences can be
greater than an order of magnitude. This is, however, merely a
shift in the profiles of a quantity that varies rapidly with E/n0.
Qualitatively, however, all features remain very similar.

In figure 2 we focus on the comparative study of the bulk
and flux drift velocities and note that qualitatively there are no
differences in the profiles. Most importantly, the positronium-
induced negative differential conductivity (Ps-induced NDC),

Figure 3. The variation with E/n0 of flux diffusion coefficients (DL

and DT represent diffusion parallel and perpendicular to the electric
field, respectively), and gradient energy parameter γ for positrons in
dilute gaseous Ar at 85 K. These results are compared where
possible with the dilute gas-phase results using Monte Carlo
simulation [16].

first predicted in [16] and independently verified in [19],
is again present indicating that the phenomenon is not
particularly sensitive to small variations in the anisotropic
nature of elastic scattering. Quantitatively, as expected, the
flux drift velocity for anisotropic scattering is greater than for
isotropic scattering for all fields. We note that convergence in
the bulk drift velocity for the Boltzmann equation technique is
quite poor particularly in the minimum of the NDC region and
consequently we are unable to definitely quantify the impact
of the anisotropic nature of the elastic scattering in this region.
The differences between the bulk and flux drift velocity and
the origin of Ps-induced NDC are well known [16]. The bulk
drift velocity is the time rate of change of the centre of mass of
the swarm of positrons. It is composed of the flux drift velocity
(mean velocity of positrons) plus a contribution brought about
by the spatially asymmetric loss of positrons from the swarm
to Ps-formation (S(1)). This process is dependent on the
Ps-formation rate and on the degree of spatial asymmetry in
the average energy profile through the swarm, a (first order)
measure of which is given by the gradient energy parameter
γ [45] shown in figure 3. On average the positrons at the
front of the swarm are more energetic than those at the trailing
edge and hence there is a preferential loss of positrons to
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Ps-formation at the front of the swarm as compared with the
back of the swarm. This results in a shift in the centre of mass of
the swarm in the opposite direction to the field force direction
and consequently the bulk drift velocity is less than the flux
drift velocity as shown. The strength of the Ps-formation
processes and the asymmetric spatial variation of energy within
the swarm in this field range is such that NDC results in the
region between 0.5 and 15 Td. Physically, one may question
why the flux drift velocity approaches the bulk drift velocity
again given that the Ps-formation rate is increasing. We note
from figure 3 in this region excitation and ionization processes
begin to dominate and the energy variation through the swarm
then begins to decrease. Consequently, the motion of the centre
of mass due to positron loss to Ps-formation is then reduced
and the bulk and flux begin to approach each other. Indications
from MC simulations are that the shape of the swarm pulse can
deviate significantly from a Gaussian, and in such a case non-
hydrodynamic arguments may apply.

3.1.2. Positron swarms in liquid argon. Cohen and Lekner
[47] recognized over 40 years ago that electron transport in
liquids is significantly affected by interference effects arising
from coherent elastic scattering. Recently, the somewhat
heuristic Cohen–Lekner two-term kinetic theory has been
generalized and a multi-term solution of Boltzmann’s equation
is now available for both electrons and positrons in structured
matter [19]. Coherent scattering effects become important
when the de Broglie wavelength of the particle is comparable
to or greater than the average interparticle spacing, as is
the case for low energy positrons or electrons in condensed
matter, and the particle wave is effectively diffracted by a
number of constituent molecules. On the other hand, gases
at normal temperatures and pressures (hereafter referred to as
the dilute gas-phase limit) are sufficiently dilute so that the
de Broglie wavelength is much smaller than the average inter-
molecular spacing n

1/3
0 , the wave properties of the particle are

suppressed, and scattering is effectively from only one gaseous
molecule at a time. Physically speaking, the two situations
may be likened to the diffraction and interference effects
studied in physical optics, and ray tracing in geometrical optics,
respectively.

These effects are accounted for quantitatively in the
Boltzmann equation by combining the differential cross-
section for single, elastic scattering with the dynamic structure
factor [46, 47] (the temporal and spatial Fourier transform of
the Van Hove pair correlation function [46]). Specifically,
the partial cross-sections for exchange of momentum and
higher order tensor properties are modified by a multiplicative
factor equal to the static structure factor of the material.
Pursuing the physical optics analogy a little further in
the context of a multi-slit experiment, one recalls that
the overall pattern derives from a superposition of the
interference pattern of the combined slits with the diffraction
pattern of each slit. The former corresponds to the
static structure factor and the latter to the single scattering
cross section.

For positrons in liquid argon, coherent elastic scattering
produces a number of interesting effects, the most noteworthy

Figure 4. The variation of the flux diffusion coefficients (DL and
DT represent diffusion parallel and perpendicular to the electric
field, respectively) with E/n0 for positrons in dilute gaseous and
liquid Ar at 85 K.

being the existence of structure-induced NDC [19]. This effect
is additional to and distinct from the Ps-formation-induced
NDC which is observed for both dilute gases [16] and liquids
[19]. In what follows, for the first time we present results
for diffusion of positrons in liquid argon at 85 K, based on the
cross-section set of [16] and the structure factor for liquid argon
of [48]. The results are displayed in figure 4. The magnitudes
of the diffusion coefficients of positrons in liquid argon at low
fields (thermal values) are at least an order of magnitude greater
for a liquid than for a dilute gas. In the high field (high energy)
limit, the positron de Broglie wavelengths decrease, coherent
scattering becomes less important and the liquid-phase and
dilute gas-phase results converge. It is noteworthy that the
degree of anisotropic diffusion, as reflected in the disparity
between the longitudinal and transverse diffusion coefficients,
can be much larger in liquids than in gases. Thus we see from
figure 4 that the difference can be up to almost two orders
of magnitude for liquids, another marked manifestation of the
effects of coherent scattering.

3.2. Electron swarms and temporal non-locality

As detailed in section 1, one of the key tasks of swarm transport
physics in low-temperature plasma physics is the provision of
benchmarks for plasma models/simulations (or components
thereof) in the swarm limit. In addition, such benchmarks
provide an indication as to the sensitivity of transport to
variations in the various parameters available to the system.
Recently, a benchmark model simulating field conditions in
the bulk of an inductively coupled plasma was presented by
the Petrović group using a Monte Carlo simulation [21]. The
model unearthed a multitude of interesting phenomena for
diffusion including the existence of transient negative diagonal
diffusion elements. The focus of this section is to benchmark
the current time-dependent multi-term solution of Boltzmann’s
equation against time-resolved Monte Carlo technique for the
model presented in [21]. Initially we will focus on the temporal
relaxation of diffusion coefficients in E and B fields and then
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study the manifestations of these on the time-resolved profiles
under rf electric and magnetic fields4.

3.2.1. Transient response of electrons in E and B fields. In a
recent paper [50], the transient response of electron swarms to
the application of an orthogonal magnetic field was considered.
The initial condition is a steady-state distribution for a dc
electric field only (E/n0 = 12 Td, B/n0 = 0 Hx). At time
t=0, a crossed magnetic field is switched on (electric field
is unaltered) and the relaxation properties of the swarm are
monitored as a function of the density normalized time, n0t .
The influence of the magnetic field on the transient response
of the diffusion coefficients calculated using the multi-term
solution of Boltzmann’s equation is displayed in figure 5
where they are compared with results from a MC simulation.
The excellent agreement between these two independent
methods validates the basis of transport phenomena as
well as numerical integrity of both the Boltzmann and the
Monte Carlo codes.

In the relaxation profiles we observe the existence of three
distinct timescales: (i) the gyro-period of the electrons τ ,
(ii) the momentum relaxation time τm and (iii) the energy
relaxation time τe. The latter two timescales are functions of
energy. The various diffusion coefficients display profiles that
are either essentially monotonic or damped periodic relaxation.
For diffusion along the B-field direction (n0Dyy) relaxation
is in general always non-periodic since there is no explicit
B-field effects in this direction, and relaxation occurs on the
timescale governed by τe. In contrast, the relaxation profiles
of diffusion coefficients in the E(n0Dzz) and E × B (n0Dxx)
directions exhibit a transition from monotonic decay to damped
periodic decay as the magnetic field strength is increased to
values where τ � τm. For the damped periodic profiles,
the oscillations are on the timescale of the gyro-orbits τ and
the envelope decays on a timescale of τm together with a
further relaxation on the timescale of τe. The existence of the
additional oscillatory behaviour in the relaxation profiles is an
imprint of the collective gyrations of the ensemble of electrons
damped by collisions that exchange momentum and energy.
Perhaps the most interesting phenomenon is the existence of
transiently negative excursions of the diffusion tensor elements
in both the E and E × B directions. A physical discussion of
this phenomenon is detailed in [50].

The manifestations of these complex relaxation profiles
for time-dependent fields (e.g. rf and/or pulsed rf) result in
behaviour which is distinctly non-local in time as we now
demonstrate.

3.2.2. Rf electric and magnetic fields. In this section we
consider the benchmark model for electron swarms in rf
electric and magnetic fields proposed by Raspopovic et al [21].
The Reid ramp model is again employed with orthogonal,
spatially homogeneous fields that are π/2 out of phase
(E/n0 = 10

√
2 sin(ωt) Td, B/n0 = 500 cos(ωt) Hx, where ω

is the angular field frequency). The neutral gas density is fixed

4 We implement in this study the well-known benchmark Reid ramp model
[49], used for a variety of field configurations previously due to its well-known
failure of the two-term approximation [5].

Figure 5. Temporal relaxation of the diagonal elements of the
diffusion tensor Dxx , Dyy and Dzz for various applied magnetic
fields in a crossed field configuration for Reid ramp model (dashed
lines: Multi-term Boltzmann solution; thin lines: Monte Carlo
code).

at n0 = 3.54 × 1022 m−3. In figure 6 we display the diagonal
components of the diffusion tensor in the periodic steady state
as a function of the field phase for various applied frequencies
of the field. Once again there is very good agreement between

8
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(a)

(b)

(c)

Figure 6. Comparison of the multi-term Boltzmann solution and
Monte Carlo results for n0Dzz, n0Dxx and n0Dyy over a range of
applied field frequencies for the Reid ramp model.

the two independent techniques, further supporting the validity
of both techniques. Large scatter in diffusion data at low
frequency and for n0Dyy obtained in Monte Carlo simulations
is the result of poor statistics which requires following a large
number of electrons and their complete relaxation.

There are some anomalous features in these profiles
[8, 21]. The behaviour demonstrated for the diffusion in the
E and E × B directions is in general not predictable from
steady-state dc results [23, 51]. Contemporary understanding

of field frequency effects (namely reduction in amplitude and
increase in phase-lag with respect to the field) fails or has a
limited range of validity when the relaxation is not monotonic.
Understanding such effects requires recourse to a systematic
investigation of relaxation profiles: ‘one must consider not
only the ability of the transport property to relax on a time
scale governed by the frequency of the field but also the
implications associated with an inability to relax’ [52]. At
low-frequencies, the time available for relaxation before the
field changes is high and we essentially sample the long-time
behaviour of the relaxation profiles in figure 5. The quasi-dc
behaviour then follows, which has no additional (higher order)
oscillatory behaviour present in the rf profiles. As we increase
the frequency, however, the time available for relaxation before
the field changes decreases and we begin to sample complex
oscillatory behaviour in the relaxation profiles of figure 5. The
additional (high order) oscillatory behaviour in the rf profiles
then follows. Using similar arguments one can understand
the transient negative excursions of n0Dxx and n0Dzz above
a certain frequency (and B/n0), the enhancement of the peak
value of n0Dyy and its transition to anti-phase behaviour as as
ω/n0 increases.

4. Conclusion

Swarm physics is alive! Accurate swarm transport theories,
developed in the 1970–1990s to unfold swarm experiments,
have now been adapted and find application in a variety of
fields. In this paper we have highlighted their application
in the field of low-temperature plasmas and positron physics.
For low-temperature plasmas, we have presented a benchmark
simulation of electron swarms under the action of crossed rf
electric and magnetic fields. The results of a time-dependent
multi-term solution of Boltzmann’s equation were compared
with those of an independent Monte Carlo simulation, with
very good agreement. For positron swarms, we highlighted
the sensitivity of the macroscopic transport properties to the
anisotropic nature of elastic scattering for positrons in gaseous
argon. The extension to consider positrons in liquid argon
demonstrated an enhancement of the anisotropic nature of
diffusion over the dilute gas phase.
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