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Abstract
Electron transport in crossed electric and magnetic dc fields in CF4 is
considered by employing an exact Monte Carlo simulation technique.
Emphasis is placed on explicit and implicit effects of the combination of
both the shape of cross-sections and magnetic field on relaxation processes
and steady-state transport data. It has been shown that the application of a
magnetic field changes the relaxation processes by increasing the relaxation
times as well as, by introducing the oscillatory behaviour of some transport
quantities during the relaxation process itself. The electron transport
parameters studied here are collision frequency, mean energy, drift velocity,
diffusion tensor and collisional rates for 1 � E/N � 1000 Td and
0 � B/N � 1000 Hx (1 Td = 10−21 V m2, 1 Hx = 10−27 T m3). Special
attention is paid to the study of sensitivity of transport data in E × B fields
on the energy dependence and nature of the cross-sections. The validity of
the effective reduced electric field concept through Tonks’ theorem is also
investigated for CF4 in the evaluated range of mean energies.

1. Introduction

Over the past few decades, there has been considerable research
on electron swarms in a neutral gas in the presence of electric
and magnetic fields. This interest was intensified owing
to the broad range of applications of non-equilibrium (low
temperature) plasmas with both electric and magnetic fields.
With respect to this, the most common situations involve
orthogonal configuration of electric and magnetic fields. These
applications range from magnetically confined gas lasers
to high-energy particle detectors and to plasma processing
technology involving magnetically enhanced plasma reactors.

Studies of the application of a magnetic field perpendicular
to the electric field on the electron transport date back many
years. The first experiments in crossed electric and magnetic
dc fields were conducted by Townsend and Tizard in 1913 [1]
and by Huxley and Zaazou in 1949 [2]. They measured
electron swarm parameters in the regime where the electron
cyclotron frequency is much smaller than the electron collision
frequency (� � νc). On the other hand, Bernstein [3]
measured the electron swarm coefficients in the regime where
cyclotron frequency is much larger than the collision frequency
(� � νc). In addition, one of the most striking phenomena that

have been observed is the dramatic influence of the magnetic
field on the breakdown voltage in some gases. Application
of a magnetic field may reduce the breakdown voltage from
tens of kilovolts to a few hundred volts [4]. These and
other early attempts (before the 1980s), both experimental
and theoretical, to include magnetic fields in gas discharge
processes and electron transport have been reviewed by Huxley
and Crompton [5] and also by Heylen [6].

The 1980s brought new challenges. Some illustrative
examples of electron transport studies in E × B fields that
date back to the 1980s and early 1990s fall into the following
categories: (i) modelling of gas lasers, in particular CO2

lasers [7, 8]; (ii) modelling of a cathode fall region [9, 10];
(iii) modelling of the high-energy particle detectors [11, 12];
and (iv) swarm analyses in sulphur hexafluoride (SF6) [13–15],
in nitrogen (N2) [16, 17] and in mercury vapour [18]. In all
cases, except [8, 11, 12], the Monte Carlo method was
employed in order to study the effect of the magnetic field
on electron transport and, consequently, the features of gas
discharges. Shimura and Makabe [19] analysed velocity
distribution function of electrons in E × B fields in argon by
direct numerical analysis of the Boltzmann equation by using
the finite element method. In addition, Biagi [20] has recently
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developed a Monte Carlo simulation code in order to determine
the electron transport parameters in E×B fields in counting gas
mixtures while Raspopović et al [21] have presented detailed
benchmark calculations in E × B fields.

Besides the Monte Carlo simulation technique of studying
the electron transport, another well-known method is by
solving the Boltzmann equation. In the 1980s the main
approach to solving the Boltzmann equation was based
on using the two term approximation. In order to
overcome the limitations of the two term approximation,
Biagi [11, 12] extended the two term theory while Ikuta and
Sugai [22] developed the ‘flight time integral’ method for the
Boltzmann equation for both perpendicular and orthogonal
field configurations. The latter method was associated with
an error in the definition of diffusion, as calculations in
model gases based on the momentum transfer theory [23],
on the multi-term moment method [24] and the Monte Carlo
simulation [25] have shown.

Despite the fact that the plasma community, especially
plasma modellers, require a lot of transport data, the
experimental work on electron transport in E × B fields is
extremely limited. Numerous studies were carried out within
the particle detector community [26–28] that were seldom
cross-referenced in the swarm community. A glaring exception
is the group from Hidelberg (Germany) that has designed the
experiment to measure the electron transport parameters in
both, the collision-dominated regime, and the regime where
magnetic field controls the behaviour of the electron swarm
with uncertainty of less than 1% [29, 30]. In addition, one
ought to mention the experiments based on the ‘photon flux’
technique conducted by Brennan and Garvie [31] in order
to measure the electron transport parameters in Townsend
discharges in nitrogen.

On the other hand, Ness and co-workers have extended
the traditional multi-term kinetic theory that considered only
electric fields. In [32] Ness developed a formal theory
based on the spherical-decomposition of the swarm particle
velocity distribution function in the presence of electric and
magnetic fields. Within the framework of this theory, Ness [24]
presented results for electron swarms for a range of model and
real gases. Further improvements of this theory were made
by White et al [33–35] by developing an extension of the
numerical solution of the conservative Boltzmann equation to
arbitrary angles between the electric and magnetic fields and
by Ness and Makabe [36], by including the effects of non-
conservative collisions in E × B fields. The work of Ness and
co-workers is the most comprehensive, accurate and detailed
of all the studies done on electron transport in crossed electric
and magnetic fields in the literature.

In the physical understanding of electron transport in E×B
fields, approximate theories such as the momentum transfer
theory have also been important. Within the framework of this
theory, it is possible to obtain analytically the hydrodynamic
electron transport coefficients. In the case of electron transport
in E × B fields, momentum transfer theory was developed
by Robson [37] but only for conservative electron-neutral
collisions. An extension to a more general non-conservative
case was made by Vrhovac and Petrović [38,39] as well as by
Li et al [40].

In this paper we have employed a Monte Carlo simulation
code to study electron transport in E × B fields in

carbon tetrafluoride (CF4). Initially, our attention is focused
on relaxation processes of the energy distribution function
(EEDF) and electron transport coefficients. The relaxation
problem is analysed for the carefully selected electric and
magnetic field strengths in order to cover both regimes of the
electron swarm behaviour: the collision-dominated regime and
the magnetic field-controlled regime. We have calculated the
relaxation times of the EEDF and electron swarm coefficients
and compared these results with those that arise from a
traditionally kinetic approach. These studies are highly
relevant for plasma modellers since fluid theories such as the
relaxation continuum theory (RCT) require the knowledge of
both relaxation times of electron transport coefficients and
rate coefficients [41]. In particular, we have studied the
modifications of the relaxation processes in E × B fields and
compared these results with the magnetic field-free case.

Next, we present the steady-state electron transport
coefficients for various magnetic and electric fields with
a particular emphasis on the effects of non-conservative
collisions. In addition, we give a brief description of
the magnetic field effect on electron transport properties in
E × B fields in terms of the ratio of the cyclotron to the
collision frequency. Finally, owing to the additional numerical
complexity by introducing the magnetic field in both Monte
Carlo simulation codes and multi-term codes for solving the
Boltzmann equation, one may be forced to employ the effective
field concept [42]. According to the effective field concept,
one may use data obtained from calculations that involve
only electric fields that are modified to represent the effect
of magnetic fields, mainly on the mean energy [43, 44], and
we have tested this approximation.

CF4 has all the features of the cross-sections that are of
great consequence for electron transport [45]. Here it is of
interest to establish how they affect the transport properties
in the presence of magnetic fields and also possibly to predict
how they affect the performance of plasma reactors. Finally, in
addition to the published papers that concern both experimental
data [46] and swarm analysis in the electric field only [47–50],
the numerical modelling performed here in E × B fields can
be useful for comprehensive modelling of a wide range of CF4

discharges including dc discharges [51–53], rf and microwave
discharges [54–56], studies of gas discharge opening switches
[57] and technology of gaseous dielectrics [58].

CF4 is one of the most frequently used gases in plasma
applications in ultra large scale integrated (ULSI) circuit
technologies for plasma etching. These applications are
mostly realized in capacitively coupled plasmas (CCP). Since
this paper is concerned with the effect of magnetic field on
transport, it is of interest in this context to state that CF4 was
also used in inductively coupled plasmas (ICP) in single, two
frequency as well as in pulsed regimes [59]. Thus, it is highly
desirable to study electron transport in E×B fields and provide
data for optimal control and design of plasma reactors that may
be developed.

2. Technique of simulation

In this paper we apply a Monte Carlo simulation code
that follows a large number of electrons (typically 104–106)
through a neutral gas under the influence of uniform and
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crossed electric and magnetic fields. It is assumed that
an electron swarm develops in an infinite space. At time
t = 0, electrons are initially released from the origin with
the Maxwellian velocity distribution and with a mean kinetic
energy of 1 eV. Electrons gain the energy from the external
electric field and dissipate it by collisions with the neutral gas
molecules. The collisional transfer of this energy to the neutral
gas molecules occurs by means of elastic as well as different
types of inelastic collisions. It is also assumed that the electron
density is sufficiently small, so Coulomb interactions between
the particles as well as shielding of the field is negligible. All
calculations were performed for zero gas temperature.

2.1. Electron trajectory in E × B fields

In this work, our coordinate system is defined such that the
applied electric field is in x direction while the magnetic field
is in the z direction. However, in our final notation we shall
use subscripts E, B and E × B to denote the three axes in a
more obvious way. The equation of electron motion may be
written as

me
dv

dt
= e(E + v × B), (1)

dr
dt

= v, (2)

where me is the mass of electron, e is the electronic charge,
v is the velocity of electron and E and B are the electric and
magnetic fields, respectively. The classical, finite difference
method of numerical integration for equations (1) and (2) may
be expressed by

v(t + �t) = v(t) +
e

me
(E + v × B)�t, (3)

r(t + �t) = r(t) + v(t + �t)�t. (4)

The classical, numerical procedure of solving equations
(3) and (4) is not time consuming, but it gives unsatisfactorily
results for the electron position and velocity in E × B fields.
That is, if we assume E = 0 we will not get a closed circle
in numerical solution for an electron trajectory owing to the
change of velocity during �t . Therefore, we have employed
Boris rotation, a well-known algorithm in plasma physics for
electron motion in E×B fields [60]. It is based on the use of the
electric field only. After each time step, the electron velocity
is rotated in such a way as to obtain the effect of a magnetic
field. The angle of rotation is dependent on the magnitude of
the magnetic field. According to this procedure, the additional
velocities were introduced as follows:

v′
x = vx + tg

(
−θ

2

)
vy, (5)

v′
y = vy − tg

(
−θ

2

)
vx, (6)

where vx and vy are the current components of electron
velocities with a time step of �t/2, and θ is given by

θ = eB

m
�t. (7)

Since the magnetic field is oriented along the z axis, the new
components of the drift velocity are obtained by the following
rotation:

vx = vx + sv′
y, (8)

vy = vy − sv′
x, (9)

where s and t are the parameters of rotation given by

t = −tg

(
θ

2

)
, (10)

s ≡ − sin θ = 2t

1 + t2
. (11)

At the end of this procedure, it is necessary once more to
accelerate the electron along the electric field using the time
step of �t/2.

2.2. Determining the probability and the nature of collisions

The crucial features of a Monte Carlo method of charged
particle transport are to follow accurately the path of an
individual electron and to determine the exact moment and
the nature of the next electron collision. The probability that
the electron has no collision before the time t is given by

P(t) = exp

(
−

∫ t

t0

νT(ε(t ′))dt ′
)

, (12)

where t0 is either the time of the electron entering into gas
or the time of a previous collision. The time-dependent total
collision frequency νT is given by

νT(ε(t)) = NσT(ε)v, (13)

where N is the density of the background molecules, σT(ε) is
the total collision cross-section and v is the electron velocity.
The probability density that the collision occurs in the time
interval (t, t + dt) is given by

p(t)dt = P(t) − P(t + dt) (14)

and hence

p(t) = νT(ε(t)) exp

(
−

∫ t

t0

νT(ε(t ′))dt ′
)

. (15)

A random collision time tc may be obtained by equalizing the
probability that the random number ξ1 is from the uniform
distribution on the interval (0, 1) and the probability that a
random collision time tc is on the interval [t0, tc] and hence

− ln(1 − ξ1) =
∫ tc

t0

νT(ε(t))dt . (16)

Equation (16) has no analytical solutions for real gases. There
are two methods of solving this equation. The first method
is known as null-collision method, initially developed by
Skullerud [61] for simulation of ion motion in gases. This
method has been used extensively for electrons in electric
fields [62, 63]. It assumes that an additional process that has
no effect on electrons upon collision is added in such a way
that the total collision frequency is constant.
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The second method, known as the time integration method
[64, 65], is based on numerical integration of equation (17) in
small time steps. According to this method, equation (16) may
be written as

ln(1 − ξ1) � −
∑

i

νT(ε(ti))�ti. (17)

The sum in the exponent of the inequality (17) is usually
known as the collision sum. The essence of this method is
to check whether the collision sum becomes greater than the
logarithm of a random number. If an inequality (17) does not
hold for some �tk, the collision occurs and

∑
�tk represents

the solution.
It is obvious that the most critical step of the time

integration method is to decide how long the time-steps for
numerical integration should be. In our code the time steps are
determined as the minimum of the two relevant time constants
(mean collision time and cyclotron period for E × B fields)
divided by a large number (20–100). Varying the number
that is used to divide the time constants gives a test of the
convergence of the method itself.

Despite the fact that the null-collision method has an
advantage in dc fields we, employ the time integration
technique in our Monte Carlo code as we want to apply the
same code for rf fields and also to control the accuracy of the
electron trajectories in magnetic fields.

The nature of a collision is determined from another
uniformly distributed random number ξ2 between 0 and 1,
taking into account the relative probabilities (collision
frequencies) of all collisions.

2.3. Determining the scattering parameters

The next step in our Monte Carlo method is to calculate the
properties of the electron after the scattering. The change in the
direction of the electron velocity is described by an azimuthal
angle ϕ and by the scattering angle θ . The azimuthal angle is
assumed to be uniformly distributed in the range [0, 2π ]

ϕ = 2πξ3, (18)

where ξ3 is the new uniformly distributed random number
between 0 and 1. The scattering angle may be anisotropically
distributed and the probability for the electron with energy ε to
be scattered over an angle θ is determined by the differential
cross-section I (ε, θ). In this paper we assume that all electron
scattering is isotropic, regardless of the collision nature, thus
a random scattering angle θ may be found simply as

θ = cos−1(1 − 2ξ4), (19)

but in that case, momentum summed momentum transfer cross-
section should be used instead of the total cross-section for
determining the probability of collision. This approximation
was generally shown to be adequate for relatively low E/N

covered in this paper but needs to be corrected when forward
scattering becomes dominant. The effect of anisotropic
scattering in the region of the Ramsauer minimum should also
be re-considered for a detailed understanding. However, since
we attempt to scan a broad range of parameters and to provide a

database for plasma modelling, we will not focus on this issue
in the present publication.

After an elastic collision, the electron energy is given by

ε1 = ε

[
1 − 2me

M
(1 − cos θ)

]
, (20)

where ε is the electron energy before the collision, me and
M are the electron and neutral molecule masses, respectively.
On the other hand, the electron energy after an inelastic
collision may be easily found by an additional subtraction of
the energy loss εl from the current total electron energy.

In the case of ionization, the remaining electron energy
εl is redistributed between the primary and the secondary
electron. One may use the approximation that the primary
electron takes the whole energy, while the secondary electron
starts the motion with zero or the semi-empirical formula
initially published by Opal et al [66]. Nevertheless, we adopt
a concept where the energy of the primary and secondary
electron is determined by introducing the new, uniformly
distributed random number between 0 and 1, which was shown
to be sufficiently accurate in our conditions.

2.4. Sampling the electron transport coefficients and EEDF

When discussing the electron swarms in E×B fields one should
bear in mind that the application of a magnetic field gives rise
to additional transport coefficients as compared with the case
of a purely electric field. Hence, in the E × B orthogonal
configuration there are drift velocities in E and E×B directions.
DE , DE×B andDB are the components of the diffusion tensor D
in E, E×B and B directions, respectively. DHall is the so-called
Hall diffusion coefficient arising from the off-diagonal terms
in the diffusion tensor. However, we plot the values of ND
coefficients as those are independent of the pressure.

All of these transport coefficients may be defined both
in the real and in the velocity space [67]. Usually, the
corresponding coefficients are labelled as bulk (real space) and
flux (velocity space) electron transport coefficients [68, 69],
respectively. The two sets of coefficients are equal, by
definition, in the absence of non-conservative collisions and,
conversely, in the presence of non-conservative processes
(attachment and/or ionization) they may differ. We use
the terminology ‘bulk’ and ‘flux’ transport coefficients, since
appropriate formulae for Monte Carlo simulations that enable a
correct representation of non-conservative processes have been
presented by Kumar et al [67], White et al [25] and Nolan et al
[70]. There is a good agreement of the results with properly
defined and calculated real and velocity space coefficients such
as those shown by Kurihara et al [50]. Proof that the formulae
used here concur with those in Boltzmann equation theories
is quite complex and beyond the scope of this paper [67].
While it may be more appropriate to use flux coefficients for
plasma modelling, the bulk coefficients are measured in swarm
experiments.

The bulk electron transport coefficient may be determined
from the mean position of the electron swarm in real space. The
number changing reaction rate is defined by

ω(0) = −α = d

dt
(ln N), (21)
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the drift velocity by

ω(1) = w = d

dt
〈r〉, (22)

and the diffusion tensor by

ω(2) = D = 1

2

d

dt
〈r∗r∗〉, (23)

where N is the number of electrons in swarm, 〈r〉 are electron
swarm centre of the mass coordinates and r∗ = r − 〈r〉.

The corresponding flux value for the number changing
reaction rate is

�(0) = −α = 0, (24)

the drift velocity is

Γ(1) = w = 〈v〉, (25)

and the diffusion tensor is

Γ(2) = D = 1

2

〈
d

dt
(r∗r∗)

〉
, (26)

where 〈v〉 denotes the mean electron velocity of electrons in
the swarm.

On the basis of equation (23), and keeping in mind the
orientation of the electric and magnetic field vectors, the bulk
values of the diagonal components of the diffusion tensor are
given by

Dbulk
E = 1

2

d

dt
(〈x2〉 − 〈x〉2), (27)

Dbulk
E×B = 1

2

d

dt
(〈y2〉 − 〈y〉2), (28)

Dbulk
B = 1

2

d

dt
(〈z2〉 − 〈z〉2). (29)

On the other hand, on the basis of equation (26) the flux
diffusion coefficients are given by

Dflux
E = 〈xVx〉 − 〈x〉〈Vx〉, (30)

Dflux
E×B = 〈yVy〉 − 〈y〉〈Vy〉, (31)

Dflux
B = 〈zVz〉 − 〈z〉〈Vz〉. (32)

Apart from the diagonal components of the diffusion tensor,
as mentioned above, there are off-diagonal components of the
diffusion tensor. The Hall diffusion coefficient represents the
sum of the off-diagonal components of the diffusion tensor.
The bulk value of the Hall diffusion coefficient is given by

Dbulk
Hall = 1

2

d

dt
(〈x〉〈y〉 − 〈xy〉). (33)

The Hall flux diffusion coefficient is given by

Dflux
Hall = 1

2 (〈x〉〈Vy〉 + 〈y〉〈Vx〉 − 〈yVx〉 − 〈xVy〉). (34)

Bulk transport coefficients are observable quantities that
are generally measured and tabulated in swarm experiments.
On the other hand, flux transport data may be obtained
through Boltzmann analysis. Since there may be considerable
differences between these two types of transport data,
one should be aware of both origin and type of transport data

before their application. In section 3.4, we will examine and
estimate the significance of the influence of non-conservative
collisions on electron transport in E × B fields.

The rate coefficients (including the attachment and
ionization) may be determined by counting the appropriate
collision events and normalizing the count by the time step
and number of electrons.

In addition to transport and rate coefficients, we may
also determine the EEDF. This may be done by sampling
the energy of electrons at fixed moments. However, we
have not employed the EEDF to calculate rates and transport
coefficients. If one uses Monte Carlo simulated EEDF to
integrate and give transport coefficients, we would have to
sample all the components in gradient and spherical harmonic
expansions in order to use proper formulae. This may then
be subject to a large uncertainty owing to poor statistics or
biased sampling. Thus, we believe that it is best and certainly
most efficient, statistically, to sample the transport coefficients
directly.

3. Results and discussion

The electron swarm parameters are calculated for E/N values
from 1 to 1000 Td (1 Td = 10−21 V m2) with B/N values in
the interval of 0 � B/N � 1000 Hx (1 Hx = 10−27 T m3).
The initial number of electrons and simulation time depend on
both E/N and B/N . Usually, we follow 105 electrons through
approximately the same number of collisions. However, at
the lowest E/N and the highest B/N owing to many circular
rotations per collision and low energy exchange, we used
the lowest number of 0.5 × 105 initial electrons. Under
the same conditions, the simulation times were the longest,
and consequently our simulations took several days on fast
desktop computers to complete. The gas number density is
3.54 × 1022 m−3, which corresponds to the pressure of 1 Torr
at 273 K.

We have chosen a set of cross-sections for CF4 published
by Kurihara et al [50], which has been systematically tested
in our laboratory [71] and shown in figure 1. This set of
electron-CF4 cross-sections includes 16 collision processes:
elastic momentum transfer (1), three vibrational (2–4) and
one electronic excitation cross-section (5), attachment cross-
section (6) and also seven dissociative ionization cross-sections
(7–13) and three cross-sections for the neutral dissociation
(14–16). The difference between this set and that of
Christophorou et al [46] is that Kurihara et al use adjustments
of ground state dissociation to fit the ionization rate, while
Christophorou and co-workers [48] have allocated almost 5 eV
energy loss to the second vibrational resonance at higher
energies, and this part of the vibrational cross-section was
adjusted to fit the ionization coefficient. Our results for
transport coefficients are in very good general agreement with
those of Kurihara et al [50], and we shall not make comparisons
here as we may lose the focus of our study, which is to analyse
the effects of magnetic field on electron transport.

3.1. Electron motion in E × B fields

The basic phenomenology of electron transport in E×B fields
may be expressed in terms of the ratio of the cyclotron to the
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Figure 1. The cross-sections for CF4 published by Kurihara et al
[50] including elastic momentum transfer (1), three vibrational
(2–4) and one electronic excitation cross-section (5), attachment
cross-section (6), seven dissociative ionization cross-sections (7–13)
and three cross-sections for the neutral dissociation (14–16).

collision frequency [21,25]. According to this, there are three
regions of importance. First, there is a weak magnetic field
region where cyclotron frequency is much smaller than the
collision frequency (� � νc). This indicates that electrons,
on average, may complete only a part of their circular orbits
between two successive collisions. This regime is called
the collision-dominated regime. Second, there is a moderate
magnetic field region where cyclotron frequency is of the order
of collision frequency (� ∼ νc). Finally, there is a strong
magnetic field region where cyclotron frequency is much larger
than the collision frequency (� � νc). In a strong magnetic
field region, electrons may complete many circular orbits per
collision, and this regime is known as the magnetic field-
controlled regime. In the intermediate magnetic field region,
the motion of an electron swarm is complex, inducing certain
interesting trends of electron transport coefficients which will
be addressed in the following. We should also bear in mind
the following: the motion of electrons is mainly chaotic, and
randomized velocity is much greater than the drift velocity,
further all three regions overlap with the standard conditions
found in plasma applications that involve magnetic fields.

In figures 2(a) and (b), we show the total collision
frequency and the ratio of the cyclotron to the total collision
frequency as a function of E/N from 1 Td to 1000 Td over
a range of B/N from 0 Hx to 1000 Hx, respectively. As can
be seen, for a magnetic field-free case, the collision frequency
increases with E/N . Application of a magnetic field gives
the three distinct ranges of behaviour. First, for all values
of magnetic fields, the collision frequency decreases as E/N

increases, since the momentum transfer cross-section for
elastic collision is a monotonically decreasing function of
the electron energy in this energy range. It is somewhat
surprising that collision frequency in this energy range is
almost independent of B/N . Second, there is a region of
rapid rise as momentum transfer cross-section starts to increase
markedly. Finally, there is a region of slow increase of the
collision frequency owing to the fact that inelastic collisions
start to exert their influence on an electron swarm.

(a)

(b)

Figure 2. (a) Collision frequency and (b) the ratio of the cyclotron
to the collision frequencies as a function of E/N at various
magnetic field strengths.

At fixed values of E/N , the ratio of the cyclotron to the
collision frequency increases with increasing B/N , as shown
in figure 2(b). As B/N increases, the range of E/N where
the cyclotron frequency is larger then the collision frequency
becomes wider while the transition from the magnetic field-
controlled regime to the collision-dominated regime becomes
considerably sharper. Thus, with increasing B/N the range
of E/N that determines transition from the magnetic field-
controlled regime to the collision-dominated regime becomes
narrower.

The behaviour of the collision frequency (as a result of
the shape of the cross-sections) that we have just described
strongly influences the electron transport coefficients. At low
B/N , where � � νc, we may expect a strong influence of
collisions and, thereby, a small contribution of the magnetic
field. On the other hand, at high B/N and low E/N where
� � νc, owing to the independence of the electron energy
capacity of cyclotron rotation, we may expect that the electric
field can no longer efficiently pump the energy into the system.
In addition, owing to the intensive electron cyclotron motion
we may expect reduction of the drift velocity and diffusion
coefficients.

2957



S Dujko et al

Energy

Figure 3. Energy-resolved frequencies for momentum and energy
relaxation and cyclotron frequency at various magnetic field
strengths.

3.2. Relaxation processes of the EEDF and electron
transport coefficients in the E × B fields

First, we shall discuss the basic features of the temporal
relaxation of the EEDF and electron transport coefficients in
E × B fields. Similar studies of both temporal and spatial
relaxation processes in neon have already been made by TTA
for solving the Boltzmann equation in [72, 73] under the
conditions where dominant energy transfer is realized through
the electronic excitation. In addition, both studies imply the
conservative nature of the Boltzmann collision integral since
the ionization was treated as an excitation process.

The basic mechanisms of the relaxation process strongly
depend on gas pressure, electric and magnetic fields strengths
and the type of gas. In order to study the relaxation
processes of an electron swarm, it was common practice to
calculate their characteristic parameters such as relaxation
times and lengths [72–74]. In figure 3 we show the energy
and momentum relaxation frequency as a function of the
energy for monoenergetic electrons. These frequencies are
compared with the cyclotron frequency for several magnetic
field strengths, as indicated on the graph. To calculate both
energy resolved momentum and energy relaxation frequencies,
we use the following formulae [74]:

νm(ε) =
√

2

me
ε1/2

(
NQm(ε) +

∑
l

NQtot
l (ε)

)
,

νe(ε) =
√

2

me
ε1/2

(
2
me

M
NQm(ε) +

∑
l

NQtot
l (ε)

�εtot
l

ε

)
,

where me, M , ε, N , Qm, Qtot
l , �εtot

l denote the electron mass,
the mass of neutral molecule, the electron energy, the gas
number density, the momentum transfer cross-section, the total
cross-section and associated energy loss of the lth inelastic
collision process.

Both momentum and energy relaxation frequencies
show complex energy dependence. Momentum relaxation
frequency exceeds the energy relaxation frequency in the
whole range of electron energies except around 0.2 eV. In this
energy range, owing to the rapid growth of the cross-section for

(a)

(b)

Energy

Energy

Figure 4. Temporal relaxation of the EEDF for E/N = 100 Td at
(a) B/N = 0 Hx and (b) B/N = 500 Hx.

vibrational excitation, the corresponding frequency for energy
relaxation jumps sharply by almost 6 orders of magnitude.

In figures 4(a) and (b) we show temporal relaxation of
the EEDF, for crossed electric and magnetic fields at E/N =
100 Td and B/N of 0 and 500 Hx. As can be seen, application
of a magnetic field leads to depopulation of the high-energy
electrons from the tail of the EEDF and thereby decreases the
mean energy. After 0.05 ns the EEDF is still a Maxwellian
(a straight line in the log–lin scale). However, later, the
EEDF establishes a non-Maxwellian profile with three distinct
energy ranges: (i) low-energy range (ii) intermediate-energy
range and (iii) high-energy tail. Transition from low to
intermediate-energy range is caused by the fact that electrons
are depleted owing to the rapidly rising cross-sections for
vibrational excitations. On the other hand, transition from
the intermediate to the high-energy range and subsequent
cooling of the EEDF starts from approximately 7 eV owing
to the new inelastic channels such as electronic excitation and
dissociation. Application of a magnetic field changes the speed
of the relaxation as well as the shape of the steady-state EEDF.
That is, the relaxation time increases with increasing B/N .
Also, it is observed that the low-energy range of the EEDF is
enhanced as B/N increases.
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Figure 5. Temporal relaxation of the mean energy for
E/N = 100 Td and various magnetic fields. The initial energy was
arbitrarily chosen to be 1 eV but the final results do not depend on
the choice.

In figure 5, we show the temporal relaxation of the mean
energy for crossed electric and magnetic fields at E/N =
100 Td and B/N = 0, 100, 200, 500 and 1000 Hx. The
mean energy decreases with B/N for the conditions of the
present simulation. At the same time, the relaxation time of
the mean energy increases with B/N . This result is caused
by the fact that an increase in B/N leads to a weaker energy
exchange. On the other hand, the action of the magnetic field
decreases the mean energy and shifts it to the range where the
energy relaxation frequency is much lower and consequently,
the relaxation times increase.

In figures 6(a) and (b) we show the temporal relaxation
of the two components of the drift velocity, along the electric
field and normal to both electric and magnetic fields, for the
same conditions as for the mean energy. In the early stage
of relaxation, both components of the drift velocity overshoot
the stationary values as a result of rapid acceleration of the
initial group of electrons. After a suitable time, drift velocity
is decreased towards the stationary value as a consequence of
momentum equilibration. In other words, direction of velocity
is randomized owing to elastic collisions. Similar effects
were observed by Shizgal and McMahon [75] in electron
thermalization at low E/N and by Kondo et al [76, 77] in
rare gases.

3.3. Steady-state electron transport parameters

We now turn our attention to the steady-state transport
coefficients in E × B fields. In figure 7 we show the mean
energy as a function of E/N for various B/N . We observe
three distinct regions of transport as E/N increases. The first
region is associated with slow increases in the mean energy
owing to intensive energy losses arising from the vibrational
excitation. The second region is that of a rapid rise of
mean energy, and it develops when electrons gain sufficient
energy to overcome the losses owing to vibrational excitation.
It coincides with the negative differential conductivity (NDC)
region of the drift velocity, see figure 8. Finally, there is another
region of slow increase in the mean energy as the electronic

(a)

(b)

Figure 6. Temporal relaxation of the (a) longitudinal component
and (b) perpendicular component of the drift velocity for
E/N = 100 Td and various magnetic field strengths.

Figure 7. Mean energy as a function of E/N for various B/N .

excitations become important in controlling the energy of
the swarm. In general, as can be seen, the application of
a magnetic field perpendicular to an electric field decreases
the swarm mean energy and, as a result (see figure 7), as
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Figure 8. Drift velocity as a function of E/N for various B/N .

B/N increases, the mean energy curves move to the right.
In addition, the fastest variation in the mean energy is in the
range between 10 and 100 Td where plasma chemistry may
be modified significantly by changing the magnitude of an
external magnetic field.

In figure 8 we show the magnitude of the vector of drift
velocity as a function of E/N for various B/N . It shows
a strong effect of NDC which could be expected from the
nature of the cross-section [50]. However, as the magnetic
field increases from 0 to 500 Hx, the onset of NDC is moving
to the right, towards the higher values of E/N . At the highest
B/N (covered here) of 1000 Hx, the NDC effect vanishes. As a
consequence of such behaviour, there are several points in the
range 30–200 Td that show an increase of the drift velocity with
increasing B/N . A similar effect was observed in CH4 [24].
This result is unexpected if one does not take into account the
mutual effect on drift velocity by NDC effect and the energy
dependent ratio of cyclotron to collision frequency.

At high values of B/N and low values of E/N , e.g. in
a magnetic field-controlled regime, drift velocity shows low
sensitivity to the details of the cross-section. As can be seen,
drift velocity is proportional to E/B, and the curves in figure 8
and also in figure 9 are straight lines. The same is true for
the collision-dominated regime, where the curves are again
straight lines. The drift velocity is almost insensitive to the
presence of a magnetic field at high E/N .

Figures 9(a) and (b) display the longitudinal and
perpendicular components of the drift velocity as a function
of E/N for various B/N , respectively. As can be seen,
the longitudinal component behaves in almost exactly the
same way as the magnitude of the vector of the drift velocity
with E/N and B/N . It shows a pronounced effect of NDC
which disappears at 500 Hx. For each value of B/N , the
E × B component of the drift velocity initially increases with
increasing E/N , reaching a peak, and then it starts to decrease
with E/N . At the highest E/N (covered in this paper), the
drift velocity in the E × B direction starts to increase again.

In figures 10(a) and (b) we show longitudinal (NDE) and
the transverse component of the diffusion tensor, along the
E×B axis (NDE×B) as a function of E/N for various magnetic
fields. At first sight, both diffusion coefficients show a similar

(a)

(b)

Figure 9. (a) Longitudinal and (b) perpendicular components of the
drift velocity as a function of E/N for various B/N .

behaviour with E/N and B/N , particularly in the magnetic
field-controlled regime. Both the diffusion coefficients show
a rapid rise in the energy range of the Ramsauer–Townsend
minimum and rapidly decreasing cross-sections for vibrational
excitation. More precisely, both NDE and NDE×B may vary
over five orders of magnitude with E/N and B/N . In the
collision-dominated regime (high E/N ), NDE and NDE×B

are slightly dependent on the presence of a magnetic field.
However, in the transition regime, after the rapid rise in their
magnitude, both diffusion coefficients show some structures
for the case of low B/N values. This indicates an increase
in sensitivity to the energy dependence of the cross-sections,
particularly to the energy dependence of the cross-sections for
vibrational excitation.

In contrast to NDE and NDE×B , the transverse
component of the diffusion tensor along the magnetic field
NDB has much less modulation with both E/N and B/N ,
as shown in figure 11. Nevertheless, owing to the interplay
of the Ramsauer–Townsend minimum and sharply peaked
vibrational cross-sections, a structure may be observed and
its position moves towards the higher E/Ns with increasing
B/N . It is consistent with reduction of energy, in addition, the
structure becomes less pronounced and somewhat sharper.
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(a)

(b)

Figure 10. The diffusion coefficients in (a) E direction and
(b) E × B direction as a function of E/N for various B/N .

Figure 11. The diffusion coefficient in B direction as a function of
E/N for various B/N .

It has been predicted [78] that E × B component of the
diffusion tensor, which is identical to the B component for
B = 0, changes rapidly and becomes more similar to E
component. This was confirmed in the case of CF4.

(a)

(b)

Figure 12. (a) Ionization and (b) attachment rate coefficients as a
function of E/N for various B/N .

In figures 12(a) and (b) we show the ionization and
attachment rate coefficients as a function of E/N for various
B/N . As expected, the ionization rate coefficient increases
with E/N and decreases with B/N . The attachment rate
coefficient has a similar but not identical dependence on E/N

and B/N , but the effect of magnetic field is much stronger,
as can be expected for a process governed by lower energy
electrons.

Figure 13 displays the rate coefficient for dissociation into
neutrals with the smallest (kd1) threshold as a function of E/N

for various B/N . It behaves with E/N and B/N almost
exactly in the same way as the ionization rate coefficient.
Again, application of the magnetic field has the smallest effect
on the process with the highest threshold.

3.4. The effect of non-conservative interactions on electron
transport in the E × B fields

In this section, we analyse the influence of non-conservative
interactions on electron transport in E × B fields in CF4.
While the difference between various definitions of transport
coefficients has been generally neglected in plasma models,
we believe that a strong effect of attachment combined with
the ionization required to maintain plasma makes this study
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Figure 13. Rate coefficient for dissociation into neutrals with the
smallest 0.077 eV threshold as a function of E/N for various B/N .

worthwhile for the E × B fields in CF4. We need to stress
that while flux data are more appropriate for development
of plasma models, often experimental swarm data are used
directly and those are, by default, bulk data. The most
appropriate procedure would be to use the experimental swarm
data for the analysis of the cross-sections and then to calculate
the databases for plasma modelling. A similar study has been
made by the momentum transfer theory for the ionization and
attachment model gases [40].

In figures 14(a) and (b) we show bulk and flux components
of the drift velocity as a function of E/N for B/N of 100 and
1000 Hx. Increasing the magnetic field results in a distinction
between bulk and flux transport properties occurring at higher
E/N . In particular, for B/N of 100 Hx we may observe a
slight but noticeable difference between bulk and flux values
of wE in the range 30–100 Td owing to the attachment.
As the ionization becomes stronger, the effect of attachment
on wE becomes weaker and, finally, in the range 140–160 Td
there is balancing between the ionization and attachment rate
coefficients. It is interesting to note that in this range of E/N ,
one may expect the minimum of the breakdown voltage for
CF4. Further increase in the electric field leads to a more
pronounced difference between the bulk and flux values of wE ,
which may be greater then 25%. We observe similar effects
for the components of the diffusion tensor.

In contrast to the longitudinal component of the drift
velocity, there is no observable effect of the attachment on
the transverse component of the drift velocity wE×B , as
shown in figure 14(b). However, for higher E/N under the
conditions where the ionization dominates, we may observe
a considerable difference between bulk and flux values of
wE×B . Also, in contrast to wE , in this case the flux values can
be larger then the bulk values. This independently confirms
a similar result obtained by multi-term procedure for the
ionization model gas [79]. It is interesting to note that owing to
the assumption of isotropic temperature tensor in momentum
transfer theory, the effect of non-conservative interactions
could not be observed for wE×B [40]. Therefore, in order
to resolve the difference between bulk and flux components of
the drift velocity along the magnetic field in E × B fields, it is
necessary to employ the exact techniques [80].

(a)

(b)

Figure 14. Bulk and flux values of drift velocities in (a) E direction
and (b) E × B direction as a function of E/N and for B/N of 100
and 1000 Hx.

3.5. Validity of Tonks’ theorem

In order to avoid the additional algebraic complexity
introduced by the magnetic field in both Boltzmann and Monte
Carlo numerical codes, one may be forced to employ the
effective field concept. In this approximation, transport in
E × B fields may be described by using a dc electric field that
has been modified to include the effect (or at least a partial
effect) of magnetic field [71]:

Eeff(ε) = E√
1 + (�/νm)2

,

where E is the real electric field. This approach is known as
Tonks’ theorem [42–44]. It is obvious that according to Tonks’
theorem, the application of a magnetic field to a discharge
corresponds qualitatively to an increase in a neutral density
(pressure) resulting, eventually, in a lower mean energy.
Since the application of Tonks’ theorem may be regarded as
advantageous for its simplicity, very few tests of its accuracy
have been performed and to the best of our knowledge, there
were no such tests done in CF4.

In figures 15(a) and (b) we show a comparison between
the results for the mean energy obtained from our exact
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(a)

(b)

Figure 15. Mean energy as a function of E/N for
(a) B/N = 200 Hx and (b) B/N = 500 Hx obtained by an exact
Monte Carlo calculation (——) and according to Tonks’ theorem
(- - - -). Dotted line shows the ratio of the cyclotron to the collision
frequency.

Monte Carlo calculations and according to Tonks’ theorem
for B/N of 200 Hx and 500 Hx, respectively. In figures 16(a)
and (b) we show the comparison for the drift velocity under
the same conditions. Similar studies have been shown to
be accurate to within 10% for CH4 over a range of 0.1 �
E/N � 10 Td and 0 � B/N � 30 Hx [29]. It is obvious
that such a good agreement is obtained under conditions
where collision-dominated regime controls the behaviour of
an electron swarm. In our case, our calculations have been
extended to the magnetic field-controlled regime and have thus
provided a wider spectrum of data for a better estimate of the
limitation of Tonks’ theorem for CF4.

As expected, the applicability of the effective field concept
strongly depends on the ratio of the cyclotron to the collision
frequency. In the case of the mean energy and drift velocity
(see figures 15(a), (b) and 16(a), (b)), we may observe that the
effective field concept may be applicable only in the collision-
dominated regime. More precisely, if the condition 2� = νc

holds, the effective field concept is valid. On the other hand, in
the magnetic field-controlled regime, the difference between
the exact Monte Carlo results and results that follow Tonks’

(a)

(b)

Figure 16. Drift velocity for the same conditions as in figure 15.

theorem may be one order of magnitude. However, at low
values of E/N , we may observe better agreement between
these results. This is not connected with the correctness of
Tonks’ theorem but rather with the fact that in the limit of
thermal energies, the influence of a magnetic field is highly
reduced as the mean energy cannot be reduced even further.

In figures 17(a) and (b) we show results for the attachment
rate coefficients and in figures 18(a) and (b) for the ionization
rate coefficients. For B/N of 200 Hx we can see an excellent
agreement between the results that follow from Tonks’ theorem
and from exact Monte Carlo calculations. On the other hand,
for B/N of 500 Hx, the use of the effective field concept causes
larger errors for the attachment rate coefficient with respect
to the ionization rate coefficient. This may be explained by
the observation that the ionization rate coefficient is due to
overlap of the cross-section with the high-energy tail that is
least affected by the magnetic field.

4. Conclusion

In this paper, we have presented a systematic investigation of
electron transport in CF4 in crossed electric and magnetic dc
fields using a Monte Carlo simulation. We have summarized
the basic phenomenology of electron transport in crossed
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(a)

(b)

Figure 17. Attachment rate coefficient for the same conditions as in
figure 15.

electric and magnetic fields on the basis of the ratio of the
cyclotron to the collision frequency. It was found that the
application of a magnetic field produces a fast transition
from the magnetic field-controlled regime to the collision-
dominated regime, which leads to a complex electron kinetics.
An example of such complex behaviour of transport data is
an increase in the drift velocity at a fixed value of E/N with
increasing B/N in the region of NDC.

Relaxation of electron distribution function in crossed
electric and magnetic fields has been analysed. It has been
shown that temporal relaxation of the electron swarm may be
additionally controlled by the application of a magnetic field.
Application of a magnetic field changes the speed of relaxation
and the shape of the EEDF by depopulation of the high-energy
electrons from the tail of the EEDF. The mean energy is reduced
while the drift velocity at high values of B/N demonstrates
oscillatory behaviour during the relaxation process itself.

The variation of the relaxed (steady-state) transport data
with both E/N and B/N has been examined. Application
of a magnetic field reduces the mean energy, longitudinal
component of the drift velocity and collisional rates. Drift
velocity in the E × B direction at a fixed value of B/N

increases with increasing E/N through a maximum and

(a)

(b)

Figure 18. Ionization rate coefficient for the same conditions as in
figure 15.

starts to decrease with a further increase of B/N . At the
same time, the effect of NDC vanishes in the limit of
high magnetic fields. On the other hand, application of
the magnetic field introduces complex behaviour of the
components of the diffusion tensor. Longitudinal diffusion
coefficient NDE and transverse diffusion coefficient along the
E × B direction may vary over several orders of magnitude
with both E/N and B/N . Transverse diffusion coefficient
along the magnetic field NDB shows the highest sensitivity to
the energy dependence of the cross-section as compared with
other transport coefficients. In general, the sensitivity of the
transport coefficients to the energy dependence of the cross-
section depends upon the ratio of the cyclotron to the collision
frequency. In both, the magnetic field-controlled regime and
the collision-dominated regime, the sensitivity of the transport
coefficients is diminished with magnetic field.

In this paper, we have also considered the effect of non-
conservative collisions, such as ionization and attachment
on steady-state transport properties in crossed electric and
magnetic fields. Estimates of differences and the origin
between bulk and flux values of the transport coefficients have
been made.

Finally, we have systematically tested the effective field
concept in CF4 for E × B fields expressed through Tonks’
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theorem. In general, in the collision-dominated regime and in
the context of plasma modelling one may use the effective field
concept to calculate electron transport data with an acceptable
degree of accuracy. However, for more accurate transport data
it is necessary to use an exact technique such as the Monte Carlo
simulation or multi-term solutions of Boltzmann’s equation.

Acknowledgments

The authors are grateful to their co-workers: S Bzenić,
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