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Abstract

We present details of the first time dependent multi-term solution
of Boltzmann’s equation for charged particles in gases under the in-
fluence of electric and magnetic fields. A Sonine polynomial represen-
tation of the velocity distribution function requires a time dependent
weight function to accommodate arbitrary initial conditions and/or
time dependent fields. The theory and code are benchmarked against
an independent time resolved Monte Carlo simulation for both dc and
rf orthogonal electric and magnetic fields. The results support the
numerical integrity of the technique.
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1 Introduction

Non-equilibrium, low temperature plasma discharges sustained by time de-
pendent electric and magnetic fields are widely used in fabrication of micro-
electronic device and in the manufacturing of new materials. These plasmas
are complex physical systems consisting of electrons, ions, molecules and rad-
icals together with applied and space-charge fields. In general the electrons
play the most important role, both in the discharge maintenance through
electron-impact ionization, and in the production of radicals for chemical
etching and ions for physical etching. Numerical models of these plasma
discharges are critically dependent on an accurate knowledge of the electron
kinetics in the collision dominated bulk of the plasma.

Accurate modelling of electron transport in gases under the influence of
electric and magnetic fields is usually conducted through a solution of the ap-
propriate Boltzmann equation solution for the velocity distribution function
or through the use of Monte Carlo simulations. An approximate numeri-
cal technique for the solution of Boltzmann’s equation, dominant in much of
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plasma physics, is referred to as the ‘two-term’ approximation (see the review
by White et al. [12]). In this technique the velocity distribution function is
assumed a priori to be quasi-isotropic and representable by only the first two
terms of a Legendre polynomial basis set. The assumption greatly reduces
the complexity involved in the numerical solution of Boltzmann’s equation
to the solution of a single second order differential equation. However, there
are severe limitations on accuracy. Within the two-term framework there
is no provision to increase the number of terms in the Legendre polynomial
expansion and hence the accuracy of the technique has no provision for im-
provement. For accurate solutions of Boltzmann’s equations, ‘multi-term’
techniques (see the review by Robson & Ness [7]) are required where the
number of terms in the expansion are incremented until convergence criteria
are met. In general, the numerical schemes used in the two-term approxima-
tion do not carry over to multi-term techniques.

Recently, time dependent multi-term solutions of Boltzmann’s equation
for electric field only were independently developed by the groups at Grief-
swald [13, e.g.] and at jcu [11, e.g.], and more recently the group at Brno [8,
e.g.]. The direct numerical procedure adopted by the Makabe group avoids a
spherical harmonic expansion and is of comparable accuracy [2]. The devel-
opment of these theories overcome various approximations used extensively
within the field including the two-term approximation (which restricted gas
types and electric field amplitudes) and the effective field approximation for
oscillatory fields (which restricted field frequencies and/or gas densities). The
extension to include electric and magnetic fields was subsequently made by
the Griefswald group using a two-term Legendre polynomial expansion. The
extension to a multi-term theory was made by the jcu group. The cur-
rent theory and associated code adapts the mathematical and computational
machinery developed for dc steady state swarms in E and B fields [3] to
present the first time dependent multi-term solution of Boltzmann’s equa-
tion for electric and magnetic fields (at arbitrary angles).

Boltzmann equation solutions and/or Monte Carlo simulations used in
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plasma discharge models should be benchmarked against known results un-
der field conditions operative within the plasma discharge. The same applies
for fluid models of electron transport, which effectively use low order mo-
ments of the Boltzmann equation, widely used in plasma discharge models.
The fluid plasma components inherently have accuracy restrictions associ-
ated with these low order truncations. However, they have the potential to
provide an accurate plasma model through the appropriate adoption of trans-
port data. The accuracy of fluid models (and other plasma models) should be
benchmarked against accurate techniques such as Boltzmann equation solu-
tions and/or Monte Carlo simulations in the swarm limit; that is, in the limit
of small electron densities the theories should reconcile each other. Recently,
a benchmark model simulating field conditions in the bulk of an inductively
coupled plasma was presented by the Petrović group using a Monte Carlo
simulation [6]. The model unearthed a multitude of interesting phenomena
for diffusion including the existence of transient negative diagonal diffusion
elements. The focus of the present paper is to benchmark the current time
dependent multi-term solution of Boltzmann’s equation against this Monte
Carlo technique for the model presented by Raspopović et al. [6]. Both tech-
niques have their advantages/disadvantages. The increased mathematical
complexity of Boltzmann equation solutions (as compared with mc simula-
tions), facilitates solutions which that are typically at least one (but generally
more) order of magnitude faster than mc simulations for the same accuracy.

2 Theory

The behaviour of a uniform swarm of electrons in gases under the influence
of electric and magnetic fields is described by the Boltzmann equation. This
equation represents the time t evolution of the distribution function f(c, t) in
velocity space c. The distribution function is defined such that f(c, t) dc is
the probability of finding a particle within dc of c at time t. The explicit form
of Boltzmann’s equation for charged particle of charge q and mass m under
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the influence of spatially homogeneous orthogonal electric E and magnetic B
fields is

∂f

∂t
+

q

m
[E + c×B] · ∂f

∂c
= −J(f, f0) . (1)

Swarm conditions are assumed to apply and J(f, f0) denotes the rate of
change of f due to binary, particle conserving collisions with the neutral
molecules only. The original Boltzmann collision operator and its semiclassi-
cal generalisation [9] are used for elastic and inelastic processes respectively:

J(f, f0) =
∑
jk

∫ [
f(c, t)f0j(c0)− f(c′, t)f0k(c0

′)
]
gσ(jk; gχ) dĝ′ dc0 . (2)

Dashed and undashed quantities refer to post- and pre-collision properties
respectively. This form of the conservative collision operator treats internal
states quantum mechanically and translational states classically. The quan-
tity σ(jk; gχ) is the differential cross-section describing the the scattering of
a swarm particle of velocity c, from a neutral molecule in the jth internal
state of velocity c0. The post-collision swarm particle and neutral velocities,
and the final internal state of the neutral molecule are denoted by c′, c′0
and k respectively. The neutral molecules are assumed to remain in thermal
equilibrium, characterized by a spatially homogeneous Maxwellian velocity
distribution function f0(c0). The quantity dĝ′ = sinχdχ dζ represents the
elements of angles of the post-collision relative velocity where χ and ζ are
the scattering angles. In what follows, we employ a co-ordinate system in
which E is in the z-direction, while B is in the y-direction.

Solution of (1) has been detailed by White et al. [11] and we present
here only a brief outline. The following representations of the phase space
distribution function f are made under spatially homogeneous conditions.
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Resolution of the angular dependence in velocity space The angular
dependence is represented in terms of a spherical harmonic expansion,

f(c, t) =
∞∑
l=0

l∑
m=−l

f (l)
m (c, t)Y [l]

m (ĉ) , (3)

where Y
[l]
m (ĉ) are spherical harmonics which are orthonormal on the angles

of c, ĉ. The superscripts [] and () represent standard and contrastandard
spherical tensor forms respectively [1].

Resolution of the speed dependence The speed distribution function
is represented by an expansion about a Maxwellian at a temperature Tb in
terms of modified Sonine polynomials:

f (l)
m (c, t) = w(α, c)

∞∑
ν=0

F (νl)
m (α, t)Rνl(αc) , (4)

where

w(α, c) =

(
α2

2π

)3/2

exp

{
−α2c2

2

}
, (5)

Rνl(αc) = Nνl

(
αc√

2

)l
S

(ν)
l+1/2

(
α2c2

2

)
, (6)

N2
νl =

2π3/2ν!

Γ(ν + l + 3/2)
, (7)

S
(ν)
l+1/2

(
1
2
α2c2

)
are Sonine polynomials, and α2 = m/(kTb) . The modified

Sonine polynomials satisfy the orthonormality relation∫ ∞
0

w(α, c)Rν′l(αc)Rνl(αc)c
2 dc = δν′ν . (8)
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Ness and White [?] further comment on the use of Sonine polynomials in
kinetic theory.

Making use of the orthogonality properties of the basis functions, the
following complex doubly infinite coupled differential equations are generated
under conservative conditions [11]:

∞∑
ν′=0

∞∑
l′=0

l′∑
m′=−l′

[(
N
d

dt
δνν′ +NJ lνν′(α)

)
δl′lδm′m

+ i
qE

m
α(l′m10 | lm)〈νl‖K [1](α)‖ν ′l′〉δm′m

+
1

2

qB

m

{√
(l −m)(l +m+ 1)δm′m+1

−
√

(l +m)(l −m+ 1)δm′m−1

}
δl′lδν′ν

]
F

(ν′l′)
m′ = 0 , (9)

where N is the neutral number density and (l′m10 | lm) is a Clebsch–Gordan
coefficient [1]. The explicit expressions for the reduced matrix elements are
given by White et al. [11]. Discretising in time using an implicit finite dif-
ference scheme converts the system of coupled differential equations into a
system of coupled matrix equations. We note ν = 0, . . . ,∞ , l = 0, . . . ,∞
and m = 0, . . . , l . Solution of (9) is made by truncation of the ν and l indices
to νmax and lmax respectively. These values are independently increased until
the desired convergence on the calculated transport properties of interest is
obtained. Tb is a parameter used to optimise convergence of the speed space
expansion and hence the value of νmax is coupled to the value of Tb. From
previous experience with steady state calculations, a given Tb can only give
converged results over a restricted range of applied fields (or equivalently
mean energies). Hence, it is essential that the parameter is time dependent
to ensure convergence under time dependent conditions. Solution of the sys-
tem of couple matrix equations is made through direct numerical inversion
using a sparse matrix inversion routine [14]. There is some non-standard
block structure in the equations but this has not been exploited.
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For the crossed field configuration, symmetry requirements dictate that
the drift velocity vector can only have components in the E and E × B
directions. The drift velocity components and the mean energy are expressed
directly in terms of the calculated moment:

WE×B =
1

α

√
2={F (01)

1 } ,

WE = − 1

α
={F (01)

0 } ,

ε =
3

2
kTb

[
1−

√
2

3
<{F (10)

0 }

]
,

where <{} and ={} respectively represent the real and imaginary parts of
the moments.

For the crossed field configuration, the following symmetry property exists
in the moments,

F
(νl)
−m = (−1)mF (νl)

m ; (10)

whereas the reality of the distribution function implies(
F

(νl)
−m

)∗
= (−1)l+mF (νl)

m . (11)

On combining these relations we have(
F (νl)
m

)∗
= (−1)lF (νl)

m , (12)

and it follows that the system of complex equations can be recast into a form
where the renormalised moments are real and only non-negative values of m
are required. This greatly reduces the computational time.

This concludes our brief description of the theoretical and computational
formalism. In the next section, we apply this theory to the multi-term cal-
culation of temporal relaxation of transport coefficients for electron swarms
under the action of electric and magnetic fields.
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Table 1: Benchmark calculations for steady state crossed dc electric and
magnetic fields in the Reid ramp model. The current Boltzmann equation
solution (Boltz) is compared to two independent Monte Carlo simulation
techniques mc1 [10] and mc2 [5].

Transport B/N Boltz mc1 mc2
property (Hx) [10] [5]
ε (eV) 0 0.2689 0.2693 0.2703

WE (104 ms−1) 6.838 6.833 6.834
ε (eV) 500 0.1123 0.1124 0.1133

WE (104 ms−1) 2.318 2.318 2.3180
WE×B (104 ms−1) 0.4154 0.4161 0.4170

3 Results and discussion

3.1 Transient relaxation

The initial benchmark of the time dependent theory and associated code
is the transient response to a superimposed magnetic field and its asymp-
totic solution using the Reid ramp model [4, 10, 6, 5]. For t < 0 the
swarm is acted on solely by a dc electric field (E/N = 12 Td, B/N = 0 Hx;
1 Td = 10−21 V m2, 1 Hx = 10−27 T m3) is allowed to relax to a steady state.
At time t = 0 , a crossed magnetic field is switched on (electric field is
unaltered) and the relaxation properties of the swarm are monitored as a
function of time. The temporal variation of the results are a function of Nt.
An example of the influence of the magnetic field on the transient response
calculated using the multi-term solution of Boltzmann’s equation is displayed
in Figure 1. The asymptotic results are displayed in Table 1 where they are
compared with two independent Monte Carlo simulation procedures. Over
the range of conditions and transport properties considered the current the-
ory has agreement with the mc techniques to better than 1% and support
the numerical integrity of the theory and code.
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Figure 1: Multi-term solution demonstrating the influence of magnetic field
strength on the transient response of WE×B to the application of an orthog-
onal magnetic field.
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Table 2: Convergence in the l-index for various transport coefficients and
properties as a function of B/N . (E/N = 12 Td)

Transport B/N lmax

property (Hx) 1 2 3 4 5 6
ε 0 0.2736 0.2689 0.2689 0.2690 0.2689 0.2689

(eV) 500 0.1121 0.1123 0.1123 0.1123 0.1123 0.1123
WE×B 0 0 0 0 0 0 0

(104 ms−1) 500 2.317 2.318 2.318 2.318 2.318 2.318
WE 0 7.030 6.821 6.841 6.837 6.839 6.838

(104 ms−1) 500 0.4156 0.4154 0.4154 0.4154 0.4154 0.4154

It is interesting to study the convergence of the asymptotic results in the
l-index. The results are displayed in Table 2. For B/N = 0 there exists a well
known anisotropy in the velocity distribution function [4]. Hence, we observe
that an lmax of 4–5 is required to achieve convergence to within 0.1%. When
a strong magnetic field of 500 Hx is applied however we observe a significant
reduction in the anisotropy of the velocity distribution. This is due to the
action of the Lorentz force causing the electrons to orbit with a (cyclotron)
period that is less than the mean time between collisions.

3.2 Radiofrequency E and B fields

The second benchmark involved oscillatory E and B fields. The current
technique and code was benchmarked against an independent time resolved
Monte Carlo simulation technique developed at Belgrade University [5] for
the Reid ramp model for the conditions detailed by Raspopović et al. [6].
The rf fields are orthogonal, π/2 out of phase and spatially homogeneous
(E/N = 10

√
2 sin(2πft) Td, B/N = 500 cos(2πft) Hx, where f is the field

frequency). The neutral gas density is fixed at N = 3.54 × 1022 m−3 . The
results are displayed in Figures 2–4 for the transport coefficients of interest
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where they are compared to the Monte Carlo simulation technique. We tested
the theory and code over a range of conditions for which the traditional
approximations and assumptions fail. These comparative results support the
accuracy and integrity of the current theory and associated code. We finish
with a few comments on the generality of the current theory and implications
on certain results.

The temporal profiles of the mean energy and drift velocity components
are in general not predictable from steady state dc results. Perhaps the best
example of this the presence of high frequency oscillations (higher than the
field frequency) in both the WE and WE×B profiles as the field frequency is
increased. These high frequency oscillations represent essentially collisionless
gyro-orbits of the swarm particles. Hence, plasma models that utilise and
extrapolate dc data only should quantify the errors associated with such
an approximation. The need for a genuine multi-term theory is well known
since the anisotropy of the velocity distribution function is in general not
know a priori. Figure 5 compares the two-term and converged multi-term
solutions. We see that at those phases where B/N is small, we have an
increased distinction between the two-term and multi-term profiles. The
phase where this distinction is a maximum is delayed as the frequency is
increased. When the magnitude of the instantaneous values of B/N are
at or near the maximum, the two-term approximation becomes sufficient.
Phenomenologically, the two-term approximation produces the correct results
for this particular model, though this is not always the case.

4 Conclusion

In this work we presented the details of the first systematic time dependent
multi-term solution of Boltzmann’s equation in the hydrodynamic regime for
spatially inhomogeneous electrons in gases under the influence of electric and
magnetic fields. The technique was applied to a series of benchmark models
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Figure 2: Comparison of the Boltzmann (solid) and Monte Carlo (dashed)
results for WE over a range of applied frequencies for the Reid ramp model.
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Figure 3: Comparison of the Boltzmann (solid) and Monte Carlo (dashed)
results for WE×B over a range of applied frequencies for the Reid ramp model.
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Figure 4: Comparison of the Boltzmann (solid) and Monte Carlo (dashed)
results for ε over a range of applied frequencies for the Reid ramp model.
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Figure 5: Comparison of the two-term (dashed) and converged multi-term
(solid) Boltzmann results for WE and WE×B over a range of applied frequen-
cies for the Reid ramp model.
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involving dc and rf electric and magnetic fields and compared with those
from a time resolved Monte Carlo simulation developed at the University
of Belgrade. The results support the integrity of the present technique and
code and the need for a genuine multi-term technique was illustrated.
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