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Abstract. A multi term theory for solving Boltzmann’s equation is briefly reviewed and used to test
various concepts and approximate expressions for the determination of the positron transport properties
in neutral molecular gases in crossed electric and magnetic fields. Among many important approximations
which have found their way into contemporary positron studies, the following are particularly discussed:
(1) is the approximation of using the cross sections for the electron scattering to describe the positron
behavior satisfactory, (2) how accurate is two term approximation for solving Boltzmann’s equation in the
context of positron studies, and (3) what is the domain of applicability of Langevin elementary transport
theory and Tonks’ theorem for positrons in electric and magnetic fields. We highlight the limitations, range
of applicability and inadequacies of such assumptions for positrons in H2 and N2. It is pointed out that
there is no real alternative to the accurate multi term theory and/or Monte Carlo simulations if high
precision is required. It is demonstrated that if the demands for accuracy associated with some of these
approximations are relaxed, results may not be even qualitatively correct.

1 Introduction

The theoretical investigation of positron swarms moving
in an unbounded gas in electric and magnetic fields is a
topic of great interest both as a problem in basic physics
and for its potential for application to modern technol-
ogy [1–3]. Transport processes of a swarm of positrons are
related to various problems in different areas, ranging from
astrophysics [4] and material science (see for example [5]
and references therein) to medicine [6]. While the under-
standing of the interaction of high energy positrons with
soft, biological matter is of key importance for medical
diagnostic procedures, such as positron emission tomog-
raphy [7,8], the knowledge of low-energy positron trans-
port in gases under the influence of electric and magnetic
fields plays a crucial role in optimizing the positron traps.
These traps are usually operated under various configura-
tions of electric and magnetic fields with specific require-
ments on the transport properties of the positrons needed
to achieve the desired resolution of high-flux low-energy
positron beams [9,10]. Additional issues, like those rele-
vant for the collision-dominated cooling stage of Penning-
Malmberg-Surko trap [11,12]: (1) how to minimize losses
due to Ps formation; and (2) what is the most suitable
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buffer gas composition; or those relevant for the dump-
ing stage of the trap: (1) what are the most important
temporal and energy effects; and (2) how does changing
potentials affect the dropping positrons out of the trap;
should dominantly be a subject of swarm studies.

Essentially, there are two major techniques which
can be used to analyze the positron transport in
gases in varying configurations of electric and mag-
netic fields, the Boltzmann equation analysis [13,14] and
Monte Carlo simulation [15–19]. One ought to mention
the Monte Carlo codes that have been specifically devel-
oped to model positron emission tomography diagnostic
technique [20–24] and those developed to model tracks of
particles in water [25]. However the mathematical com-
plexity associated with accurate multi term solutions of
the Boltzmann equation and/or computation and memory
costs due to the statistical nature of Monte Carlo methods,
limit their efficient use in modeling the positron transport,
especially if systems in real geometries are considered.
As is now common place in the field of low-temperature
plasma discharges, fluid equation approaches represent a
computational efficient and flexible means to model such
complex systems [26,27]. Rather than solving for the phase
space distribution directly through Boltzmann’s equa-
tion, fluid equation approaches solve for low-order veloc-
ity moments of the distribution function through balance
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equations for particle number, momentum and energy, de-
pending of the level of approximation. To enhance the
accuracy of such models, accurate transport data (e.g.
drift and diffusion coefficients) with consistent implemen-
tation are generally required input data [27]. For complex
geometries involving electric and magnetic fields, empir-
ical transport data is generally not available and one of-
ten resorts to approximate relations (e.g. Langevin theo-
ries [28,29], Tonks’ theorem [30–33] and equivalent field
approximations [34]) in order to furnish such data. The
accuracy of such approximate treatments for positrons is
the focus of the current paper.

We begin this paper with a brief overview of swarm
transport theory including a multi term solution of the
Boltzmann equation when both the electric and mag-
netic fields are present and when non-conservative colli-
sions are operative. In Section 3.2, we apply this technique
to positrons and electrons in H2 and N2 where we high-
light the differences between the transport properties for
these two charged particle species. Comparisons are made
with the goal of testing the approximation of using the
cross sections for the electron scattering to describe the
positron transport in neutral gases. The next important
aspect of the present paper concerns the adequacy of the
two term theory for positrons. In Section 3.3, the two term
approximation is tested for positrons in N2, as a typical
representative of molecular gases. More importantly, N2

is often employed as a buffer gas in positron traps and
hence it is of great importance to check the domain of
validity of the two term theory for this gaseous medium.
In Sections 3.4 and 3.5, we then give a brief discussion
concerning the accuracy and range of applicability of the
Langevin’s elementary transport theory and Tonks’ the-
orem, respectively, for positrons in an electric field only
situation and in crossed electric and magnetic fields. In
particular, the main advantage of Tonks’ theorem is that
one can determine general transport properties, for exam-
ple the mean energy, drift speed and rate coefficients for
different collisional processes in terms of an electric field
only data. We will illustrate this approach and its limita-
tions in Section 3.5 for positrons in N2 and H2.

2 Transport theory

The governing equation describing a swarm of charged
particles moving through a background neutral gas un-
der the influence of electric and magnetic fields is given
by Boltzmann’s equation for the phase-space distribution
function f(r, c, t):

∂f

∂t
+ c · ∂f

∂r
+

q

m
[E + c × B] · ∂f

∂c
= −J (f, f0) . (1)

Here r and c denote the charged particle and velocity co-
ordinates, q and m are the charge and mass of the swarm
particle, t is time while E and B are magnitudes of the
electric and magnetic fields, respectively. In what follows,
we employ a co-ordinate system in which E defines the
z-axis while B lies in the y-z plane, making an angle ψ

with respect to the E. The right-hand side of equation (1)
denotes the linear charged particle-neutral molecule col-
lision operator, accounting for elastic, inelastic and non-
conservative (the collisions which changes the number of
the particles within the swarm, e.g. Ps formation and an-
nihilation for positrons and dissociative attachment and
ionization for electrons) collisions. For elastic collisions we
use the original Boltzmann collision operator [35], while
for inelastic collisions we prefer the semiclassical general-
ization of Wang-Chang et al. [36]. The collision operators
for non-conservative collisions are discussed in [37,38]. It
should be noted that the collision operator for Ps forma-
tion and/or positron annihilation for positrons has the
same form as the attachment operator for electrons.

Swarm conditions are assumed to apply where the
charged particle number density is much less than number
density of neutral species and mutual interactions between
charged particles are negligible compared to the charged
particle-neutral particle interactions. We assume the neu-
tral molecules (of number density n0) remain in thermal
equilibrium at a temperature T0 and their internal states
are characterized by a Boltzmann distribution.

The methods and techniques for solving Boltzmann’s
equation are by now standard and the reader is referred
to recent reviews for details [13,14,37,39]. Among many
important aspects, we emphasize the following important
steps in solving Boltzmann’s equation:

(1) The angular dependence of the phase-space distribu-
tion function in velocity space can be represented in
terms of an expansion in spherical harmonics:

f(r, c, t) =
∞∑

l=0

l∑

m=−l

f (l)
m (r, c, t)Y [l]

m (ĉ), (2)

where Y [l]
m (ĉ) are spherical harmonics and ĉ denotes

the angles of c. The value of l is incremented un-
til some predefined accuracy criterion is satisfied.
This value indicates the deviation of the velocity
distribution function from isotropy. The classical two
term approximation often used for the determination
of electron transport properties in plasma modeling
community, is based upon the choice of setting the
upper bound on the summation in (2) to lmax = 1. In
what follows, the validity of two term approximation
for positrons in molecular gases will be investigated.

(2) The speed (energy) dependence of the coefficients in
equation (2) is represented by an expansion about
a Maxwellian at an arbitrary temperature Tb(t), in
terms of Sonine polynomials. Other options are avail-
able to resolve the speed dependence of f(r, c, t), for
example the finite-difference schemes, polynomial ex-
pansions or pseudo-spectral methods.

(3) Under the hydrodynamic conditions, the spatial de-
pendence of f(r, c, t) is treated by the density gradi-
ent expansion [40]:

f(r, c, t) =
∞∑

k=0

f (k)(c, t) � (−∇)k
n(r, t), (3)

http://www.epj.org


Eur. Phys. J. D (2012) 66: 174 Page 3 of 10

where f (k)(c, t) are tensors of rank k and � denotes a
k-fold scalar product.

(4) Using the appropriate orthogonality relations for the
spherical harmonics and modified Sonine polynomi-
als, Boltzmann’s equation is converted into a hierar-
chy of coupled differential equations for the moments
of the distribution function. Discretising in time using
an implicit finite difference scheme converts the sys-
tem of coupled differential equations into a hierarchy
of coupled matrix equations. These equations are nu-
merically solved and all the transport properties are
expressed in terms of the moments of the distribution
function [14].

2.1 The duality of transport coefficients

The connection between experimental and theoretical in-
vestigations of charged particle transport behavior is made
through the equation of continuity

∂n(r, t)
∂t

+ ∇ · Γ (r, t) = S(r, t), (4)

where
n(r, t) =

∫
f(r, c, t)dt, (5)

while Γ (r, t) = n〈c〉 is the charged particle flux and S(r, t)
represents the production rate per unit volume per unit
time arising from non-conservative collisional processes.
Assuming the functional relationship (3) the flux and
source term could be also expanded in terms of powers
of the density gradients:

Γ (r, t) = W �(t)n(r, t) − D�(t) · ∇n(r, t) + . . . , (6)

S(r, t) = S(0)(t)n(r, t) − S (1)(t) · ∇n(r, t) + S (2)(t)
: ∇∇n(r, t) + . . . , (7)

where W �(t) and D�(t) define, respectively, the flux drift
velocity and flux diffusion tensor. Substitutions of expan-
sions (6) and (7) into the continuity equation (4) results
in truncation the second order in the density gradients,
the diffusion equation:

∂n

∂t
+ W (t) · ∇n− D(t) : ∇∇n = −Ra(t)n, (8)

whereRa(t), W (t) and D(t) are, respectively, the loss rate
coefficient, bulk drift velocity, and the bulk diffusion tensor.
These transport properties contain explicit contributions
from non-conservative collisions and are given by

Ra(t) = S(0)(t) −
∫
JR

[
f (0)(c, t)

]
dc, (9)

W (t) = W �(t) − S (1)(t)

=
∫

c
[
f (0)(c, t)

]
dc −

∫
JR

[
f (1)(c, t)

]
dc (10)

D(t) = D�(t) − S (2)(t)

=
∫

c
[
f (1)(c, t)

]
dc −

∫
JR

[
f (2)(c, t)

]
dc, (11)

where JR denotes the reactive part of the collision opera-
tor.

It is clear that one must be cautious when considering
the nature of the transport data. Firstly, the second order
density gradient expansion of the phase-space distribution
function is necessary to determine the explicit contribu-
tion of non-conservative collisions to diffusion coefficients.
Secondly, the bulk transport coefficients contain both the
implicit (i.e., the effects of non-conservative collisions on
the velocity distribution function only) and explicit effects
of non-conservative collisions while the flux properties con-
tain only the implicit effects. For electrons, the distinc-
tion between these two sets of transport coefficients was
discussed at length in the 1980s, but has generally been
ignored in the majority of previous work in the plasma
modeling community. This has lead to a potentially seri-
ous mismatch between input swarm data (generally the
bulk transport properties) and the parameters (often the
flux transport properties) required in many plasma fluid
models [27]. Experimentally, there is no strategy how to
resolve the distinction between these two sets of data and
only theory, i.e. Boltzmann’s equation calculations and/or
Monte Carlo simulations, can resolve any such mismatch,
by providing both flux and bulk transport coefficients. The
results in Section 3 highlight the often large differences in
the magnitudes and profiles between the two sets of trans-
port coefficients.

3 Results and discussion

3.1 Preliminaries

As discussed in Section 1, the aim of this work is to
test various approximate formulas for the determination
of positron transport properties in gases when both the
electric and magnetic fields are present against a highly
accurate multi term theory for solving Boltzmann’s equa-
tion. We consider the reduced electric field E/n0 range:
0.1−100 Td (1 Td = 10−21 Vm2) and the reduced mag-
netic field B/n0 range: 0−2000 Hx (1 Hx = 10−27 T m−3).
The cross sections for the electron scattering in N2 de-
tailed by Stojanović and Petrović [41], and cross sections
for electron scattering in H2 developed by Yoon et al. [42]
are implemented in this work. These two sets include cross
sections for momentum transfer in elastic collisions, ion-
ization, electron attachment, electronic, vibrational and
rotational excitations. Both of these sets are tested us-
ing a standard swarm analysis [43] and a good agreement
between calculated transport parameters and those mea-
sured in experiments have been found. For positron scat-
tering in N2 and H2, we have used cross sections compiled
by Banković et al. [44,45]. These data include the cross
sections for elastic collisions, Ps formation, direct ioniza-
tion, electronic and vibrational excitations. The individ-
ual cross sections for positrons have their experimental
uncertainty as given in the original papers but it was not
possible to test the collective accuracy for the set due to
lack of experimental positron swarm transport data. Yet
this set is the best that is available at the moment and

http://www.epj.org


Page 4 of 10 Eur. Phys. J. D (2012) 66: 174

Fig. 1. (Color online) Variation of the mean energy with E/n0

for electrons and positrons in H2 and N2.

Fig. 2. (Color online) Variation of the bulk and flux drift
velocity components with E/n0 for electrons and positrons in
H2 and N2.

can provide a good qualitative representation of positron
transport, for example the effect of large non-conservative
positronium formation cross section. The gas number den-
sity is 3.54× 1022 m−3 which corresponds to the pressure
of 1 Torr at 273 K.

3.2 Is the approximation of using the cross sections
for the electron scattering to describe the positron
behavior satisfactory?

In Figures 1−4 we show the variation of the mean en-
ergy, drift velocity and diffusion coefficients, respectively,
with the reduced electric field E/n0 for electrons and
positrons in H2 and N2. The properties of the cross sec-
tions are reflected in the profiles of the mean energies for
both the electrons and positrons. Comparing mean ener-
gies for electrons and positrons, it is evident that the mean
positron energies dominate the mean electron energies. In
particular, for an intermediate range of E/n0 covered in
this work, we see that the differences between the mean
energies for electrons and positrons in H2 can be up to an
order of magnitude.

Fig. 3. (Color online) Variation of the bulk and flux longitudi-
nal diffusion coefficients with E/n0 for electrons and positrons
in H2 and N2.

Fig. 4. (Color online) Variation of the bulk and flux transverse
diffusion coefficients with E/n0 for electrons and positrons in
H2 and N2.

From the profiles of the drift velocity components for
electrons in H2 and N2 and for positrons in N2 shown
in Figure 2, we see that there are no signs of a nega-
tive differential conductivity (NDC) effect, i.e., both the
bulk and flux drift velocity components are monotoni-
cally increasing functions of E/n0. For clarity, only the
flux drift velocity component is shown for electrons as
there are no significant differences between the bulk and
flux components over a range of E/n0 considered in this
work. However, from the plot of W for positrons in H2

we see that positrons exhibit a very pronounced NDC,
i.e., over a range of E/n0 values the drift velocity de-
creases as the field is increased. In contrast to bulk com-
ponent, and in contrast to anything previously observed
for electrons, there are no signs of NDC in the flux compo-
nent. As a consequence, the differences between the bulk
and flux components are greater than an order of mag-
nitude for certain values of E/n0. Conditions leading to
this phenomenon for positrons has been recently discussed
by Banković et al. [45–47] and even experimental obser-
vations have been reported [48,49].
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Figures 3 and 4 show the longitudinal and transverse
diffusion coefficients as a function of E/n0, respectively,
for electrons and positrons in H2 and N2. The explicit ef-
fects of ionization on an electron diffusion are weak in the
energy range considered in this work and hence only the
flux components of the diffusion coefficients for electrons
are shown. However, the explicit contribution of Ps forma-
tion to the measurable diffusion coefficients for positrons
in N2, and particularly in H2 is clearly demonstrated. We
see that the bulk components are greater than their cor-
responding flux components indicating that the decrease
in positron numbers due to Ps formation reduces diffusion
in both parallel and perpendicular directions. The differ-
ence of almost two orders of magnitude between the flux
and bulk longitudinal diffusion coefficients for positrons
in H2 is another dramatic manifestation of positron trans-
port modification induced by the explicit influence of Ps
formation. Such a huge difference between the flux and
bulk diffusion components has never been observed for
electrons even under extreme conditions which may lead
to the development of absolute negative electron mobil-
ity [50,51].

These examples demonstrate how important it is to
employ the accurate cross sections for positron scattering
in applications involving positrons. Approximations based
on using the cross-sections for the electron scattering to
describe positron behavior can seriously plague the mod-
eling as results may not be even qualitatively correct.

3.3 How accurate is the two term approximation
for solving Boltzmann’s equation for positrons
in molecular gases?

In this section we investigate the accuracy of the two
term approximation for solving Boltzmann’s equation for
positrons in gases. In other words, the aim of this section is
to study the convergence trend in the l-index as a function
of E/n0. For illustrative purpose, we restrict our discus-
sion to positrons in N2. In Figure 5 we display the percent-
age difference between the two term and fully converged
results. Truncation lmax = 5 was required to achieve 1%
accuracy for all transport coefficients and properties.

Errors associated with the two term approximation are
clearly evident for all transport properties. We observe
that different transport coefficients show different conver-
gence trends and have different rates of convergence. For a
chosen set of conditions, the mean energy and rate coeffi-
cient for Ps formation have the errors of the order of 20%
while the longitudinal diffusion coefficient has the errors
of the order of 30%. The most dramatic situation exists
for the transverse diffusion coefficient where the errors are
of the order of 250% in the field range considered. We ob-
serve that increasing E/n0 deteriorates the accuracy of
the two term approximation, although this is not always
clear as evidenced by the trend of the bulk longitudinal
diffusion coefficient. Intuitively we expect this, since for
an increasing E/n0 the inelastic collisions start to play a
more significant role and an enhancement in the asymme-

Fig. 5. (Color online) Percentage difference between the two
term and multi term results for various transport properties
for positrons in N2.

Fig. 6. (Color online) Percentage difference between the two
term and multi term results for various transport properties
for positrons in N2 when magnetic field of 500 Hx is applied.

try of the electron velocity distribution function in velocity
space follows. For electrons in N2, the two term approxi-
mation also fails [52], but the differences between the two
term and fully converged transport data are much less pro-
nounced. Interestingly, Ps formation appears to have little
effect on the isotropy of the velocity distribution function.
Similar observations have been made for attachment when
electron transport comes into question [38]. For positrons,
the anisotropy of the velocity distribution function is in-
duced by an active role of inelastic collisions and hence
the two term approximation generally fails in the energy
range where the collision frequency for inelastic collisions
becomes comparable to the collision frequency for elastic
collisions.

The inadequacy of the two term approximation when
a magnetic field is applied is illustrated in Figure 6. We
see that the errors associated with the two term approx-
imation are reduced comparing to an electric field only
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situation. Our careful analysis reveals that the general
trend for the convergence in the l index improves as B/n0

increases. In other words, the accuracy of two term ap-
proximation is enhanced for an increasing B/n0. Similar
findings have been reported for the electrons [53–55].

3.4 On validity of Langevin’s elementary theory
employed in positron transport studies

It is shown in many classical textbooks [29,56] that the
electron mobility components parallel and perpendicular
to the electric field are

μ‖ = μ0 =
e

mν
, (12)

μ⊥ =
1

1 +Ω2
μ0 =

eν/m

ν2 + ω2
, (13)

where ν is the collision frequency for momentum trans-
fer, ω is the cyclotron frequency, μ0 is the mobility for
the magnetic field free case and Ω is the ratio between
the collision and cyclotron frequencies. These equations
follow from the simplified form of the momentum bal-
ance equation for light charged particles and are consistent
with the so-called Langevin’s elementary theory. For elec-
trons, these equations have been often used in conjunction
with the classical drift-diffusion equation and Maxwell’s
equation in fluid modeling of magnetized plasma dis-
charges [57]. In the past, before sophisticated numeri-
cal solutions to Boltzmann’s equation became available,
equation (12) was extensively used in an inversion proce-
dure for the determination of low-energy electron-molecule
cross sections [29,58]. This formula can be later used to
establish the diffusion coefficient for a magnetic field free
case based on the Nernst-Townsend-Einstein relation

D =
WkBT

eE
=

2
3
Wε

eE
, (14)

where kB is the Boltzmann constant, e is the elementary
charge, W is the positron drift velocity and ε is the mean
energy of charged particles. Notice that this formula holds
for a Maxwellian distribution of charged particle veloc-
ities and does not distinguish between the longitudinal
and transverse diffusion coefficients. When magnetic field
is present, the diffusion coefficient for a charged particles
in a direction normal to the magnetic field lines is usually
scaled as

D⊥ =
D(B=0)

1 + (ν/ω)2
, (15)

whereD(B=0) is the magnetic field free diffusion coefficient
and D⊥ is the diffusion coefficient normal to a magnetic
field. We should emphasize that this relation is incorrect
on symmetry grounds – there is not an axis of rotational
symmetry about the electric field direction [13,53,54]. We
now wish to investigate the validity of these equations for
positrons. Calculations are performed for positrons in H2

under the influence of electric and magnetic fields in a
crossed field configuration. Similar program of investiga-
tion has been carried out in a comprehensive manner for
electrons in certain model gases [14] and real gases [17,55].

Fig. 7. (Color online) Variation of the drift velocity with E/n0

for positrons in H2 and N2. Results obtained using a Langevin
theory (dashed lines) are compared with those obtained by
a multi term approach for solving Boltzmann’s equation (full
lines).

In Figure 7 we display the variation of the drift velocity
with E/n0 for positrons in H2 and N2. Results obtained by
an elementary Langevin theory (Eq. (12)) are compared
with highly accurate data calculated using a multi term
approach for solving Boltzmann’s equation. We observe
that the Langevin theory generally tends to overestimate
the accurate data. For electrons it was found empirically
that it is more appropriate to use a modifying factor F
multiplying the right hand side of equation (12) [29,58].
From Figure 7 we see that the same strategy can be ap-
plied for positrons if one is forced to avoid the mathe-
matical complexity associated with an accurate solution
of Boltzmann’s equation.

The Nersnt-Townsned-Einstein relation (Eq. (14)) for
isotropic diffusion coefficient assuming Maxwell distribu-
tion of positron velocities is tested in Figure 8. We observe
that the anisotropy of diffusion is considerable for both H2

and N2. Only in the limit of the lowest E/n0 considered in
this work, the diffusion of positrons in H2 becomes more
isotropic in nature. This is a clear sign that any assump-
tion of isotropic diffusion of positrons in molecular gases,
e.g. DL = DT = D can be in serious error.

The approximate expression for the diffusion coeffi-
cient of positrons normal to an electric field line given by
equation (15) is tested in Figure 9. Comparison is made
with the accurate data for the longitudinal diffusion coef-
ficient and transverse diffusion coefficient along the E×B
direction for positrons in H2. We see that the diffusion co-
efficients obtained by equation (15) and those obtained by
a multi term theory for solving Boltzmann’s equation are
in poor agreement.

In Figure 10 we show the comparison between the
Langevin theory (Eq. (13)) and accurate data for the
E × B drift velocity component for B/n0 of 100, 200
and 2000 Hx. In the magnetic field controlled regime
(for lower E/n0, where ω � ν) the Langevin theory
appears to be very inaccurate. However, as the system
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Fig. 8. (Color online) Variation of the diffusion coefficients
with E/n0 for positrons in H2 and N2. Longitudinal and trans-
verse diffusion coefficients obtained by a multi term approach
for solving the Boltzmann equation are represented with full
and dashed curves, respectively, while the isotropic diffusion
coefficients assuming the Maxwell distribution of velocities
and Nernst-Townsend-Einsten relation are presented by doted
curves.

Fig. 9. (Color online) Variation of the diffusion coefficients
with E/n0 for positrons in H2. Longitudinal DE and trans-
verse DE×B diffusion coefficients obtained by a multi term ap-
proach for solving the Boltzmann equation are represented by
dashed and dotted curves, respectively, while the scaled diffu-
sion coefficient given by equation (15) is presented by the solid
curve.

enters the collision dominated regime (higher E/n0, where
at first ν ≈ ω, and then ν � ω) the accuracy of the
Langevin theory is improved. Substantial increase in ac-
curacy of Langevin’s theory could be achieved by includ-
ing an energy dependent collision frequency. Apart from
a multi term theory for solving Boltzmann’s equation and
Monte Carlo simulation technique, a good candidate for
the provision of such relations is momentum transfer the-
ory [34,59,60]. Therefore, one should bear in mind the in-
herent assumptions associated with the Langevin theory
and remember that the obtained results will be of limited
accuracy for positrons, particularly under conditions when
the magnetic field controls the motion of positrons.

Fig. 10. (Color online) Variation of the transverse drift veloc-
ity component along the E×B direction with E/n0 and B/n0

(full lines: multi term Boltzmann equation results; dashed lines:
Langevin theory results).

3.5 How accurate is Tonks’ theorem for positrons?

In this section we explore the validity of Tonks’ theorem
for positrons in electric and magnetic fields. The motiva-
tion behind employing Tonks’ theorem is that one may
attempt to use the positron transport data obtained from
electric field only calculations to the more general case
involving both the electric and magnetic fields [30–34].
However, Tonks’ theorem has a restricted domain of ap-
plication on the mean energy, drift speed and rate coeffi-
cients. In other words, this approximation cannot be used
to calculate the individual elements of the drift velocity
and diffusion tensor.

Tonks’ theorem falls into category of effective field ap-
proximations and it assumes that the average energy and
drift speed are, respectively, given by [33,34]

ε(E,B, φ) = ε(Eeff , 0, 0), (16)
W (E,B, φ) = (Eeff , 0, 0), (17)

where Eeff is an effective field whose magnitude is given
by

Eeff(ε) = E

√
1 + (ω/νm)2 cos2 φ

1 + (ω/νm)2
. (18)

Here ω denotes the cyclotron frequency of the positrons
while νm is the average momentum transfer collision fre-
quency evaluated atE, and φ is the angle between the elec-
tric and magnetic fields. Equations (16)−(18) represent
a system of non-linear equations which has been solved
iteratively.

In Figures 11−13 we show a comparison between the
mean energies, rate coefficients for Ps formation and flux
drift velocity for positrons in N2 obtained by Tonks’ the-
orem and an accurate multi term approach for solving
Boltzmann’s equation. Among many interesting points,
the following are of particular importance: (i) Tonks’ the-
orem generally tends to overestimate the actual value of
the mean energy and to underestimate the actual value
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Fig. 11. (Color online) Variation of the mean energy with
E/n0 and B/n0 in a crossed field configuration for positrons in
N2. Exact data obtained by a multi term approach for solving
Boltzmann’s equation are presented by solid lines while Tonks’
theorem results are presented by dashed lines.

Fig. 12. (Color online) Variation of the rate coefficient for Ps
formation with E/n0 and B/n0 in a crossed field configura-
tion for positrons in N2 for the same conditions as those in
Figure 11.

of rate coefficient for Ps formation; (ii) Tonks’ theorem
increases in accuracy as the system enters the collision
dominated regime; and (iii) for an increasing B/n0 the
accuracy of Tonks’ theorem is deteriorated. The quantita-
tive differences between the accurate data and those ob-
tained by Tonks’ theorem are mainly due to the variation
of the collision frequency and distribution function with
B/n0. For those values of E/n0 where the averaged mo-
mentum transfer collision frequency exhibits a weak sen-
sitivity with respect to the reduced magnetic field, the
accuracy of Tonks’ theorem is increased.

In Figures 14 and 15 we compare the results for the
bulk drift velocity components in N2 and H2, respectively,
obtained by Tonks’ theorem and an accurate multi term
theory for solving Boltzmann’s equation in a crossed field
configuration. We can see that the agreement is not so
good as for the flux components shown in Figure 13, par-
ticularly for positrons in H2, where strong disagreement
between the accurate data and those obtained by Tonks’

Fig. 13. (Color online) Variation of the flux drift velocity com-
ponent with E/n0 and B/n0 in a crossed field configuration for
positrons in N2 for the same conditions as those in Figure 11.

Fig. 14. (Color online) Variation of the bulk drift velocity
component with E/n0 and B/n0 in a crossed field configura-
tion for positrons in N2 for the same conditions as those in
Figure 11.

theorem is clearly evident. We observe a very pronounced
NDC effect in the profiles of the bulk drift velocity for
B/n0 of 100 and 500 Hx calculated by Tonks’ theorem. On
the other hand, from accurate data we see that NDC is ab-
sent when magnetic field is applied. This suggests that if
Ps formation is a dominant process comparing to other in-
elastic channels, then the results for the bulk drift velocity
component obtained by Tonks’ theorem may not be even
qualitatively correct. Similar behavior has been recently
found for positrons in water vapor [47]. For positrons in
N2, however, the situation is not so dramatic although the
quantitative differences between the accurate data and
those obtained by Tonks’ theorem are considerable. In
conclusion, Tonks’ theorem fails to adequately describe
the bulk positron drift in molecular gases properly under
the conditions considered in this work.
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Fig. 15. (Color online) Variation of the bulk drift velocity
component with E/n0 and B/n0 in a crossed field configura-
tion for positrons in H2 for the same conditions as those in
Figure 11.

4 Conclusion

Using a multi term solution of Boltzmann’s equation, we
have tested various approximations for the determination
of positron transport properties in neutral gases in crossed
electric and magnetic fields. We have (1) tested the ap-
proximation of using the cross sections for the electron
scattering to describe the positron behavior; (2) demon-
strated the differences between the results for various
transport properties obtained by the two-term approxima-
tion and multi term theory for solving Boltzmann’s equa-
tion; (3) illustrated the range of applicability of Langevin’s
elementary theory and Tonks’ theorem for positrons in
crossed electric and magnetic fields. Included in the dis-
cussion are NDC phenomena, the duality of the drift ve-
locity and diffusion tensor transport coefficients due to the
explicit effects of Ps formation and the anisotropy of the
diffusion tensor for positrons in N2 and H2.

It is found that approximations based on using the
cross sections for the electron scattering to describe
positron behavior can seriously compromise the accuracy
of modeling positron transport. The inadequacy of such
assumptions is demonstrated through the differences be-
tween the E/n0 profiles of the mean energy, drift veloc-
ity and diffusion coefficients for positrons and electrons.
In particular, it is shown that the flux and bulk trans-
port properties can vary substantially from one another
for both the electrons and positrons. While for electrons
the mismatch between these two sets of data is only of
a small quantitative difference only, for positrons the sit-
uation is more dramatic. A very pronounced NDC effect
has been observed in the bulk drift velocity for positrons
in H2, a phenomenon which is absent from the profiles
of the drift velocity components for electrons in H2. This
clearly reflects the differences in the basic phenomenology
between the transport of positrons and electrons in the
same molecular gas.

For the accurate calculation of positron transport
properties in molecular gases under the influence of
electric and magnetic fields, it appears that a multi

term approach for solving Boltzmann’s equation and/or
Monte Carlo simulation technique is inevitable. The er-
rors associated with the two term approximation are
highlighted, including those data which are most sensi-
tive to the approximation. It is found that the magnetic
field reduces the asymmetry of the distribution function
in velocity space and thus improves the accuracy of the
two term approximation. The Langevin theory results for
the drift velocity components are also of limited accuracy,
particularly in crossed electric and magnetic fields for con-
ditions when the cyclotron frequency dominates the col-
lision frequency. It is shown that the mismatch between
the Langevin theory and accurate results sensitively de-
pends on the magnitude of the cross sections of the various
positron-molecule collision processes involved.

A caution is issued in this paper on how to employ
Tonks’ theorem for positrons in electric and magnetic
fields. Large discrepancies between Tonks’ theorem and
accurate results are found for the bulk drift velocity of
positrons in H2, reflecting that Tonks’ theorem cannot
handle the explicit contribution of Ps formation on the
distribution function and the corresponding effects on the
drift.

Authors are grateful to J. Marler, G. Malović, J. Sullivan and
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18. M. Šuvakov, Z.Lj. Petrović, J.P. Marler, S.J. Buckman,
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Radjenović, J. Phys. D 42, 194002 (2009)

59. R.E. Robson, J. Chem. Phys. 85, 4486 (1986)
60. S.B. Vrhovac, Z.Lj. Petrović, Phys. Rev. E 53, 4012 (1996)
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