
1 © 2016 IOP Publishing Ltd Printed in the UK

1. Introduction

An understanding of the behavior of free electrons in liquids 
and dense systems is of interest to both fundamental physics 
research and to technological applications [1]. In particular, 
liquid-phase noble gases are used in high-energy particle 
detectors and at present several LAr (liquid argon) and LXe 
(liquid xenon) TPCs (time projection chambers) have been 
built for dark matter searches [2–6], neutrino detection [3, 6–8], 
and have also been used in high-energy beam-line experi-
ments [6, 9]. Optimizing the performance of these liquid 
TPC particle detectors requires an accurate understanding of 
electron drift and diffusion in noble liquids subject to electric 
fields. In a previous paper, Boyle et al [1], we investigated 
the elastic scattering of electrons from gas-phase and liquid-
phase argon. In this paper, we extend the previous discussion 
to consider elastic scattering of electrons in gas-phase and 

liquid-phase xenon, using the same techniques previously 
outlined [1].

The study of excess electrons in dense gases and liquids 
involves many effects that are not significant in dilute gaseous 
systems. When the de Broglie wavelength of the electrons (near 
thermal energies) is comparable to the interatomic spacing of 
the medium, scattering occurs off multiple scattering cen-
tres simultaneously, rather than through binary scattering. 
Furthermore, these scattering centres are highly correlated in 
space and time. Historically, transport simulations neglected 
these correlations and simply scaled calculations in the dilute 
gas phase to higher densities. It has been shown [1] that this 
simplistic approach cannot explain the non-linearities seen in 
the experiments. As we have described in Boyle et al [1], there 
are other theoretical approaches to explore the effect of liquid 
correlations on the transport of light particles [10–15], how-
ever these either require empirical inputs, are applicable only 
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close to equilibrium, or have heuristically combined the liquid 
effects identified above to obtain an effective cross-section.

As also discussed in Boyle et al [1], we employ the ab initio 
procedure of Cohen and Lekner [16] using updated scattering 
theory to address transport in dense systems under a kinetic 
theory framework. Atrazhev et  al [17] have used a similar 
procedure based on a simplification of the Cohen and Lekner 
theory where they argued that, for small energies, the effective 
cross-section becomes dependent on the density only and they 
obtained good agreement with experiment. However, the dis-
tance at which to enforce this new behaviour of the effective 
cross-section remains a free parameter in the theory and this con-
stant effective cross-section must be found empirically. By per-
forming a detailed analysis of the partial phase shifts, Atrazhev 
and co-workers [18] were able to isolate the important properties 
of the potential which are required for accurate determination 
of the transport properties. Our calculations instead avoid these 
difficulties by using accurate forms for the electron–atom inter-
action. The transport theory employed in this manuscript also 
represents an improvement over previous calculations as we use 
a full multi-term treatment of the velocity distribution function 
[14, 19] which utilizes all of the available anisotropic details of 
the scattering cross-sections. It is well known that the often-used 
two-term approximation for transport calculations can be in 
serious error [20], and we compare our solutions for transport 
in the xenon system using two-term and multi-term treatments.

In the following sections  we consider the calculation of 
the macroscopic swarm transport properties, in the gaseous 
and liquid xenon environments, from the microscopic cross-
sections, modified by the screening and coherent scattering 
effects discussed above. We first discuss a multi-term solution 
of Boltzmann’s equation in section 2, using the calculation of 
the elastic scattering cross-section for electrons in dilute gas-
eous xenon via the Dirac–Fock scattering equations described 
in section  3. We determine the xenon pair-correlator at the 
xenon triple point in section 4.1 using a Monte-Carlo simu-
lation of a Lennard-Jones potential, with parameters fitted 
from exper imental data in the gas phase, and compare the 
results with previous calculations. The pair-correlator allows 
us to determine an effective liquid scattering cross-section for 
xenon (see section 4.2), in the manner outlined in Boyle et al 
[1]. The application of these cross-sections to determine mac-
roscopic transport properties via kinetic theory is also outlined 
in section  2. We present the results of our transport calcul-
ations in section 5. Initially in section 5.1 we consider only 
electrons in gas-phase xenon, and we compare the reduced 
mobility and characteristic energies with swarm experiment 
measurements for a range of fields. Electrons in liquid-phase 
xenon are then considered in section 5.2. The impact of aniso-
tropic scattering and validity of the two-term approx imation 
are also investigated, and we highlight the importance of 
using a multi-term framework when solving Boltzmann’s 
equation accurately. Finally, we discuss a scaling procedure to 
adapt other gas-phase cross-section sets, such as those com-
piled from various theoretical and experimental sources, to the 
liquid phase in section 5.3, and compare the transport proper-
ties. Throughout this paper we will make use of atomic units 
( = = = =�m e a 1e 0 ) unless otherwise specified.

2. Multi-term solution of Boltzmann’s equation

A dilute swarm of electrons moving through gaseous or liquid 
xenon, subject to an external electric field E, can be described 
by the solution of the Boltzmann’s equation  for the phase-
space distribution function ( )r vf t, ,  [21]:

( )∂
∂
+ ⋅ ∇ + ⋅

∂
∂
= −v

E
v

f

t
f

e

m

f
J f ,

e
 (1)

where r, v and e denote the position, velocity and charge of 
the electron respectively. The collision operator J( f ) accounts 
for all the necessary collision types and interactions between 
the electrons of mass me and the background medium. In this 
paper we will only consider reduced electric field strengths 
E/N (where N is the number density of the background mat-
erial) such that there is no significant contribution from excita-
tion collisions in xenon.

In swarm experiments only a few macroscopic variables 
can be controlled and/or measured [22]. The most commonly 
reported transport quantities for electrons in liquids are the 
mobility μ (=W/E, where W is drift velocity), and the trans-
verse and longitudinal characteristic energies, /µDT  and 

/µDL  respectively. As shown in [1], we can calculate these 
coefficients for a plane-parallel geometry through multi-
term Legendre polynomial representations of the necessary 
velocity distribution functions:
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Note that θ denotes the angle relative to the electric field 
direction (taken to be the z-axis) and P cosl

m θ( ) are the associ-
ated Legendre polynomials. The Boltzmann equation can be 
re-written as the following hierarchy of equations  for these 
expansion coefficients:
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where the Jl represent the Legendre projections of the col-
lision operator detailed below and a  =  eE/me. We enforce the 
normalisation condition:

( )∫π =
∞

F v v v4 d 1.
0

0
2 (8)

The solution of this hierarchy of equations  then yields the 
mobility:

∫µ
π

=
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1 4

3
d ,
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1 (9)

and the characteristic energy:
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Note, this theory avoids the traditional two-term approx-
imation used in electron transport in liquids [12, 13, 16], 
and is a true multi-term solution of Boltzmann’s equation, 
whereby the upper bound in each of the l-summations is trun-
cated at a value lmax, and this value is incremented until some 
convergence criterion is met on the distribution function or its 
velocity moments.

We only consider low-energy elastic scattering in this 
study. Hence, the collision operator appearing in (1), which 
describes the rate of change of the distribution function due to 
interactions with the background material, will include elastic 
collisions only. For the liquid systems considered here, the de 
Broglie wavelength of the electron is often of the order of the 
average inter-particle spacing  ∼N−1/3. In this energy regime, 
the electron is best viewed as a wave that simultaneously 
interacts with multiple scattering centres that comprise the 
medium. For liquid xenon, the average interparticle spacing 
is approximately  2.6 Å, implying that ‘low’ energies are those 
less than  ∼0.5 eV, which is several orders of magnitude larger 
than the thermal energy of  ∼0.014 eV. The interaction poten-
tial is then modified from the dilute gas phase as discussed in 
section 4.2.

The Legendre projections of the elastic collision operator, 
in the small mass ratio limit, accounting for coherent scat-
tering, are given by:
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where M is the mass of a xenon atom, { }( ) ( )Φ = F F F, ,l l
L T  and
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is the binary transfer collision frequency in the absence of 
coherent scattering effects with ( )σ χv,  the differential scat-
tering cross-section. In addition,

∫ν π χ χ χ χ= Σ −
π
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are the structure-modified higher-order collision frequencies 
that account for coherent scattering through [19]:
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which represents an effective differential cross-section. S is 
the static structure factor, which can be determined from the 
pair-correlator as discussed in section  4.2. In what follows 
we also define the momentum transfer cross-sections without 
(σm) and with (Σm) coherent scattering via ( ) ( )ν σ=v Nv vm1  
and ˜ ( ) ( )ν = Σv Nv vm1 , respectively.

3. Scattering of electrons by xenon gas

The theoretical procedures used in this paper, to describe the 
elastic scattering of electrons from xenon atoms at low ener-
gies, are essentially the same as those used in Boyle et al [1] 
for electron scattering from argon. We thus present only a short 
summary here and refer the reader to [1] for more details.

In the pure elastic scattering energy region, only two 
interactions need to be considered, namely polarization and 
exchange. The polarization interaction is accounted for by 
means of a long-range multipole polarization potential, while 
the exchange interaction is represented by a short-range non-
local potential formed by antisymmetrizing the total scat-
tering wavefunction. The scattering of the incident electrons, 
with wavenumber k, by xenon atoms can then be described in 
the gaseous phase by the integral equation formulation of the 
partial wave Dirac-Fock scattering equations (see Chen et al 
[23] for details).

In matrix form, these equations can be written as:
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where the local potential U(r) is given by the sum of the static 
and local polarization potentials i.e.

( ) ( ) ( )= +U r U r U rs p (17)

and ( )κW r;P  and ( )κW r;Q  represent the large and small comp-
onents of the exchange interaction.

The precise form of these exchange terms is given in equa-
tion (5) of Boyle et al [1]. In particular, the polarization poten-
tial ( )U rp  in equation (17) was determined using the polarized 
orbital method [24] and contained several static multipole 
terms as well as the corresponding dynamic polarization term 
[25, 26]. In total, the potential U(r) contained all terms up to 
and including those that behave as r−16 asymptotically.

In equation  (16), ( )κf r  and ( )κg r  are the large and small 
components of the scattering wavefunction. Here the quantum 
number κ is related to the total and orbital angular momentum 
quantum numbers j and l according to κ = − −l 1 when 
j  =  l  +  1/2 (spin-up) and κ = l when j  =  l  −  1/2 (spin down). 
Furthermore, G(r, x) is the free particle Green’s function 
given in equations (23) and (24) of Chen et al [23]. The kinetic 
energy ε of the incident electron and its wavenumber k are 
related by:

( )= +ε ε
�

k
c

mc
1

2 ,2
2 2
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where c is the velocity of light which, in atomic units, is given 
by /α=c 1  where α is the fine-structure constant.

In the integral equation  formulation, the scattering phase 
shifts can be determined from the asymptotic form of the large 
component of the scattering wavefunction i.e.

( ) → ⟶ ˆ ( ) ˆ ( )−κ κ κ∞f r A j kr B n kr ,r l l (19)

where ˆ ( )j krl  and ˆ ( )n krl  are the Riccati–Bessel and Riccati–
Neumann functions while the constants κA  and κB  are defined 
in equations (7) and (8) of Boyle et al [1] . The partial wave 
phase shifts are then given by:

( )δ = κ

κ

± k
B

A
tan , (20)

where the δ± are the spin-up (+) and spin-down (−) phase 
shifts. The total elastic and momentum transfer cross-sections 
are given, in terms of these phase shifts, by the standard rela-
tivistic expressions:
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Analytic fits of the above momentum-transfer cross-section 
(and for other noble gases) are given in [27] to aid in plasma 
modelling calculations.

In figure 1, the momentum transfer cross-section in the gas-
phase is compared to the cross-section recommended by Biagi 
[28, 29] from the ‘Magboltz’ Boltzmann equation solver. The 
Biagi elastic momentum transfer cross-section has been con-
structed from the unpublished analysis of Elford, fitting to the 
available drift velocity and diffusion coefficients [28, 29]. It 
is often considered the reference cross-section for electron-
xenon interactions in the gas phase. Our momentum transfer 
cross-section gives good qualitative agreement with the 
Biagi reference cross-section, but generally somewhat over-
estimates the value. The location and depth of the Ramsauer 
minima, however, agree closely.

4. Scattering of electrons by xenon liquid

4.1. Xenon structure factor

The only measurements of the liquid phase xenon structure 
factor that are known to us are by Becchi and Magli [30] for 
T  =  274.7 K and = ×N 8.86 1021 cm−3, near to the critical 
point of T  =  289.72 K. In order to obtain a structure factor at 
the lower temperature of T  =  165 K and = ×N 14.2 1022 cm−3 
where the transport measurements have been performed, we have 
used a Lennard-Jones model calibrated to the high temperature 

structure factor to construct a low temperature structure factor 
by performing Monte-Carlo simulations of the fluid.

The Lennard-Jones fluid has a pair-wise potential given by:

( ) ⎜ ⎟ ⎜ ⎟
⎡
⎣
⎢
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦
⎥σ σ

= −εV r
r r

4 ,LJ
LJ

12
LJ

6

 (23)

where σLJ is the zero-crossing of the potential and εLJ is the 
depth of the potential minimum whose location is given by 

/ σ=r 21 6
LJ. Often, this potential is truncated to a range of 
σ=r 2.5trunc LJ but we work with an effectively untruncated 

potential by extending rtrunc to the system size /=r L 2trunc . For 
the truncated potential, Atrazhev et al [32] have used values 
of / =ε k 299LJ B  K and σ = 4.05LJ  Å but, by comparing to 
the experimental data of reference [30], we find a better fit 
for our untruncated model by matching the critical temper-
ature of the Lennard-Jones model ( = εk T 1.312B crit LJ [33]) 
to the measured value of 289.72 K leaving us instead with 

/ =ε k 220.83LJ B  K. Given this value, the best fit to the data of 
[30] is σ = 3.86LJ  Å. We then use these parameters to obtain 
the pair-correlator at the desired temperature of T  =  165 K. A 
plot of the various structure factors is shown in figure 2, where 
we compare with the structure factor calculated from the trun-
cated potential in the paper of Atrazhev et al [32].

4.2. Liquid xenon cross-section

In order to capture the major effects of increasing the number 
density of the fluid system, we include two modifications to 
the gas scattering potentials due to: (a) the screening of the 
long-range polarization potential, and (b) the influence of the 
particles in the medium bulk. The procedure outlined in this 
section closely follows that of references [1, 16]. We summa-
rize the steps here.

Firstly, the effective charge-multipole polarization poten-
tial acting between the electron and the induced multipole 
of an individual atom is reduced by the presence of the 
induced multipoles in the surrounding atoms, which produces 
a screening effect. Using the (isotropic) pair-correlator for 
xenon, g(r), determined in section 4.1, we have self-consist-
ently calculated the screening function f(r) for an electron 
located at position r via:

Figure 1. The current momentum transfer cross-sections in the gas-
phase (solid blue line), and the reference momentum transfer cross-
section of Biagi [28, 29] (dashed red line).
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which has been represented in bipolar coordinates, s and t, and 
where α(t) is the dipole polarizability and

( ) ( )( ) ( )Θ =
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+ + −r s t
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s
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3

2
,
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 (25)
arises due to the form of the electric field of a dipole. The 
screening function is used to determine the screened polariza-
tion potential, ˜ ( )U r ,p  of an electron with one atom in a dense 
fluid,

˜ ( ) ( ) ( )=U r f r U r .p p (26)

Secondly, the direct interaction of the electrons with other 
atoms in the bulk is significant in a dense system, even when 
the electron is very close to the focus atom. By following the 
procedure of Lekner [34], we construct an effective poten-
tial, = +U U Ueff 1 2, where U1 describes the direct (screened) 
interaction of the electrons and the target atom, and where 
U2 describes the collective interaction of the electron with the 
rest of the bulk atoms. We approximate U2 by an ensemble 
average of the bulk, i.e.

U r
N

r
t t U t s sg s

2
d d .

r t

r t

2
0

1∫ ∫
π

=
∞

−

+
( )   ( )   ( ) (27)

We note that taking the ensemble average has the advantage of 
enforcing spherical symmetry of the total effective potential 
Ueff.

Since, in a dense system, the electron is never in effectively 
free space, a different measure of the volume ‘owned’ by the 
focus atom is required. It is natural to define the distance of 
first turning point of the potential Ueff, which is denoted by rm, 
as the spherical distance under the influence of the focus atom. 
Hence we can say that a single collision event takes place when 
an electron enters and leaves the radius rm of a single atom. In 
order to calculate the phase shift at the distance rm rather than 

infinity, we have set the upper limits of equations (7) and (8) 
of Boyle et al [1] for κA  and κB  to be rm.

The full differential elastic scattering cross-section for the 
gas and liquid phases (with and without coherent scattering) 
are displayed in figure 3. For the dilute gas phase, we observe 
the presence of a forward-peaked minimum in the range 
0.2–1 eV, below which the differential cross-section is essen-
tially isotropic. This minimum is the well-known Ramsauer 
minimum which occurs in a number of electron-atom gas-
phase cross-sections. At energies above the minimum, the 
differential cross-section demonstrates increased magnitude 
and also enhanced anisotropy, with peaks in the forward- and 
back-scattering directions. When the modifications due to 
screening and interactions from the liquid bulk are included, 
we observe the suppression of the Ramsauer minimum and a 
removal of the forward peak for low and moderate energies. At 
higher energies, the liquid differential cross-section becomes 
similar both qualitatively and quantitatively to the gas phase 
cross-section. When the liquid phase differential cross-section 
is combined with the static structure factor accounting for 
coherent scattering effects, the resulting differential cross-sec-
tion ( )χΣ ε ,  takes on a completely different qualitative struc-
ture. At low energies, the differential scattering cross-section 
has been further reduced in magnitude at all scattering angles. 
At higher energies the forward-scattering has been reduced, 
while the back-scattering peak remains essentially unaffected.

The momentum transfer cross-sections corresponding to the 
differential scattering cross-sections in figure 3 are displayed 
in figure 4, along with the cross-sections from Atrazhev et al 
[32]. The comments made regarding the differential scattering 
cross-sections are once again reflected here. The Ramsauer 
minimum observed in the gas-phase is completely suppressed 
in the liquid-phase, and there is a large reduction in the magni-
tude of the cross-sections when the screening and liquid effects 
are included, and again when coherent scattering effects are 
included. At higher energies, the liquid-phase cross-sections 
approach the gas-phase values, with some additional oscilla-
tory structure evident when coherent scattering is included. 
The cross-sections of Atrazhev et al [32] have been calculated 
using a similar formalism, but with a pseudo-potential that 
replaces the short-range part of the interaction by a boundary 
condition that reproduces the expected scattering length in 
the gas-phase. Their cross-sections are qualitatively similar to 
ours, but are consistently smaller in magnitude over the range 
of energies considered. We attribute these differences to our 
treatment of the static and exchange parts of the potential, for 
both the focus and surrounding atoms, as well as the inclusion 
of a full multipole polarization potential.

5. Results

One of the key functions of modern-day swarm experiments 
is to assess the completeness and accuracy of cross-section 
[35–38] sets. Swarm experiments are many-scattering experi-
ments, where there is a balance established between the 
number of particles and the momentum and energy transfers 
occurring. In the following sections we consider the calcul-
ation of the macroscopic swarm transport properties in the 

Figure 2. Xenon structure factors. The crosses represent the Becchi 
measurements [30] and the solid blue lines are our Monte-Carlo 
simulations of the Lennard-Jones fluid at a high temperature near 
the critical point of 274.7 K. The solid red line represents the 
structure factor at 165 K that we use in this paper and the dashed 
red line shows the rescaled measurements from argon experimental 
data [31] used by [32].
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gaseous and liquid environments from the microscopic cross-
sections. Particular attention is given to investigating the 
validity of the two-term approximation in our calculations, 
and we compare these with the full multi-term results. In sec-
tion 5.3, we introduce a simple scaling algorithm to adapt any 
gas-phase cross-section to the liquid-phase based on the our 
ab initio scattering calculations.

5.1. Electrons in gaseous xenon

The calculated reduced mobility and characteristic energies 
using the gas-phase cross-sections detailed in section 3 and 
the reference cross-sections of Biagi [28] are presented in 
figure 5. They are compared against various experimental data 
for xenon gas [39, 40]. We restrict ourselves to the reduced 
electric fields of less than 1 Td, to ensure we are in the energy 
regime where only elastic scattering is operative. For the gas 
calculations, using the present cross-sections, we observe 

agreement to within 30% or better for both the reduced 
mobility and the transverse characteristic energy over the 
range of the reduced fields considered. These errors decrease 
to 5% or better for the transverse characteristic energy, above 
the field region where the transport properties rapidly increase. 
This can be compared with the Biagi [28] cross-section calcul-
ations, which demonstrate agreement to within 10% or better 
(generally less than 5%) for reduced mobility and transverse 
characteristic energy. Although the experimental longitudinal 
characteristic energies exhibit larger variation and error than 
the transverse counterpart, our calculated energies using the 
present cross-sections and those of Biagi [28] appear to give 
good agreement. The major difference between the trans-
port calculations using the two different cross-sections is in 
the turning point of the longitudinal characteristic energy 
profile: our ab initio cross-sections cause a turning point at 
slightly higher reduced electric field strengths than the experi-
ment, whereas the Biagi cross-sections is consistent with 
the exper imental measurements. In a direct reflection of our 
increased momentum transfer cross-section, as compared to 
the reference, the transverse characteristic energy and reduced 
mobility generally underestimate the experimental measure-
ments [39, 40]. The increased momentum transfer tends to 
increase the randomization of the electron’s direction during 
a collision, which reduces the field’s ability to efficiently 
pump energy into the system. It is no surprise that the Biagi 
cross-section gives closer agreement between calculation and 
experiment, since it is informed by experimental swarm mea-
surements and was not from an ab initio theory.

5.2. Electrons in liquid xenon

In figure  6 the reduced mobility and characteristic energies 
are now compared in both the gaseous and liquid phases. The 
transport coefficients are presented against reduced electric 
fields so that any linear dependence on density (as occurs in 
the dilute-gas limit) has been removed, and so we have a true 
comparison of the gaseous and liquid phases. Qualitatively, 
for a given reduced field in the low-energy regime, we observe 

Figure 3. Current differential cross-sections, ,( )χΣ ε ., in square angstroms for electrons in Xe for (a) dilute gas phase, (b) effective liquid 
phase including screening effects, and c) liquid phase including coherent scattering effects.

Figure 4. The momentum transfer cross-sections in the gas-phase 
from our scattering calculations and from the Biagi cross-section set 
(dashed blue and red lines respectively) as well as accounting for 
screening effects in the liquid-phase for our scattering calculations 
compared to that of Atrazhev et al (dotted blue and green lines 
respectively). The solid lines correspond to inclusion of the 
modifications due to coherent scattering effects for our calculations 
and that of Atrazhev et al (solid blue and green lines respectively). 
A detailed description of the Atrazhev et al cross-section 
calculations is given in [32].
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that the reduced mobility and transverse characteristic energy 
in the liquid phase are both significantly larger, often by 
several orders of magnitude over the gaseous phase. In our 
invest igations of electrons in liquid argon [1], the transverse 
characteristic energy in the liquid phase was instead smaller 
than in the gaseous phase. The longitudinal characteristic 
energy is generally larger for reduced electric field strengths 
of less than  ∼0.2 Td, but smaller for the higher electric field 
strength considered. Our calculations using the ab initio theory 
are accurate to within 25% for the mobility (generally less 
than 15%) and 25% for the transverse characteristic energy. 
These are of similar magnitude to those for the gas phase.

Although the differential scattering cross-sections for Xe 
displayed an enhanced anisotropic nature in the liquid phase 
over that in the gas phase, the impact of this anisotropy on 
the velocity distribution function was not particularly signifi-
cant here. The errors associated with the two-term approx-
imation ( )=l 1max  to the velocity distribution function are 
displayed in figure 7. In the gaseous and liquid phases there 
are differences as large as 10% and 40% respectively, in the 
transverse characteristic energies. In both cases, the two-term 
approximation is an overestimation with respect to the multi-
term calcul ation. The errors associated with the longitudinal 

characteristic energies are less than 0.1% for both the gas and 
liquid phases, and hence were omitted from figure 7.

5.3. Rescaling gas phase cross-sections

It was noted in section  5.1 that our gas phase momentum-
transfer cross-section overestimates the reference cross- 
section of Biagi [28, 29], the latter of which is shown to 
produce transport data accurate to within 10% of the exper-
imental data, compared with 30% for the current ab initio 
theory. In order to utilize the apparent enhanced accuracy 
associated with the experimental cross-section, we postulate a 
method of extracting the explicit liquid-based effects from the 
theory and applying it to the experimentally measured cross-
section. The ratio of the liquid to gas phase cross-section 
using our formalism gives an energy dependent scaling for the 
importance of screening and coherent scattering. Let us define 
a scaling factor, ( )ξ vl , such that:

Figure 5. The transverse (DT/µ) and longitudinal (DL/µ) 
characteristic energies (top, solid and dash–dot lines respectively) 
and reduced mobility (n0µ) (bottom) of electrons in gaseous 
xenon, calculated using the current potentials and associated cross-
sections detailed in section 3 (blue lines), and the recommended 
cross-section of Biagi [28] (red lines). Comparison with available 
experimental data by Koizumi et al [39] at 300 K (DT, top circles) 
and by Pack et al [40] at 300 K (DL, top stars, and μ bottom 
circles). The background xenon gas for the calculations was fixed at 
300 K.

Figure 6. Comparison of the transverse (DT/µ) and longitudinal 
(DL/µ) characteristic energies (top) and reduced mobilities (n0µ) 
(bottom) in gaseous and liquid xenon, with those calculated from 
the various approximations to the cross-sections. Red and blue lines 
correspond to the cross-sections from our scattering calculations 
unmodified and scaled to the Biagi cross-section set respectively. 
Top) Solid and dash–dot lines are for DT and DL respectively 
in the gas phase, and dashed and dotted lines are for DT and DL 
respectively in the liquid phase including coherent scattering 
effects. Experimental data by Koizumi et al [39] at 300 K (DT, 
circles), by Pack et al [40] at 300 K (DL, stars) and Shibamura [41] 
at 165 K (DT, crosses). Bottom) Solid and dashed lines correspond 
to gas and liquid phase respectively. Experimental data by Pack 
et al [40] at 300 K (circles) and Huang and Freeman [42] at 163 K 
(crosses).
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( ) ˜ ( )
( )

ξ
ν
ν

=v
v

v
,l

l

l
 (28)

where these ν and ν̃ correspond to our scattering calculations 
using the Dirac-Fock equations described in sections 3 and 4.2 
respectively, i.e. gas-phase and liquid-phase collision frequen-
cies. We can then build an effective liquid-phase momentum-
transfer cross-section based on the Biagi [28] reference data, 
Σ ( )vm

rescaled  , via:

ξ σΣ =( ) ( ) ( )v v v ,m m
rescaled Biagi (29)

where ( )σ vm
Biagi  is the Biagi recommended gas-phase cross-

section [28]. It should be noted that, due to the lack of 
differ ential cross-section information for the Biagi set, only 
a two-term approximation can be used here, i.e. only the 
momentum transfer cross-section is known. The rescaled 
Biagi liquid momentum transfer cross-section is shown in 
figure 8. The method is similar in spirit to the procedure pro-
posed in [43], though scaling was done with respect to the 
transport coefficients rather than the cross-sections.

The characteristic energies and reduced mobility calcu-
lated using the rescaled Biagi liquid momentum transfer 
cross-section is shown in figure  6, along with the previous 
calculations considered in this manuscript. It appears that this 
result gives a slightly better agreement with experiment for 
the reduced mobilities at low field strengths i.e. errors within 
20%, while it is no worse for the transverse characteristic 
energy. The biggest improvements occur at the low electric 
field strengths, where the errors are effectively half that of the 
ab initio approach.

6. Conclusions

We have presented an ab initio treatment of electron scattering 
and transport in liquid xenon. There are no free parameters 
in this calculation, and hence the agreement to within 25% 
in the mobility and the transverse characteristic energy in 

the reduced field range 10−4–1 Td is considered satisfactory. 
Given that, in the dilute gas phase, agreement to within 30% 
for the mobility and transverse characteristic energy transport 
coefficients was achieved, with the current scattering calcul-
ations, this gives confidence that the majority of the essential 
physics for considering high mobility noble liquids is present 
in the theory. A scaling factor formed from the ratio of the cal-
culated liquid to gas phase cross-sections, was postulated to 
encompass the ‘liquid’-based effects, enabling more accurate 
gas-phase cross-sections derived from experiment to be trans-
lated to liquid-phase cross-sections. Subsequent enhance-
ments in the accuracy of the transport coefficient calculations 
were achieved, with the mobility errors reduced to 20% and 
and even bigger improvement displayed for the lowest fields 
considered.
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