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Abstract
The role of temperature on the existence of negative differential conductivity (NDC) is
investigated using Boltzmann equation calculations of electron swarms in gaseous nitrogen. This
effect has been observed previously in both experimental results and calculations, with the
important role of superelastic rotational collisional processes in this phenomenon being
examined in this work. A simple analytic model cross-section set is employed to elucidate the
role of de-excitation processes in NDC, with complementary physics identified in N2. The
criterion of Robson (1984 Aust. J. Phys. 37 35) for predicting the occurrence of NDC using only
knowledge of the collisional cross-sections is utilised for both the model system and N2, and
found to be in excellent agreement with our simulated appearance of NDC. Finally, we also
report on the impact of anisotropy in the very low threshold scattering channels on the transport
coefficients, examine the finite difference collision operator of Frost and Phelps (1962 Phys. Rev.
127 1621) for the inelastic channel, in particular its neglect of recoil, and assess other
assumptions utilised in existing Boltzmann equation solvers.

Keywords: negative differential conductivity, molecular nitrogen N2, electron, multi-term
Boltzmann equation

1. Introduction

As a swarm of electrons drift and diffuse through a back-
ground medium, driven out of equilibrium by an externally
applied electric field, there can exist a region where the drift
velocity of the electrons decreases with increasing electric
field strength. This phenomenon, known as negative differ-
ential conductivity (NDC), has been comprehensively stu-
died, both experimentally and theoretically [1, 2]. In both
plasma and swarm physics NDC is present in gases used for

dosimetry and particle detectors [3–5], and has implications
on the operating ranges of gas lasers with NDC-induced
electric current oscillations in electron-beam-sustained dis-
charge switches [6, 7]. For fundamental physics, NDC has
played a role in evaluating complete and accurate scattering
cross-section sets [8, 9]. Argon, for example, was considered
to be a candidate for NDC in a pure gas, but this was later
shown to be due to the presence of molecular impurities in the
argon samples [10], and in gaseous mercury it has recently
been shown that NDC occurs due to the presence of dimers
[11]. Swarms of electrons can also induce NDC in liquids
[12] and plasmas [13, 14], and NDC has been shown to be
induced by positron swarms in argon [15]. In addition to
NDC for positrons in argon, the same phenomenon has been
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observed in water vapour [16], molecular hydrogen [17] and
CF4 [18]. As such, modelling systems to predict regions of
NDC and the conditions of electron-induced NDC is of
particular interest [1, 19].

In model systems, the work of Petrović et al [1] and
Vrhovac and Petrović [20] detail different systems involving
elastic, inelastic and ionisation cross-sections that, under various
conditions, either enhance or eliminate the occurrence of an
NDC region. Further to the electron and positron experimental
studies, in real systems, the existence of NDC has been observed
experimentally in gaseous systems of N2 [21, 22], CH4, CF4 [23]
and Hg [11], and predicted theoretically due to electron–electron
interactions [14] in plasmas of Xe [24, 25], and Ar and Kr [24],
to name but a few. NDC in gas mixtures also has an extensive
history, observed in mixtures with helium, argon, N2 and CH4

[2, 13, 23, 26, 27]. In strongly attaching gases, NDC has also
been shown to be induced through a combination of attachment
heating and inelastic cooling [28].

Throughout this broad body of work, the sources of NDC
have been discussed in detail by the various authors and a
number of criteria have been proposed. Some of the condi-
tions under which NDC can occur include the presence of
inelastic collision channels, favoured particularly by a
decreasing inelastic cross-section, the presence of a Ram-
sauer–Townsend minimum in the elastic momentum-transfer
cross-section, or a rapidly increasing elastic momentum-
transfer cross-section. However these are not necessary and
sufficient conditions. The validity of these early criteria on the
understanding of NDC was discussed in detail in Petrović
et al [1] who address the analyses of Kleban and Davis
[29, 30], Long and co-workers [10], and Lopantseva and co-
workers [6], in particular, and in Vrhovac and Petrović [20]
where consistency with the Shizgal [31] criterion is discussed.
Of particular note are the simulations of Petrović et al [1] for
N2 that confirm that the presence of inelastic processes, other
than rotational excitations, decreases the range of the NDC
region, indicating that the rotational collisions are responsible
for the presence of NDC, where the elastic cross-section is
relatively isotropic. NDC in N2 is of particular interest here,
where a clear temperature dependence is observed. NDC is
present in both experimental measurements [21, 32] and
Boltzmann calculations [1, 33] at 77K and 77.6K, but absent
at 293K. This is explored further in this work, where the
effect of temperature on the presence or absence of NDC is
examined. The thermally induced NDC region in N2 below
room temperature is detailed. Here, the contribution of
inelastic ground-state and excited-state collisional processes
to the net energy transfer to and from the electron swarm are
shown to be responsible for the extent of an NDC region.

The various criteria for the presence of NDC in these
early works, as noted above, have been discussed in detail by
the respective authors. Of particular interest here is the cri-
terion proposed by Robson [19], where momentum-transfer
theory was used to derive an expression based on the rate of
change of the ratio of inelastic to elastic energy transfer with
energy. This criterion allows prediction of NDC using only a
knowledge of the collisional cross-sections, the accuracy of
which is highlighted here using both a simple model system

and for N2. The thermally-induced reduction and deactivation
of NDC is explored further using Robson’s criterion.

A model collisional system is used throughout this study
to simplify discussions around NDC and its temperature
dependence. This allows the relevant physics to be extracted
with the use of simple analytical expressions, where no
ambiguity in the functional form of the cross-sections exists.
The model system is also used to verify both our solution
method, and explicitly test the inclusion of temperature
dependent isotropic and anisotropic inelastic collisions. These
results can be used for benchmarking of future solution
methods, with our present calculations and the independent
Monte-Carlo method utilised here. The model system also
facilitates further discussion around some of the assumptions
sometimes involved in swarm modelling. The explicit effect
of anisotropy in low-threshold inelastic processes is assessed,
as well as the commonly employed two-term approximation
[34], as is the neglect of superelastic collisions in higher-order
collisional terms. Also assessed is the neglect of the recoil of
the neutral particle during inelastic collisions in the Frost-
Phelps [33] excitation collision operator, as utilised in many
Boltzmann equation solutions. Truncation of the mass ratio
expansion at zeroth order for inelastic collisions is compared
with the exact collision description of Monte-Carlo simula-
tions, for very low-energy threshold processes like rotational
excitations, where the energy exchange is much closer to that
for elastic collisions. For application of this discussion to real
gases, these assumptions are also assessed for electron
swarms in N2. For the low energy regime of interest in this
study, the discrete rotational collisions in N2 are treated using
the Frost-Phelps collision operator [33], although in the work
of Ridenti et al [35] the Chapman–Cowling extension to the
continuous approximation to rotations was developed to
bridge the continuous energy loss regime applicable at high
fields to the discrete collision description for use at low
energies.

This work is arranged by first outlining our multi-term
kinetic theory solution, and the Monte-Carlo code used for
comparison with our results, in section 2. In section 3 we
consider two systems that exhibit NDC—a simple model
system in section 3.1 and N2 in section 3.2. For both systems
we present calculations of transport coefficients at various
temperatures, and discuss the thermal activation of NDC and
the necessity of de-excitation, or superelastic, collisions for its
occurrence. As part of our model simulations for NDC, in
section 3.1.3 we also consider a non-physical modification to
our model system, to highlight the superelastic contribution.
The prediction of NDC using Robson’s [19] criterion from
knowledge of the energy transfer rates is presented for both
systems, in sections 3.1.2 and 3.2. As part of our bench-
marking against the Monte-Carlo code, we assess the effect of
the neglect of recoil in the Frost-Phelps differential finite
difference inelastic collision operator [33], in section 3.1.1.
Finally, in the Appendix, we also consider the effect of
anisotropy in low-threshold inelastic collision channels of our
model cross-section, and the neglect of higher order de-
excitations sometimes applied in the solution of similar
problems.
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2. Theory

2.1. The Boltzmann equation and a multi-term solution
framework

The transport of a swarm of charged particles through a
gaseous medium is described by the particle phase space
distribution function ( )f tr v, , , representing the distribution
of electrons with position r, velocity v and time t, that is the
solution of the linear Boltzmann equation,
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where me is the mass of the swarm particle, q is the ele-
mentary charge, and E is the externally applied electric field.
The linear collision operator J describes binary collisions
between the swarm particles and the background medium,
and accounts for elastic and inelastic collisions, and particle
non-conserving loss (attachment) and gain (electron impact
ionisation) collisions.

For a solution to the Boltzmann equation, the angular
dependence of the phase space distribution function is
expanded in terms of spherical harmonics, to give:
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In practice, the index l must be truncated at some upper value
lmax, incremented until some convergence criterion on the
distribution function, or its velocity moments, is met. For this
work we do not restrict the truncation at =l 1max , as is
commonly done for the ‘two-term approximation’, sometimes
leading to an inadequate representation of the anisotropic
parts of the distribution function and incorrect transport
coefficients, see the review [34].

In plane parallel geometry, the preferred direction is
taken to be perpendicular to the electrodes and the spatial
gradients are along the z axis so that = zr and = EE z, and
the m index is restricted to m=0 by symmetry, so that

( ) ( )( ) =f v t f v tr r, , , ,m
l

l . Equation (1), with substitution of
the expansion(2) and recast in energy-space using
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2
2 for U in eV, becomes the system of coupled
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l [36]:
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where Jl is the Legendre decomposition of the collision
operator, detailed in the next section, and Ez is the electric
field defined parallel to the z axis.

2.2. Collision operators

For electron swarms in atomic and molecular gases the small
mass ratio is utilised so that the Davydov operator for elastic
collisions may be used [37–39]. The electron-impact ionis-
ation operator, in the Legendre-decomposed form utilised
here, is detailed in references [40, 41].

For inelastic, particle-conserving collisions, the Frost and
Phelps Legendre-decomposed collision operator [33] is
employed here. The anisotropic form of the collision operator
was detailed by Makabe and White [42], Phelps and Pitchford
[43] and earlier in Reid [44] (in the second and third terms on the
right hand side of the equation following equation (3)), and is
here extended to include de-excitation, or superelastic, collisions
using detailed balance [45]. Expressed in terms of initial and final
internal states j and k of the neutral particle, where j<k, particles
with energy above the threshold Uth are available for excitations
from j k. Below the threshold, for non-zero temperatures, the
background neutral particles may be in an excited state k and are
available to undergo superelastic collisions from k j, where
the energy loss, taken to be the threshold, is gained by the
incoming electron and lost by the neutral particle.

The partial cross-sections σl are the coefficients of a
Legendre polynomial (Pl) expansion of the differential cross-
sections, σ(U, χ) for the scattering angle χ, defined by
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-

U U P d2 , cos cosl l1

1
. The de-excitation

cross-section ( )s kj U;l is expressed in terms of the excitation
cross-section ( )s jk U;l using the microscopic reversibility
relation ( ) ( ) ( )s s= + +g U kj U g U U jk U U; ;k l j th l th where gk
and gj are the degeneracy of the kth and jth states. After con-
verting to collision frequencies through ( ) ( )n s= =U n v Ul l0

( )sn qU m2 e l0 in energy space, where n0 is the neutral
number density, the isotropic and anisotropic components of
the inelastic collision operator are given by:
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where νl is the lth partial collision frequency, related to the

momentum-transfer cross-section through s s s= - +
m

U U

U0 1
th

for inelastic collisions. The number density of the neutral parti-
cles in the initial and final states j and k, are n0j and n0k,
respectively, calculated using standard Boltzmann statistics:

( )= -
n g expj

n

Z j
U

k T0
j

B

0

0
. The partition function sums over all

possible internal states j with energy Uj, and is given by

( )= å
-

Z g expj j
U

k T
j

B 0
, where kB is Boltzmann’s constant and T0

is the temperature of the neutral particles.

2.3. Solution technique

2.3.1. Time-of-flight. When the number density varies slowly
in space, away from boundaries and under the influence of a
uniform electric field, hydrodynamic conditions prevail and
the space-time dependence of the distribution function can be
projected onto the number density so that ( ) =f z U t, ,l

( ) ( )å ¶
¶

f Us l
s n z t

z

,s

s , where s is the rank of the tensor.
For weak gradients, a density gradient expansion of the

phase-space distribution function may be taken to second
order to account for particle non-conserving processes. The
diffusion equation is then used to analyse experimental
parameters [46]. The time-of-flight coefficients of the density
gradient expansion are found from the solution to the
hierarchy detailed in [47].

Knowledge of the full phase-space distribution function f
allows for the calculation of all macroscopic quantities
describing the electron swarm, as detailed in [46, 47]. An
important self-consistency check for an accurate solution are
the rates of energy and momentum exchange, where the gain
from the advective terms (the external electric field and time
rate of change components) and loss due to collisions must be
balanced. Calculation of energy and momentum-transfer rates
due to individual cross-sections allows assessment of the
contribution of not only each collision type, but separation
into inelastic and superelastic channels.

2.3.2. Numerics and benchmarking. Systematic benchmarking
of the theory and numerical solution has been performed, with
the particular numerical methods employed in the solution of
equation (3) detailed in references [48, 49]. Here, linear
interpolation of the tabulated cross-sections is employed, with
a non-uniform energy grid that is denser at lower energies, in
order to capture the variations near the low-energy thresholds of
the inelastic processes considered throughout this work. The
energy range of the simulation, U∞, is chosen so that the
distribution function captures the full energy range of the
electron swarm, so that ( ) [ ( )]¥

-f U f Umax 100 0
10. Using

this condition, both the energy and momentum transfer rates are
balanced to within ±0.01% for our simulations. For our multi-
term solution, the lmax index and number of solutions nodes are

incremented until convergence in the distribution function, or its
moments, is achieved to better than 0.1%.

2.4. Monte-Carlo technique

We have implemented a standard swarm Monte-Carlo sam-
pling code. The code uses the null-collision method [50]
along with temperature included via appropriate modifications
to the total cross-section and resolution of collisions [51].
Measurements are made through the ‘box sampling’ style
[52], where an integral over the quantities to be measured is
performed between each collision and binned into time bins.
Hence a time-specific measurement refers to an average of
that quantity during the time bin. To ensure we have con-
sidered a large enough simulation time to have reached
steady-state, we consider a sufficiently fine time grid to allow
a fit of the quantities to the empirical form of:

( ) ( )d= + l- -x t x e xS
t T 2x , where xS is the steady state value

for quantity x and T is the final time of the simulation. This
definition allows us to give δx the meaning of a deviation
from steady-state at the half-way point of the simulation. The
condition, d < -x x 10S

4 is enforced, and we then average
over the latter half of the simulation to build up the statistics
for the Monte-Carlo results.

We estimate the error in these results by the standard
error of the averaged simulations at different times. We have
also ensured that the autocorrelation between consecutive
points is minimal.

The Monte-Carlo code has been tested against many
benchmarks including pure elastic models of hard sphere and
Maxwell models [53], argon measurements [49], the inelastic
and anisotropic models of Reid [44, 53], the ionisation
models of Ness and Robson [41, 53], and inclusion of a static
structure factor [54].

As part of the tests to be performed in section 3.1.3, we
require a different temperature for the elastic and inelastic
processes. We have implemented this by considering a mixed
system of two species. The first species possess only an
elastic process, with a gas temperature given by the elastic
temperature. The second species possesses only an inelastic
process, with the ground and excited populations given by the
inelastic temperature. When the elastic and inelastic tem-
peratures coincide, this is equivalent to a simulation of a
single species with both processes.

3. Results and discussion

3.1. NDC—a model cross-section study

The motivation for our model study is two-fold. Firstly is to use
a simple analytic model cross-section set to understand the
physical processes involved in NDC. Secondly, is in verifying
the inclusion of (isotropic and anisotropic) superelastic processes
in the inelastic channel. In the absence of superelastic processes,
thermal temperatures cannot be achieved, so a simple model
system, verified by an independent Monte-Carlo method, allows

4
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us to confirm that our solution methods are well representing
physical processes.

In the pursuit of clear criteria for the existence or pre-
diction of NDC, a number of model cross-sections have been
proposed (see for example [1]). Many of these models could
be adapted to account for the inclusion of superelastic pro-
cesses. The model considered in this work, however, was
chosen to illustrate the damping effect of superelastic colli-
sions on NDC at room temperature, similar to the behaviour
of electrons in N2. For collisions with neutrals with a mass

=m 28 amu,0 at 0K, 77K, and 293K the transport coeffi-
cients have been calculated for the model elastic and excita-
tion cross-sections (in atomic units):
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where A=1Å2 and B=5Å2/eV.

3.1.1. Drift velocity and recoil. Figure 1 shows the drift
velocity and mean energy calculated using the multi-term
Boltzmann equation solution and the independent Monte-
Carlo code, as a function of the reduced electric field E/n0 in
units of the Townsend (1 Td= -10 Vm21 2). The agreement
between the Monte-Carlo and Boltzmann solutions is better
than 1.4% for the drift velocities and the mean energies at
0K, and with less than a 3.2% variation in the transport
coefficients at 77K. However, this increases to 5.6% for both
the drift velocity and mean energy at 293K.

To address some of the discrepancy between the
transport coefficients calculated using our Boltzmann and
Monte-Carlo solutions, we consider the neglect of recoil in
the inelastic channel in our solution (and similar solutions of
the Boltzmann equation, for example the recent work of
Ridenti et al [35] in the continuous energy loss approx-
imation). Unlike elastic collisions, that are represented to first
order in the mass ratio to take into account the thermal motion
and recoil of the neutral particle during an elastic collision,
recoil of the neutral particle during inelastic collisions is
neglected in many of the existing Boltzmann equation
solutions, and in our solution. This assumption has been
considered previously in White et al [55], using the integral
form of the inelastic collision operator that does not restrict
collisional representation to zeroth-order. In their study, the
transport coefficients calculated for electron impact on H2

using a multi-term solution over the range 0.1–10Td, differed
by less than 0.1% between no recoil inelastic collisions and
the converged collision description. However, the lowest
excitation channel in H2 is the 0 2 rotational excitation
with a threshold of 44meV, while for our model system the
energy loss threshold is 2meV, closer to the first order mass
ratio » ´

+
-2 10m

m m
5e

e 0
for the model system.

To include the thermal motion of the neutrals during
inelastic collisions in the Frost-Phelps differential finite
difference collision operator [33], requires an extension that
is outside the scope of this study. However, we still desire
quantification of the effect on the transport coefficients. In

Monte-Carlo simulations the collisions are treated exactly, so
the Monte-Carlo technique described in section 2.4 was used
to assess the effect of recoil in the low-threshold channel of
interest here, as shown in figure 1. The effect of truncation of
the mass ratio for inelastic collisions on our calculations is
most prevalent at reduced electric fields between 0.1Td and
10Td, where the net energy transfer due to elastic collision is
increasing relative to the energy transfer due to inelastic
collisions, as shown in figure 2. Here, the difference between
the complete and approximate collision descriptions in the
Monte-Carlo calculations is greatest at 293K, where the drift
velocity and mean energy both differ by up to 6%. At 77K
the differences between the transport coefficients are up to
3%, while at 0K the differences decrease to 1.6%, between
the two collision representations.

When recoil of the neutral particle during inelastic
collisions in our Monte-Carlo simulation is neglected by

Figure 1. The calculated flux drift velocity (upper) and mean energy
(lower) of a swarm of electrons whose collisional behaviour is
described by the proposed model cross-section set, equation (6). The
lines represent values calculated at various temperatures using the
multi-term kinetic theory, while the symbols show the values
calculated using an independent Monte-Carlo solution method. The
solid red symbols represent the Monte-Carlo calculations treating
inelastic collisions exactly, while the open blue symbols correspond
to Monte-Carlo calculations with recoil of the neutral particle during
inelastic collisions neglected.
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artificially increasing the neutral mass for inelastic collisions
only, to replicate the differential finite difference form of the
inelastic collision operator utilised here [33], the difference
between our Monte-Carlo and Boltzmann calculations
reduces to 0.4% and 0.3% for the drift velocity and mean
energy, respectively, at 0K, 0.6% between both the drift
velocity and mean energy at 77K, and below 0.7% between
the drift velocities and 0.3% between the mean energies
at 293K.

3.1.2. NDC and Robson’s criterion. The presence of NDC is
anticorrelated with the presence of superelastic collisions,
highlighting the damping effect of the de-excitation process
on the presence of NDC. When properly included through
detailed balance for inelastic collisions, a smaller ratio of
neutrals in the ground-state, caused by an increasing
temperature, increases the mean energy of the swarm and
decreases the drift velocity. The energy transfer profiles given
in figure 2 show the lower net inelastic energy transfer rate
with increasing temperature, increasing the mean energy
which samples higher-energy regions of the elastic cross-
section, resulting in a reduced average velocity of the swarm.
NDC ceases when the collisional energy transfer is dominated
by the elastic process. At higher temperatures, the increased
fraction of neutrals in excited-state populations reduces the
net power transfer due to inelastic collisions, as shown by the
superelastic contribution to the energy transfer in figure 2. As
a direct result of the temperature and the resulting number of
neutral particles in an excited state, the range of NDC is
reduced and the transition to elastic-collision dominated

energy transfer occurs at lower reduced electric fields for
increasing temperatures.

Using momentum-transfer theory, Robson’s [19] criter-
ion for the presence of NDC uses the energy variation of the
ratio of the elastic to inelastic energy transfer. The criterion
derived for the appearance of NDC by Robson [19], at a
particular mean energy ε, is given by + <

e
¶W
¶

1 0 where Ω

represents the ratio of the total inelastic to elastic energy
transfer and is given by:
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where the total inelastic energy transfer is taken as the sum
over all inelastic channels j with associated thresholds Uth

j .

We note that the NDC criteria of Robson [19] and
Petrović et al [1] differ due to a different expression for the
energy balance, where the latter omit energy transfer due to
elastic collisions, although this is sufficient for the systems
considered in that work.

The criterion proposed by Robson [19] is a very good
predictor for NDC for the model cross-section considered in
this study, as shown in figure 3. For a monotonically
increasing elastic collision frequency and open inelastic
channels, the mean energy increases with increasing E/n0,
slowly as the inelastic collisions take energy from system, so
that the drift velocity increases with field, as illustrated in
figure 1. As the inelastic collisions become less important
relative to the elastic collisions, the mean energy of the swarm
increases at a greater rate, to sample the higher elastic
collision frequency, causing the drift velocity to begin to
decrease with increasing field. The NDC region for 0K and
77K ceases when the energy transfer rate due to elastic
collisions is greater than the net energy transfer rate due to the
inelastic process, as predicted. For the calculation of Ω at
293K, for reduced electric fields between 0.1Td and 0.2Td,
the derivative is ≈−1 and the presence of NDC is only
weakly predicted, but does not occur in our calculations.

3.1.3. Temperature dependence and detailed balance. To
illustrate the physical dependence on the inclusion of
superelastic collisions, in this subsection we consider two
unphysical modifications to our model system. These address
the effect of temperature from each of the scattering channels
separately by setting different temperatures for the
background gas through elastic collisions and excited state
populations.

The first modification includes temperature dependence of
the excited state population, but considers elastic collisions with
stationary neutrals, equivalent to a temperature of 0K in the
elastic collision operator, with the notation =J 0elas K,

=J 293inel K in the following figures. The second modification
involves elastic collisions with non-stationary neutrals, at 293K,
but inelastic collisions from ground- to excited-states only, with
the notation Jelas=293 K, Jinel=0 K in figures 4–5.

Figure 2. The energy transfer rates of each of the collision channels
j of the model cross-section, equation (6), as a fraction of the
power input from the external reduced electric field, at different
temperatures, as a function of the reduced electric field. The solid
lines show the fractional power transfer rates of the elastic collisions,
the dashed lines represent the ground-state inelastic process, and the
dotted lines represent the gain in energy due to the superelastic
process only.
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Figure 4 displays the mean energy from our Boltzmann
solution and our independent Monte-Carlo solution. Here, in
our Monte-Carlo simulation inelastic collisions were treated
exactly.

For properly included superelastic collisions, but when
temperature is not included in the elastic channel, the mean
energies approach the appropriate thermal value of» k TB

3

2 0 with
decreasing E/n0. At 293K a difference of around 3.6% between
the non-physical model and standard model calculation is
observed, generally decreasing with increasing E/n0. We find
that the drift velocity calculations (not shown) lie very close to,
but just above, the standard model calculations at 293K, by at
most 2.2%. While those differences are not as significant as
some of the others discussed in this study, these calculations do
illustrate the importance of detailed balance in swarm calcula-
tions for achieving correct thermal distributions.

A more dramatic difference is observed when temper-
ature effects are taken into account for the elastic collisions,
but not in the inelastic channel. Here, the calculated drift
velocity and mean energy approach the 0K calculations due
to the dominance of the inelastic channel at low reduced
electric fields, as can be seen in the energy transfer profiles
given in figure 5. The difference between this non-physical
modification and the 0K profile of figure 1 shows the explicit
contribution of the temperature term in the elastic collision
operator, where the mean energy lies up to 5% below the
standard 0K calculations, and the drift velocity differs by up
to 4%, both greatest at the lowest E/n0. The variation from
the standard temperature treatment profile is large, and results
in an overestimate of the drift velocity below 30Td,
mimicking the 0K drift velocity profile of figure 1, and the

presence of an NDC region that is larger than that in the
standard 77K calculations and absent from the 293K
calculations.

When temperature effects are included through the elastic
collision operator and the inelastic ground-state density, but
detailed balance is not achieved due to the neglect of
superelastic collisions altogether, we observe a dramatic
effect on the transport coefficients, given the large contrib-
ution of the de-excitation process to the energy transfer.
Although not shown, the resulting drift velocity and mean
energy profiles lie between the 0K and 293K results. This is
to be expected with less energy lost in the inelastic channel
than the 0K simulation, but a greater net energy loss in
the inelastic channel than the 293K simulation, where the

Figure 3. Rate of change of Ω with mean energy as a function of the
reduced electric field, for a swarm of electrons whose collisional
behaviour is described by our model cross-sections of equation (6).
The solid lines show ∂Ω/∂ε at varying temperatures, where below
−1 (indicated by the dashed horizontal line) NDC is predicted by
Robson’s criterion [19]. The symbols indicate where NDC is present
in our calculated drift velocity. We note that the prediction of NDC
at 0K appears to occur earlier than its appearance in the calculated
data; however, this is only due to the rapid decrease in the derivative
around 0.1Td.

Figure 4. The calculated mean energy of a swarm of electrons whose
collisional behaviour is described by the proposed model cross-
section set. The lines represent values calculated for the various
models using the multi-term kinetic theory solution, while the
symbols correspond to values calculated using an independent
Monte-Carlo method, where the same colour denotes the same
model. See text for details of the model notation.

Figure 5. The energy transfer rates for each of the collision channels
of the model cross-section, with varying reduced electric fields, as a
fraction of the power input from the external reduced electric field.
The line-styles here are the same as described in figure 2.
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de-excitation collisions contribute to energy gained by the
electron swarm. These model systems highlight the necessity
of detailed balance in collisional processes when modelling
real gaseous systems in the low energy regime.

For these non-physical models, which disregard thermal
effects in the elastic, inelastic and superelastic channels, NDC
is present in our results for the two cases where the de-
excitation process is removed. Similar to the results discussed
in section 3.1.2, the presence of superelastic collisions
increases the mean energy of the electron swarm, increasing
the drift velocity monotonically. As demonstrated by the
earlier results, Robson’s criterion for the presence of NDC
gives a very accurate prediction based only on a knowledge of
the energy transfer rates. Regardless of the temperature of the
model system, in the absence of the de-excitation process the
ratio of the energy transfers in equation (7) decreases more
rapidly with energy than it would otherwise, resulting in NDC
until the elastic energy transfer rate starts to dominate.

3.2. NDC in N2

For application of our discussion of the temperature
dependence of NDC to real gases, both experimental mea-
surements and simulations provide a clear illustration of the
effect in N2. As shown in figure 6, in N2 an NDC region is
present in the measurements of both Pack and Phelps [21, 22]
and Lowke [32] at 77K and 77.6K, respectively. All of the
experimental measurements show an absence of NDC at
293–300K. Our calculations, using the cross-section set of
Biagi [56–58] outlined in [59], along with the calculations of
Frost and Phelps [33] and Petrović et al [1], are in good
agreement with the experimental measurements of these
authors.

An increase in the drift velocity and the appearance of an
NDC region occurs in the absence of superelastic processes.
Highlighted in the work of Petrović et al [1] is the importance
of superelastic collisions for both the low-threshold rotational
and vibrational excitation channels. As with our model cross-
section, the temperature dependence of the excited state
populations in N2, and the reduced net energy transfer due to
inelastic collisions, compared to the 0K calculations, is
responsible for the absence of NDC at 195K and 293K. At
77K, the decreased population of the excited states for
rotational and vibrational excitations results in a higher net
energy transfer rate in those channels, and a corresponding
decrease in the drift velocity with increasing E/n0.

In figure 7 the power transfer rates calculated for each
collision type are given for 77K and 293K only. The explicit
power transfer due to the de-excitation processes (in particular
rotational excitations) illustrate that the increased contribution
of the superelastic processes at the higher temperatures,
adding energy to the swarm, is responsible for the decreased
range and eventual disappearance of the NDC region. The
resulting increased mean energy of the swarm changes the
sampled region of the elastic collision frequency, causing an
increased drift velocity. The temperature dependence of the
NDC region has been observed previously through the var-
iation of the vibrational channel temperature, at a fixed neutral
gas temperature, in mixtures of 99% argon and 1% N2 in [26].
Our present work illustrates the same dependence of NDC

Figure 6. Comparison of the calculated drift velocity for an electron
swarm in N2 as a function of reduced electric field, with some of the
other available experimental measurements at various temperatures.
Our calculations at 0K, 77K, 195K, and 293K, depicted by the
solid lines, are compared with the experimental measurements of
Pack and Phelps at 77K and 195K [21, 22], de Urqujio et al [59],
Lowke at 77.6K and 293K [32], Nakamura at 293K [60], Fischer-
Treuenfeld [61, 62], Frommhold [63, 64], Prasad and Smeaton
[65, 66], Hernández-Ávila et al [67], Wedding et al [68], Roznerski
[69, 70], and Kelly [71] (digitised from Campbell et al [72]).

Figure 7. The net power transfer rate for N2 for each collision type,
as a fraction of the advective power transfer, for electron impact at
77K (dashed lines) and 293K (solid lines), as a function of E/n0.
The coloured lines correspond to: black—elastic, dark blue—
rotational excitations, light blue—superelastic rotational processes,
red—vibrational excitations, dark red—superelastic vibrational
processes, purple—other excitations, and orange—ionisation. The
power transfer for the inelastic channels have been grouped by type
(rotations, vibrations, etc.) for the figures only. The fractional power
transfer in the rotational channel at 77K is slightly larger in
magnitude than at 293K, although this is almost indistinguishable
on the figure. The power transfer in the ionisation and other
excitation channels (excluding rotations and vibrations) are the same
at both temperatures, where the transport coefficients at those E/n0
for all temperatures have converged.
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occurring in a pure gas, although here the neutral gas temp-
erature is varied to change the rotational populations.

The calculation of Robson’s NDC criterion [19] at each
temperature is a very good predictor for the presence of NDC
in N2 also. Observed at 0K and 77K, figure 8 shows that the
prediction of NDC using the criterion e¶W ¶ < -1 was
consistent with our calculations. Our new experimental
measurements are also in very good agreement with these
predictions. At 293K, although close, the experimental data
do not exhibit NDC.

4. Concluding remarks

In this study we have investigated the temperature dependence
of NDC using a simple model system, alongside that of N2. The
power transfer rates in the elastic, inelastic and superelastic
channels show the damping effect of the de-excitation processes
on the range of NDC. With increasing temperatures, the higher
proportion of neutral background gas particles in excited states
increases the mean energy and subsequently suppresses the
NDC region that arises from the increasing elastic momentum-
transfer cross-section compared with the (decreasing importance
of the) inelastic channels at those fields.

To assess the impact of superelastic collisional processes on
NDC, we employed some model (although unphysical) cases,
with temperature dependence during elastic, excitation and de-
excitation processes manipulated. These have illustrated the
importance of the de-excitation process to the transport coeffi-
cients at low reduced electric fields. These systems also isolated
the physical processes responsible for NDC, with the energy
gained by the electron swarm from the de-excitation channel
reducing the range of, or eliminating NDC altogether.

We have also presented calculations of Robson’s [19] cri-
terion for the presence of NDC using the rate of change of the

ratio of the net energy exchange of inelastic to elastic collisions,
derived using momentum transfer theory. That criterion predicts
well the region of NDC in all of the model cases considered, as
well as the temperature-dependent NDC region present in N2,
using only a knowledge of the collision frequencies.

In the Frost-Phelps [33] differential finite difference form of
the inelastic collision operator utilised in this work, the repre-
sentation of inelastic collisions is truncated at zeroth order in the
mass ratio, neglecting the recoil of the neutral particle during an
inelastic collision. The effect of this assumption had been
assessed previously and found to have less than a 0.1% impact
on the calculated transport coefficients for electrons in H2 [55].
For the model cross-section considered in this work, however,
the inelastic threshold is more than 20 times lower than the
lowest rotational threshold in H2, and the impact of the trunca-
tion of the mass ratio for inelastics was found to have a greater
influence on the transport coefficients. At 0K recoil accounts for
a less than 2% change in the drift velocity and mean energy, but
this difference increased to over 6% at room temperature. To
derive the next terms in the mass ratio expansion for the Frost-
Phelps inelastic operator was beyond the scope of the present
work, however should be considered when adjusting cross-
sections derived from swarm transport measurements for pro-
cesses with very low thresholds (for example, the derived
vibrational cross-sections for H2 [55, 73]).

The effect of anisotropic scattering, for very-low threshold
inelastic processes on the transport coefficients, was assessed
using a model cross-section to replicate the forward-peaked
nature of rotational collisions. The inclusion of an inelastic
momentum-transfer cross-section results in a 5%–11% increase
in the drift velocity, and between a 4% and 9% change in the
mean energy of the electron swarm for the temperatures con-
sidered in this work, as detailed in the Appendix.

Finally, our calculations for an electron swarm in N2 for
temperatures between 0 and 293K were used to illustrate the
physical processes associated with NDC and the effect of
temperature on its appearance or absence, with the same
dependence on the gas temperature and number of neutrals in
an excited state found as in our model calculations.
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Appendix: Approximation effects: anisotropy in the
inelastic channel, higher-order superelastic
processes, and the two-term approximation

In this appendix we quantify the effect of various approx-
imations on both our model cross-section set and on N2.

Figure 8. Rate of change of Ω with mean energy as a function of
reduced electric field for electrons in N2. The solid lines show ∂Ω/
∂ε calculated from the energy transfer rates for N2 at varying
temperatures, where NDC is predicted by Robson’s criterion when

e¶W ¶ < -1 [19] (shown by the horizontal dotted line). The
symbols indicate where NDC is present in our calculated values.
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These include anisotropy in very low threshold inelastic
processes, the two-term approximation, and the absence of
superelastic processes in the l�1 equation of the inelastic
collision operator.

A.1. Model cross-section

In this study we are interested in the effect of anisotropic
scattering in low-threshold processes like rotational excita-
tions. The impact on the calculated transport coefficients are
explored in this subsection, alongside our assessment of other
assumptions.

The effect of anisotropic scattering in the inelastic
channel has been recently investigated in Janssen et al [74],
for an excitation scattering channel of (simplified) argon with
a threshold at 11.828eV. We note this energy threshold is
much higher than the lowest inelastic thresholds of molecules
like N2. For the low threshold processes considered here, to
quantify the effects of the anisotropic terms in the inelastic
operator, given in equations (4) and (5), we introduce an
angular scattering component for our model excitation in
order to emulate the forward-peaked nature of rotational
excitations. Using a forward scattering model, similar to the
pronounced forward and back scattering model of Reid [44],
we have selected the differential inelastic cross-section to be

( ) ( )s c cµU, cos 2inel , so that the inelastic momentum-
transfer cross-section is given by:

( )s s=
4

5
. A1m

inel
0
inel

To test explicitly the assumption of isotropic scattering in the
inelastic channel, here we modify only the inelastic momen-
tum-transfer, leaving the total inelastic and elastic momen-
tum-transfer cross-sections fixed, as has been considered
previously by Reid [44] and Phelps and Pitchford [43], for
example. Note that this does not fix the total momentum-

transfer cross-section. Our calculated drift velocities for the
anisotropic model combining equations (6) and (A1) are
shown in figure A1. For the various temperatures considered
in this work, the effects of anisotropy in the inelastic channel
are greatest where momentum exchange is dominated by the
inelastic channel. At 0K, this difference occurs over the
range 0.02–0.2Td with a variation of less than 5% in the drift
velocity and less than 9% in the mean energy of the swarm
(not plotted). For the 77K and 293K simulations, the max-
imum difference occurs at the lowest reduced electric fields,
where the momentum exchanged during superelastic colli-
sions increases the total momentum exchanged in the inelastic
channel. At 77K the drift velocity and mean energy differ by
11% and 6.5% respectively, and 10% and 4% at 293K,
respectively, decreasing with increasing E/n0 for both
temperatures.

The validity of using a two-term approximation has been
discussed previously (e.g. in [34, 43]), and we briefly con-
sider the effects of that assumption on our model calculations
here. Figure A1 shows our calculated drift velocity for iso-
tropic and anisotropic scattering using the model cross-
sections of equations (6) and (A1). For both the isotropic and
anisotropic models, the difference between the two-term and
multi-term results is greatest at 0K, with a difference of up to
8% for E/n0<0.1 Td in the drift velocity, and 5% in the
mean energy. While at 77K and 293K, for both models, the
differences between these transport coefficients reduces to
below 0.3%.

The final assumption we wish to address is that while de-
excitation is considered in the l=0 equation of the inelastic
operator, it is sometimes neglected in the l�1 equations. For
our isotropic model detailed in equation (6), we have removed
superelastic collisions in the l�1 channels in two ways. First
we consider the proportion of particles in the ground-state
calculated according to the neutral temperature, as is included
through the l=0 equation, but simply turn off the de-exci-
tation channel. The differences between the calculated drift
velocity and mean energy, when compared with our standard
treatment, are up to 33% and 16% at 77K and 30% and 10%
at 293K, respectively. We also considered neglecting higher-
order superelastic terms by setting all neutral particles in the
ground state, and find much smaller differences as the total
number of excitation collisions remains constant, with dif-
ferences of less than 9% and 1% in the drift velocity and
mean energy, respectively, at 77K, and 2% and 0.3% at
293K. The magnitude of these differences decreases with
increasing E/n0, influenced by the relative strength of the two
cross-sections, and the dominance of the elastic cross-section
above 1Td.

For each of the cases tested, our calculations demonstrate
that significant differences can appear when various approx-
imations are made, or detailed balance is neglected. The lar-
gest difference we calculated, and that was of particular
interest in this study, was for anisotropic scattering in the
low-threshold inelastic channel for our model system, where
differences of up to 11% in the transport coefficients were
calculated from the inelastically-isotropic model.

Figure A1. Variation of the drift velocity with reduced electric field
for the scattering model detailed in equations (6) and (A1), at
different temperatures. Results are shown for a two-term approx-
imation (labelled 2-term), multi-term calculation for the isotropic
model (labelled Iso) and anisotropic scattering in the inelastic
channel (labelled Aniso).
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A.2. N2

The impact of various approximations on the drift velocity for
electron swarms in N2 are detailed in this subsection.

In consideration of the differences between our calculations,
using the cross-section set of Biagi [56, 57] as detailed in [59],
and some of the experimental measurements, as detailed in de
Urquijo et al [59], we have investigated the effect of lmax on the
calculated drift velocity, specifically using a two-term solution,
the limitations of which have been discussed in detail previously
(e.g. [34]). The agreement with the de Urquijo et al [59]
experimental measurements, shown in figure 6, is improved by
using a two-term solution, with the errors decreasing from less
than 2.8% from our multi-term calculations, to less than 2.6%
for the two-term calculation results.

As part of our analysis of our calculations, we also consider
the energy sharing fraction between the two post-collision
electrons resulting from the ionisation process, taken here to be
equally shared between the scattered and ejected electrons. At
360Td, the highest reduced electric field considered in this
work, we find a difference of less than 0.4% and 0.6% between
the drift velocities and mean energies, respectively, from the
50%–50% sharing fraction and 1%–99% sharing fraction.
Comparing the 50%–50% sharing fraction results with those for
all-fractions being equiprobable, a less than 0.02% difference is
calculated between the drift velocities, and less than 0.3%
between the respective mean energies. The size of these differ-
ences is not unexpected given that the power transfer from the
ionisation channel is of a similar magnitude to the (individual)
excitations at the highest reduced electric field considered (see
figure 7 where the power transfer of the ionisation process is
compared with the grouped excitation power transfer (other than
rotational and vibrational processes)).

We also note that the neglect of recoil in the inelastic
channel in our solution may have some impact on our N2 cal-
culations, as in our model cross-section. The mass ratio and
rotational threshold in the model are similar to those for N2, and
the power transfer rates show similar behaviour to the model
calculations. This observation may be able to account for some
of the underestimation of our calculated transport coefficients
when compared with those from the present experiment.

Transport coefficients are dependent on how the exper-
imental current trace is analysed [75, 76], so we have com-
pared the calculated flux, bulk, and steady-state Townsend
drift velocities to the drift velocity extracted from our pulsed
Townsend experiment. It is expected that the differences
between the various possible drift velocities increase with
increasing E/n0, with the particle non-conserving ionisation
channel increasing in importance (as shown in the power
transfer rates in figure 7). At the highest reduced electric field
considered here, 360Td, the difference between the flux and
SST drift velocities is 2.5%, while a 10% difference is cal-
culated between the bulk and flux drift velocities at this field.

Similar to the calculations of Frost and Phelps [33] and
Petrović et al [1], where superelastic collisions were neglected
in the rotational channel, or all excitation channels, respec-
tively, we are interested in the effect of excluding de-excitation
processes in the l�1 terms of the inelastic collision operator,

but retaining their inclusion in the l=0 term. In Frost and
Phelps, neglecting rotational superelastic processes resulted in
a change of 2% in the momentum-transfer collision frequency
as a function of the characteristic energy, while in Petrović et al
excluding all de-excitations results in a much greater change to
the drift velocity. To quantify the effect on the drift velocity,
unlike with our model calculations in section A.1, with only
one excitation channel, in N2 the scaling of the ground-state
excitations, when modifying state populations, requires more
consideration as the number of rotational channels significantly
populated changes with the temperature of the neutrals. There
are multiple scalings of the ground-state equation that may be
considered (for example, with non-zero temperature or at 0 K,
or with or without degeneracy considered), so we have asses-
sed the two extreme possibilities combined with setting the
number of neutrals in an excited state to zero for l�1. We first
consider using the proper ground-state density for n0j, calcu-
lated using the neutral temperature, and secondly with no
scaling at all (effectively n0j=1):

1. When the density of neutrals in the ground state are
calculated according to the temperature of the neutrals,
the difference from our standard 293K calculations of
the drift velocity changes by less than 4%. The
difference decreasing with increasing E/n0, as the
higher threshold processes with lower excited-state
densities (being neglected) starting to dominate.

2. For the extreme case of no temperature-dependent
scaling or degeneracy included in the l�1 equation,
when setting n0j=1, this is not equivalent to the case
considered in our model calculations with 0K in the
l�1 equation of the inelastic operator. In this case, all
of the rotational processes would be weighted equally,
so the resulting transport would be influenced by the
number of rotational cross-sections included in the set.
In our current set of more than 40 individual rotational
processes, the difference from our standard calculations
and this modified set, results in an up to 60% difference
in the drift velocity. The much higher number of
neutrals in the ground state for each excitation channel
results in higher momentum exchange with electrons
with energies reduced to U−Uth, resulting in a
reduced mean energy and drift velocity.

For both of these extreme cases, the neglect of superelastic
processes has an important impact on the calculated transport
coefficients, when considering the ±0.1% accuracy required
in swarm calculations, and even the 10% error acceptable in
plasma applications [34].
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