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Abstract. A multi term technique for solving the Boltzmann equation has been developed to
investigate the time-dependent behavior of charged particle swarms in an unbounded neutral
gas under the influence of spatially uniform time-dependent electric and magnetic fields. The
hierarchy resulting from a spherical harmonic decomposition of the Boltzmann equation in
the hydrodynamic regime is solved numerically by representing the speed dependence of the
phase-space distribution function in terms of an expansion in Sonine polynomials about a
Maxwellian velocity distribution at an internally determined time-dependent temperature. This
technique avoids restrictions on the electric and magnetic field amplitudes and frequencies
and/or the charged particle to neutral molecule mass ratio traditionally associated with many
investigations. The variation of the electron transport coefficients with electric and magnetic
field strengths, field frequency, phase difference between the fields and angle between the fields
is addressed using physical arguments for certain model and real gases.

1. Introduction

In recent years interest in charged particle transport processes in neutral gases under the
conditions of ac electric and magnetic fields has been revived. This interest was motivated by the
desire to understand the physics underlying the operation of magnetically controlled/assisted
ac plasma discharges in which magnetic field affects both the electron heating mechanisms
and charged particle species transport. Large classes of non-equilibrium plasma devices utilize
electromagnets, permanent magnets or induced magnetic fields with the goal of enhancing
plasma density or improving electron confinement [1]. Hence one of the most challenging areas
in plasma modeling is an accurate representation of the effects of a magnetic field on charged
particle kinetics.

The history with respect to various aspects of charged particle transport processes in electric
and magnetic fields and techniques for solving the Boltzmann equation has been recently
reviewed [2, 3]. In contrast to the extensive literature on charged particle swarms in dc electric
and magnetic fields, until recently very little has been carried over to charged particle swarms
in ac electric and magnetic fields. In order to achieve this goal, a general and accurate theory is
required. Such a theory, in ac electric and magnetic fields crossed at arbitrary angle based on
the spherical harmonics decomposition of the Boltzmann equation has been published by White
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et al [2]. In this paper we make a further generalization of the theory with respect to the work
of White et al [2] to consider the explicit effects of non-conservative collisions.

We begin this paper with a brief review of a multi term theory for solving the Boltzmann
equation valid for both electrons and ions in time-dependent electric and magnetic fields crossed
at arbitrary angles, incorporating the effects of non-conservative collisional processes. We
focus on the time-dependent behavior of electron transport properties under conditions which
can be generally found in magnetically controlled/assisted rf discharges. We systematically
investigate the explicit effects associated with the electric and magnetic fields including field to
density ratios, field frequency, field phases and field orientations. In addition we will highlight
the explicit modification of transport coefficients by non-conservative collisional processes of
attachment and ionization. A multitude of kinetic phenomena were observed that are generally
inexplicable through the use of steady-state dc transport theory. We systematically study the
origin and mechanisms for such phenomena, their sometimes paradoxical manifestation and
possible physical implications which arise from their explicit inclusion into plasma models.

2. Theory

The behavior of charged particles in gases under the influence of electric and magnetic fields
is described by the phase-space distribution function f(r, c, t) representing the solution of the
Boltzmann equation

∂f

∂t
+ c · ∂f

∂r
+

q

m
[E(t) + c × B(t)] · ∂f

∂c
= −J (f, f0) . (1)

Here r and c denote the position and velocity co-ordinates, q and m are the charge and mass of
the swarm particle, t is time while E and B are magnitudes of the electric and magnetic fields,
respectively. In what follows, we employ a co-ordinate system in which E defines the z-axis
while B lies in the y-z plane, making an angle ψ with respect to the E. The right-hand side
of Eq. (1) denotes the linear charged particle-neutral molecule collision operator, accounting
for elastic, inelastic and nonconservative (e.g. ionizing and attaching) collisions. For elastic
collisions we use the original Boltzmann collision operator [4], while for inelastic collisions we
prefer the semiclassical generalization of Wang-Chang et al. [5]. The attachment and ionization
collision operators employed are detailed in Ref. [6].

Swarm conditions are assumed to apply where the charged particle number density is much
less than number density of neutral species and mutual interactions between swarm particles are
negligible compared with swarm particle-neutral particle interactions. We assume the neutral
molecules (of number density n0) remain in thermal equilibrium at a temperature T0 and
their internal states are characterized by a Boltzmann distribution. No space charge fields
are considered and both the electric and magnetic fields are spatially homogeneous and time-
dependent.

2.1. Time-dependent hydrodynamic regime and definition of transport coefficients

The connection between experimental and theoretical investigations of swarm behavior is usually
made through the equation of continuity

∂n(r, t)

∂t
+ ∇ · Γ (r, t) = S(r, t) , (2)

where

n(r, t) =

∫

f(r, c, t)dt , (3)

while Γ (r, t) = n〈c〉 is the swarm particle flux and S(r, t) represents the production rate per
unit volume per unit time arising from non-conservative collisional processes.
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Far from boundaries,sources and sinks, the hydrodynamic regime is assumed to apply. In the
time-dependent hydrodynamic regime the space-time dependence is entirely carried out by the
density n(r, t) of charged particles and the distribution function has the form

f(r, c, t) =
∞

∑

k=0

f (k)(c, t) ⊙ (−∇)k n(r, t) , (4)

where f (k)(c, t) are time-dependent tensors of rank k and ⊙ denotes a k-fold scalar product.
Assuming the functional relationship (4), the flux Γ (r, t) and source term S(r, t) in (2) are

expanded as follows:

Γ (r, t) = W
⋆(t)n(r, t) − D

⋆(t) · ∇n(r, t) , (5)

S(r, t) = S(0)(t)n(r, t) − S
(1)(t) · ∇n(r, t) + S

(2)(t) : ∇∇n(r, t) (6)

where W
⋆(t) and D

⋆(t) define, respectively, the flux drift velocity and flux diffusion tensor.
Substitution of expansion (5) and (6) into the continuity equation (2) yields the time-dependent
diffusion equation,

∂n(r, t)

∂t
+ W (t) · ∇n− D(t) : ∇∇n = −Ra(t)n , (7)

which define the bulk transport coefficients

Ra = −S(0) (loss rate) , (8)

W = W
(⋆) + S

(1) (bulk drift velocity) , (9)

D = D
(⋆) + S

(2) (bulk diffusion tensor) . (10)

In swarm experiments the bulk transport coefficients are generally measured and tabulated.
These transport coefficients are associated with the swarms centre of mass transport. The
explicit influence of non-conservative collisional processes on the swarms centre of mass transport
is described by the correction terms S(1) and S(2). Obviously, in the absence of non-conservative
processes, these two sets of transport coefficients coincide. The distinction between these two
sets of transport coefficients was discussed at length in the 1980s, but has been ignored in the
majority of previous work in the plasma modeling community. This has lead to a potentially
serious mismatch between input swarm data (generally the bulk transport properties) and the
parameters (often the flux transport properties) required in many plasma fluid models [9]. Note
that only theory, i.e. Boltzmann equation calculations and/or Monte Carlo simulations, can
resolve any such mismatch, by providing both flux and bulk transport coefficients.

2.2. Spherical harmonics decomposition of the Boltzmann equation

The angular dependence of the phase-space distribution function in velocity space can be
represented in terms of an expansion in spherical harmonics:

f(r, c, t) =
∞

∑

l=0

l
∑

m=−l

f (l)
m (r, c, t)Y [l]

m (ĉ) , (11)

where Y
[l]
m (ĉ) are spherical harmonics and ĉ denotes the angles of c. The value of l is incremented

until some predefined accuracy criterion is satisfied. This value indicates the deviation of the
velocity distribution function from isotropy.
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Assuming the time-dependent hydrodynamic regime, the spatial dependence is represented
by

f (l)
m (r, c, t) =

∞
∑

s=0

s
∑

λ=0

λ
∑

µ=−λ

f(lm|sλµ; c, t)G(sλ)
µ n(r, t) , (12)

where G
(sλ)
µ is the irreducible gradient operator [6]. Truncation at s = 2 is necessary to

determine transport coefficients up to and including diffusion when non-conservative collisions
are operative.

The speed dependence of the coefficients in Eq. (12) is represented by an expansion about a
Maxwellian at an arbitrary time-dependent temperature Tb(t), in terms of Sonine polynomials

f(lm|sλµ; c, t) = ω(α(t), t)
∞

∑

ν=0

F (νlm|sλµ;α(t), t)Rνl(α(t)c) , (13)

where

Rνl(α(t)c) = Nνl

[

α(t)c√
2

]l

S
(ν)
l+1/2

(

α2(t)c

2

)

, (14)

ω(α(t), c) =

[

α2(t)

2π

]3/2

exp

[

−α
2(t)c2

2

]

, (15)

α2(t) =
m

kTb(t)
, (16)

N2
νl =

2π3/2ν!

Γ(ν + l + 3/2)
, (17)

and S
(ν)
l+1/2

(

α2(t)c
2

)

are Sonine polynomials. Using the appropriate orthogonality relations of the

spherical harmonics and modified Sonine polynomials the following system of coupled differential
equations for the moments F (νlm|sλµ;α(t), t) is generated:

∞
∑

ν′=0

∞
∑

l′=0

l′
∑

m′=−l′

{

∂tδνν′δll′δmm′ + ω(000; t)δνν′δll′δmm′ + n0J
l
νν′δll′δmm′

+ ia(t)(l′m10|lm)α(t) < νl||K [1]||ν ′l′ > δmm′

+
q

m
B(t)

{

sinψ

2

[

√

(l −m)(l +m+ 1)δm′m+1 −
√

(l +m)(l −m+ 1)δm′m−1

− im cosψδmm′

]

}

δνν′δll′

}

F (ν ′l′m′|sλµ;α(t), t) = X(νlm|sλν;α(t), t) , (18)

where J l
νν′ and 〈νl||K [1]ν ′l′〉 are reduced matrix elements, ω(000) represents the net creation rate

and (lm|l′m10) is a Clebsch-Gordan coefficient. The explicit expressions for the RHS are given
in Ref. [7]. Discretising in time using an implicit finite difference scheme converts the system
of coupled differential equations into a hierarchy of coupled complex equations. This sparse
system of equations is solved using standard sparse inversion routines. The explicit expressions
for both bulk and flux transport coefficients including the mean energy, gradient energy vector
components and temperature tensor components are given in Refs. [2, 7].
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3. Results and discussion

3.1. Preliminaries

In this section we consider the electron transport in rf electric and magnetic fields under
hydrodynamic conditions using a multi term theory for solving the Boltzmann equation. Similar
studies have been published previously for the Reid ramp model in a crossed field configuration
[2, 3]. We try to complement these previous publications by a comprehensive description of
electron transport for the most general case of arbitrary field orientations and phase differences
between the fields. In addition, in this paper we make a further generalization with respect
to the work of White et al [2] to consider the explicit effects associated with non-conservative
collisions. The ionization model of Lucas and Saelee [8] is employed in this work with the goal of
understanding the effects of the ionization processes. Another important aspect of this work is
that we investigate the influence of varying field frequency and phase difference between the fields
on the electron transport properties in carbon tetrafluoride (CF4). CF4 provides an example
of a gas which has applications in a wide range of devices where the electron kinetics plays
an important role in device behavior. For example, CF4 has application in rf plasmas mostly
realized in capacitively coupled plasma (CCP) [10] and even in ICP for silicon etching [11]. The
knowledge of electron transport coefficients and in particular the values of electric and magnetic
field strengths for which non-conservative collisions (attachment/ionization) may or may not
have a significant effect on the drift and diffusion properties may be important for the operation
of these devices. We employ a set of cross sections for CF4 developed by Kurihara et al [12]. For
illustrative purposes we chose an applied electric field of 100 Td (1Td = 10−21 Vm−2) to ensure
the average energy of the swarm is in the range where some interesting kinetic phenomena may
be induced. The theory and associated code have been benchmarked against an independent
time-resolved Monte Carlo simulation [13].

3.2. The effects of the magnetic field strength

In this section we investigate the influence of the magnetic field strength on the electron transport
properties in CF4. In Figure 1, we display the temporal profiles of the (a) mean energy, (b)
longitudinal and (c) transverse drift velocity components and (d) diffusion coefficient along the
E×B direction, as a function of B0/n0 in a crossed field configuration for a fixed phase difference
of π/3 rad between the fields. The mean energy is decreased for an increasing B0/n0. We may
observe that the symmetric profile of the mean energy for the magnetic field free case becomes
asymmetric and triangular at high B0/n0 with a fast increase and slower decrease.

Both components of the drift velocity lose the symmetry with increasing magnetic field
amplitude and at the highest magnetic field strong oscillations are induced due to the cyclotron
rotation of the electron swarm. These oscillations represent essentially collision-less gyro-orbits of
the swarm particles during this phase of the cycle. Transverse component along E×B direction
is more asymmetric than the longitudinal component, thus resulting in a cycle-averaged value
that is non-zero. These figures clearly show how dramatic the influence of the magnetic field
can be. The magnetic field and resulting Lorentz force in the E × B direction produces a
macroscopic drift in that direction as well as complex, asymmetric behavior of the longitudinal
component of drift velocity.

The transverse diffusion coefficient along the E×B direction shows some unexpected features.
We observe that it has all the features of anomalous diffusion [3] but perhaps the most striking
phenomena is the presence of negative transiently diffusivity in the limit of the highest B0/n0

of 2000 Hx (1Hx = 10−27 Tm3). These results independently confirm the previous calculations
and the reader is referred to [14] for details. Generally speaking, the temporal profiles presented
in Fig. 1 (a)-(d) are not predictable from steady-state dc theory. The temporal non-locality in
association with the effects of magnetic field result in complex temporal profiles of the electron
transport coefficients in rf electric and magnetic fields.
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Figure 1. Temporal profiles of (a) mean energy, (b) longitudinal and (c) transverse drift velocity
components and (d) diffusion coefficient along the E × B direction for electrons in CF4 under
the influence of B0/n0 for a fixed phase difference of π/3 rad. The electric field amplitude is set
to 100 Td, the field frequency is 100 MHz and n0 = 3.54 × 1022 m−3.

3.3. The effects of the phase difference and the field orientations

In this section we investigate the influence of varying the phase difference between the fields on
the electron transport properties for the ionization model of Lucas and Saelee. In Fig. 2, we
display the 3-dimensional plots of the temporal profiles of the mean energy and ionization rate as
a function of the phase difference between the fields. In the limit of small phase differences, the
magnetic field is large when electric field peaks and electrons cannot gain much energy from the
electric field - the magnetic field cools the swarm. Consequently, the mean energy is significantly
reduced. As the phase difference increases, the magnetic cooling effects are reduced, particularly
in phases where electric field peaks (and magnetic field magnitude is small) and we observe that
the modulation amplitude and cycle-averaged value are increased.

In contrast to mean energy, the ionization rate exhibits a specific and unexpected behavior. In
the limit of large phase differences the ionization rate is significantly modulated while in the limit
of small phase differences this transport quantity is significantly reduced. Note that the mean
energy does not follow this trend, which implies that the distribution function (and in particular
the tail of the distribution) must be also strongly modulated. Thus the phase difference between
the fields has important implications for the efficiency of the ionization processes and other
inelastic channels that play vital role in maintaining the plasma.

In Fig. 3 we show the 3-dimensional plots of the temporal profiles of the ionization rate and
longitudinal diffusion coefficient as a function of the field orientations. As the angle between
the fields increases, both transport quantities monotonically decrease for a fixed phase. While
the modulation amplitude of n0Dzz is increased for an increasing angle between the fields, the
ionization rate displays the opposite behavior. In addition, in the limit of perpendicular fields
the ionization rate is significantly reduced. One may understand this behavior by considering
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Figure 2. The 3-dimensional plots of the temporal profiles of the mean energy and ionization
rate as a function of the phase difference between the fields for the Lucas-Saelee model.
The electric and magnetic fields have the following forms E(t) = 10 cos(ωt) Td and B(t) =
1000 cos(ωt + θ) Hx, respectively, where θ is the phase difference while ω/n0 is the reduced
angular frequency of 1 × 10−15 rad m−3 s−1.
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Figure 3. The 3-dimensional plots of the temporal profiles of the mean energy and ionization
rate as a function of the angle between the fields for the Lucas-Saelee model. The electric and
magnetic fields have the following forms E(t) = 10 cos(ωt) Td and B(t) = 1000 sin(ωt) Hx,
respectively. The reduced angular frequency ω is set to 1 × 10−15 rad m−3 s−1.

the cooling effects associated with the action of an orthogonal component of the magnetic field.

3.4. The effect of the cyclotron resonance on electron transport

One important aspect of this work is that we propose a new additional mechanism for collisional
heating in rf electric and magnetic fields caused by the synergism of temporal non-locality
and cyclotron resonance effect. The effect of the cyclotron resonance represents the resonant
absorption of energy from a radio-frequency or microwave-frequency electromagnetic field by
electrons in a uniform dc/rf magnetic field when the frequency of the electromagnetic field
equals the cyclotron frequency of the electrons. In Fig. 4 (a) and (b) we demonstrate this
effect for the Reid ramp model. The cycle-averaged mean energy is presented as a function of
magnetic field amplitude, field frequency and phase difference between the fields. For the field
frequency of 50 MHz, the cycle-averaged mean energy is a monotonically decreasing function
of magnetic field. However, as the field frequency is increased, the oscillatory-type behavior is
clearly evident. The cycle-averaged mean energy is affected by the phase difference between the
fields as shown in Fig. 4 (b). For an increasing phase difference, the cycle-averaged mean energy

24th Summer School and International Symposium on the Physics of Ionized Gases IOP Publishing
Journal of Physics: Conference Series 133 (2008) 012005 doi:10.1088/1742-6596/133/1/012005

7



is increased. These figures clearly show that under specific conditions the magnetic field can
efficiently pump the energy into the system. The magnetic field amplitude and field frequency
can be tuned to exploit/control this behaviour.
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Figure 4. The cycle-averaged mean energy as a function of B/n0 for various (a) field frequencies,
and (b) phase differences for Reid ramp model. The electric field amplitude is set to 14.14 Td,
the field frequency is 200 MHz and n0 = 3.54 × 1022 m−3.

To understand this phenomena we look at the power deposited by the electric field by
considering the longitudinal drift velocity shown in Fig. 5. In this figure we can see that
increasing magnetic field amplitude decreases the phase delay of the longitudinal drift with
respect to the electric field while leaving the drift amplitude relatively unchanged. Consequently
the increase in the cycle-averaged mean energy over the range of magnetic field amplitudes 0-400
Hx then follows.
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Figure 5. Temporal profiles of the longitudinal drift velocity component as a function of B/n0

for the Reid ramp model. The electric field amplitude is set to 14.14 Td, the field frequency is
200 MHz and n0 = 3.54 × 1022 m−3.
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4. Conclusion

In this work we have systematically investigated the effects of magnetic field amplitude, field
frequency, field orientations and phase difference between the fields on the electron transport
properties in rf electric and magnetic fields for a range of model and real gases using a multi term
theory for solving the Boltzmann equation. There is a multitude of new phenomena observed
which are not predictable from d.c. steady state transport and these results demonstrate the
importance of a time-resolved study of electron transport under these conditions. Further to
this, and of particular significance in this study, is the ability to suppress/optimize (cycle-
averaged) collisional heating under rf electric and magnetic fields through tuning the magnetic
field magnitude, frequency and/or phase-difference.
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References
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