
A multi-term solution of the nonconservative Boltzmann equation for the analysis of temporal

and spatial non-local effects in charged-particle swarms in electric and magnetic fields

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2011 Plasma Sources Sci. Technol. 20 024013

(http://iopscience.iop.org/0963-0252/20/2/024013)

Download details:

IP Address: 131.155.2.66

The article was downloaded on 20/04/2011 at 10:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0963-0252/20/2
http://iopscience.iop.org/0963-0252
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING PLASMA SOURCES SCIENCE AND TECHNOLOGY

Plasma Sources Sci. Technol. 20 (2011) 024013 (15pp) doi:10.1088/0963-0252/20/2/024013

A multi-term solution of the
nonconservative Boltzmann equation for
the analysis of temporal and spatial
non-local effects in charged-particle
swarms in electric and magnetic fields
S Dujko1,2,3, R D White2, Z Lj Petrović1 and R E Robson2
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Abstract
A multi-term solution of the Boltzmann equation has been developed and used to investigate
the temporal and spatial relaxation of charged-particle swarms and associated phenomena
induced by non-local effects under the influence of electric and magnetic fields crossed at
arbitrary angles when nonconservative collisions are operative. The hierarchy resulting from a
spherical harmonic decomposition of the Boltzmann equation in both the hydrodynamic and
non-hydrodynamic regimes is solved numerically by representing the speed dependence of the
phase-space distribution function in terms of an expansion in Sonine polynomials about a
variety of Maxwellian based weighting functions. Temporal and spatial relaxation profiles of
various charged-particle swarm transport properties are presented for certain model and real
gases over a range of field strengths and angles between the fields. It was found that the
magnetic field strength and angle between the fields have an ability to control the relaxation
process: in general, these parameters can be used to enhance or suppress the oscillatory features
in the relaxation profiles of various transport properties. The explicit and implicit effects of
nonconservative collisions on the drift and diffusion elements in varying configurations of
radio-frequency electric and magnetic fields are considered using physical arguments.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Non-equilibrium, low-temperature plasma discharges
sustained and controlled by electric and magnetic fields are
widely used routinely in many scientific and industrial appli-
cations [1, 2]. It is well known that within these discharges
the electric and magnetic fields vary in space, time and ori-
entation depending on the type of discharge. Consequently,
the transport of electrons and ions within these discharges is

complex. In general, transport/plasma properties are non-local
in both space and time, i.e. transport properties at a given point
are no longer a function of instantaneous local fields. While
there has been a considerable amount of research into tempo-
ral and spatial non-locality of electron transport for electric
fields only, the study of such effects including an additional
magnetic field is limited. This may be due in part to the
unavoidable additional complexity associated with introducing
the magnetic field into the theories and simulations. When one
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requires high accuracy this additional complexity is generally
unavoidable.

Since the mid- to late-1990s the theoretical analysis
of charged-particle transport processes in neutral gases in
the presence of electric and magnetic fields has advanced
considerably. For electron swarms in crossed electric
and magnetic fields, progress was stimulated by the desire
to overcome the accuracy limitations of the two-term
approximation for solving the Boltzmann equation and
various types of equivalent/effective field approximations often
employed to describe the impact of a magnetic field on the
transport. While effective and equivalent field theories [3–5]
including fluid treatments [6] can generally identify much
of the physics present in the problem, when high accuracy
is demanded multi-term Boltzmann equation solutions and
Monte Carlo simulations are inevitable [7, 8]. The first
systematic multi-term analysis for electron swarms under
hydrodynamic conditions in the presence of uniform dc
electric and magnetic fields was given by Ness [9] and since
then a considerable number of papers has been published
in a relatively short time. The situation up to 2002 was
reviewed in [10] where a unified multi-term theory for solving
the Boltzmann equation valid for both electrons and ions
in the presence of time-dependent electric and magnetic
fields was presented. This theory was recently employed to
study the influence of an orthogonal magnetic field on the
transient behavior of the diagonal diffusion tensor elements
for swarms undergoing conservative collisions only [11, 12].
Since ionization plays a vital role in plasma maintenance any
transport theory must include rate coefficients, and correctly
account for the effects of nonconservative collisions on drift
and diffusion. When a magnetic field is present and/or
when the fields vary in time, space, phase and orientations
transport data cannot simply be obtained from an adaptation
of dc electric field results. A multitude of kinetic phenomena
induced by the temporal non-locality in electron transport
in radio-frequency electric and magnetic fields have been
observed by a Monte Carlo simulation technique [8, 13, 14]
that are generally inexplicable through the use of steady-state
dc transport theory. With these remarks as background, we
extend the previous theory outlined in [10–12] and in this
work we present a theoretical and numerical investigation of
hydrodynamic charged-particle swarms in neutral gases under
the influence of dc and ac electric and magnetic fields when
nonconservative collisions are operative with applications
of non-equilibrium magnetized plasma discharges to plasma
processing, gas laser discharges and drift chambers for
detection particles in mind. Preliminary and some illustrative
examples have already been published in [15] while in [16]
this theory has been systematically benchmarked in varying
configurations of electric and magnetic fields against results
obtained by a Monte Carlo simulation technique.

We begin this paper with a brief review of a multi-term
theory for solving the Boltzmann equation valid for both
electrons and ions under the time-dependent hydrodynamic
and steady-state non-hydrodynamic conditions when electric
and magnetic fields are crossed at arbitrary angles and when
nonconservative collisional processes are operative. We focus

on two situations: (i) temporal relaxation and transport of
the electrons under time-dependent hydrodynamic conditions
and (ii) spatial relaxation of the electrons under steady-
state non-hydrodynamic conditions. In addition to the
Boltzmann equation analysis, our Monte Carlo simulation
code specifically developed to study the spatial relaxation
of electrons in an idealized SST experiment in the presence
of nonconservative collisions [17] is applied to test and
benchmark results obtained via a Boltzmann equation analysis.
After giving brief reviews of theoretical methods, we then
give numerical examples for various cases of special interest,
highlighting recent new results.

2. Theory

The behavior of charged-particle swarms in gases under the
influence of electric and magnetic fields is described by the
phase-space distribution function f (r, c, t) representing the
solution of the Boltzmann equation

∂f

∂t
+ c · ∂f

∂r
+

q

m
[E + c × B] · ∂f

∂c
= −J (f, f0), (1)

where r and c denote the position and velocity co-ordinates,
q and m are the charge and mass of the swarm particle and t

is time. The electric and magnetic fields are assumed spatially
homogeneous with magnitudes E and B, respectively. In
what follows, we employ a co-ordinate system in which E

defines the z-direction while B lies in the y–z plane, making
an angle ψ with respect to the E. Swarm conditions are
assumed to apply and J (f, f0) denotes the rate of change of f

due to binary collisions with the neutral molecules only. The
original Boltzmann collision operator [18] and its semiclassical
generalization [19] are used for elastic and inelastic processes,
respectively. The attachment and ionization collision operators
employed are detailed in [20].

2.1. Representation of the velocity dependence

The velocity dependence of f is represented in terms
of a combined spherical harmonic and Sonine polynomial
expansion about a Maxwellian at a temperature Tb:

f (r, c, t) = w(α, c)

∞∑
ν=0

∞∑
l=0

l∑
m=−l

F (νlm|r, α, t)Rνl(αc)

×Y [l]
m (ĉ), (2)

where

w(α, c) =
(

α2

2π

)3/2

exp

{−α2c2

2

}
, (3)

Rνl(αc) = Nνl

(
αc√

2

)l

S
(ν)
l+1/2

(
α2c2

2

)
, (4)

N2
νl = 2π3/2ν!

�(ν + l + 3/2)
. (5)

Here Y [l]
m (ĉ) are spherical harmonics, ĉ denotes the angles

of c, S
(ν)
l+1/2(

α2c2

2 ) are Sonine polynomials and α2 = m
kTb

.
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The modified Sonine polynomials satisfy the orthonormality
relation ∫ ∞

0
w(α, c)Rν ′l′(αc)Rνl(αc)c2dc = δν ′νδl′l . (6)

The various properties of the moments due to symmetry and
reality considerations carry over from the steady-state theory
and are described in [21, 22]. It should be emphasized,
however, that for electric and magnetic fields crossed at an
arbitrary angle, the moments of the distribution function are
generally complex.

Using the appropriate orthogonality relations the
following system of coupled differential equations for the
moments F(νlm; r, t, α) is generated:

∞∑
ν ′=0

∞∑
l′=0

l′∑
m′=−l′

[ (
∂

∂t
δνν ′ + n0J

l
νν ′(α)

)
δl′lδm′m

+ i
qE

m
α(l′m10|lm)〈νl||K [1]||ν ′l′〉δm′m

+
qB

m

{√
(l − m)(l + m + 1)

sin ψ

2
δm′m+1

−
√

(l + m)(l − m + 1)
sin ψ

2
δm′m−1 − im cos ψδmm′

}

×δl′lδν ′ν − i
1

α
(l′m10|lm)〈νl||αc[1]||ν ′l′〉δm′m∇

]
×F(ν ′l′m′; r, t, α) = 0, (7)

(ν, l) = 0, 1, 2, . . . ,∞, m = −l, −l + 1, . . . , l − 1, l,

where n0 is the neutral gas number density while (l′m10|lm) is
a Clebsch–Gordan coefficient. The reduced matrix elements
J l

νν ′(α), 〈νl||αc[1]||ν ′l′〉 and 〈νl||K [1]||ν ′l′〉 of the collision
operator, velocity and velocity derivative are given by (11),
(12a) and (12b) of [20], respectively. For further details the
reader is referred to [10, 15].

2.2. Representation of the spatial dependence

The treatment of the spatial dependence of the phase-space
distribution function is dependent on the conditions under
which the experiment is performed.

Hydrodynamic regime. In carefully controlled swarm
experiments, spatial gradients are designed to be small so
that the hydrodynamic regime in general prevails, and the
space-time dependence can be projected onto the number
density [23]. In this regime, the distribution function can be
expressed in terms of a linear functional of n(r, t), usually
taken to be a density gradient expansion (see equation (8)).
Experiments may be analyzed via solution of the diffusion
equation, and transport coefficients extracted accordingly.
Similar conditions can often be found far away from the
electrodes in the bulk of a weakly ionized non-equilibrium
plasma where the fields are almost spatially homogeneous. In
any case, for studies of transport in the hydrodynamic regime
the spatial dependence is projected onto the number density

through a time-dependent density gradient expansion:

F(νlm|r, t, α) =
∞∑

s=0

∞∑
λ=0

λ∑
µ=−λ

F (νlm|sλµ; t, α)

×G(sλ)
µ n(r, t), (8)

where G(sλ)
µ n(r, t) is the irreducible gradient tensor operator

[20]. Substituting into (7) and equating coefficients of
G(sλ)

µ n(r, t) yields the following hierarchy of equations for
the calculation of time-dependent transport coefficients:
∞∑

ν ′=0

∞∑
l′=0

∞∑
m′=0

[
(n0J

l
νν ′(α) + Raδνν ′)δll′δmm′

+ i
qE

m
α(l′m10|lm)〈νl||K [1](α)||ν ′l′〉

+
qB

m

{√
(l − m)(l + m + 1)

sin ψ

2
δm′m+1

−
√

(l + m)(l − m + 1)
sin ψ

2
δm′m−1

−im cos ψδm′m

}
δνν ′δll′ − n0J

0
0ν ′(α)F (νlm|000)

×(1 − δs0δλ0δµ0)δl′0δm′0

]
×F(ν ′l′m′|sλν) = X(νlm|sλν), (9)

where Ra is the net creation rate given by

Ra = n0

∞∑
ν=0

J 0
0ν(α)F (νlm|000). (10)

The matrix elements of the collision matrix J 0
0ν are non-

zero only when ionization and/or attachment processes
are operative. The spatially homogeneous member of
the hierarchy (9) and (10) constitute a non-linear system
of equations for the spatially homogeneous moments
F(νlm|000). This system is solved iteratively using the
similar method initially developed by Ness and co-workers
[9, 10, 24, 25].

The explicit expressions for the RHS are given in [16].
Discretizing in time using an implicit finite difference scheme
converts the hierarchy of systems of coupled differential
equations into a hierarchy of coupled matrix equations. In
the absence of nonconservative collisions, it is sufficient only
to solve the members of the hierarchy up to first order in
the density gradients, to determine all quantities of interest.
However, in order to investigate the explicit influence of
nonconservative collisions on both the drift and diffusion a
second-order density gradient is required and the following
members of the hierarchy (9) must be considered: (s, λ, µ) =
(0, 0, 0), (1,1,0), (1,1,1), (2,0,0), (2,2,0), (2,2,1), (2,2,2). The
bulk drift velocity components are related to the calculated
moments via

Wx =
√

2

α
Im{F(011|000; α)}

−
√

2
∞∑

ν ′=0

n0J
0
0ν ′ Im

{
F(ν ′00|111; α)

}
, (11)
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Wy =
√

2

α
Re

{
F(01 − 1|000; α)

}

+
√

2
∞∑

ν ′=0

n0J
0
0ν ′Re

{
F(ν ′00|111; α)

}
, (12)

Wz = − 1

α
Im

{
F(010|000; α)

}

+
∞∑

ν ′=0

n0J
0
0ν ′ Im

{
F(ν ′00|110; α)

}
. (13)

while the bulk diagonal elements of the diffusion tensor are
given by

Dxx = − 1

α

[
Re

{
F(011|111; α)

}
− Re

{
F(01 − 1|111; α)

}]

−
∞∑

ν ′=0

n0J
0
0ν ′

[
1√
3
F(ν ′00|200; α) +

1√
6
F(ν ′00|220; α)

−Re

{
F(ν ′00|222; α)

}]
, (14)

Dyy = − 1

α

[
Re

{
F(011|111; α)

}
+ Re

{
F(01 − 1|111; α)

}]

−
∞∑

ν ′=0

n0J
0
0ν ′

[
1√
3
F(ν ′00|200; α) +

1√
6
F(ν ′00|220; α)

+ Re

{
F(ν ′00|222; α)

}]
, (15)

Dzz = − 1

α
F(010|110; α) −

∞∑
ν ′=0

n0J
0
0ν ′

[
1√
3
F(ν ′00|200; α)

−
√

2

3
F(ν ′00|220; α)

]
. (16)

The terms involving the summations in the drift velocity
components and diagonal elements of the diffusion tensor
represent the explicit effects of nonconservative collisions
while the rest constitute the flux contribution. The readers are
referred to [26, 27] for a detailed discussion of the transport
coefficient definitions. The bulk transport coefficients are
usually tabulated in the literature but for some aspects of
plasma modeling the flux data are required [27]. The most
appropriate procedure would be to use the experimental swarm
data (e.g. bulk values) for the analysis of the validity of the
cross section and then to calculate the flux quantities which are
necessary as input data in fluid modeling of plasma discharges
as detailed by Robson et al [27]. It must be emphasized that
in some cases the bulk and flux transport coefficients may
exhibit completely different qualitative behavior, as in cases of
negative absolute electron flux mobility (but not bulk mobility)
for strongly attaching gases [28, 29] and negative differential
conductivity (NDC) for positron bulk drift velocity (but not
flux drift velocity) [30]. In the absence of nonconservative
collisions, these two sets of coefficients coincide. We note
Re{ } and Im{ }, respectively, represent the real and imaginary
parts of the moments. The spatially averaged mean energy is
given by

ε = 3
2kTb

[
1 −

√
2
3F(100|000; α)

]
. (17)

while the energy gradient vector components are given by

γx = 3
2kTb

[
2√
3
Im

{
F(100|111; α)

}]
, (18)

γy = 3
2kTb

[ − 2√
3
Re

{
F(100|111; α)

}]
, (19)

γz = 3
2kTb

[ −
√

2
3 Im

{
F(100|110; α)

}]
. (20)

Other transport properties of interest for this work including
the temperature tensor components and spatially homogeneous
distribution function are defined in our previous publications
[10, 15, 21, 22].

Non-hydrodynamic regime. In many discharges the existence
of sources, boundaries and/or spatially varying fields can
give rise to non-hydrodynamic behavior. In this case, the
spatial dependence must be treated explicitly. Here we use
a second-order finite differencing scheme with appropriate
modifications at the boundaries to solve the hierarchy (7). The
quantities of interest in terms of the calculated moments are

n(z) = F(000; α, z), (21)

ε(z) = 3

2
kTb

[
1 −

√
2

3

F(100; α, z)

F (000; α, z)

]
, (22)

vz(z) = − 1

α

Im[F(010; α, z)]

F(000; α; z)
, (23)

vx(z) =
√

2

α

Im[F(011; α, z)]

F(000; α; z)
, (24)

vy(z) =
√

2

α

Re[F(011; α, z)]

F(000; α; z)
. (25)

As previously emphasized, our Monte Carlo code has
been used for a verification of the results obtained under
hydrodynamic conditions. The reader is referred to a recent
paper [17] for a detailed discussion how to sample data
under SST conditions when the ionization and/or attachment
significantly alter the spatial relaxation of the electrons.

3. Results and discussion

In this section the theory outlined in the previous section
is applied to a series of model and real gases when
nonconservative collisions are present under both the
hydrodynamic and non-hydrodynamic conditions. The
motivation for employing model gases lies in the fact that
through the use of simple forms of cross sections we can
isolate and elucidate fundamental physical processes which
govern the specific behavior of electron swarm for a given
set of simulation conditions. In addition, the analytical form
of the cross sections provides no ambiguity and uncertainty
generated by the complicated structure of real cross sections.
It must be emphasized, however, that our theory and associated
code are equally valid for real cross sections, as is also
demonstrated here.
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Figure 1. Electron impact cross sections for molecular oxygen used
in this study [25, 31, 32].

In this section we do not attempt a detailed analysis of
transport properties and distribution function components for
various gases and their variation with applied field frequency,
electric and magnetic field strengths and field orientations.
Such details are left to a subsequent paper and can in any
case be found in [22]. Rather it is the aim of this section
to present results which highlight the errors associated with
certain approximations commonly employed in this field,
alluded to in the earlier sections. In general in our theories
and associated codes are accurate to at least 1%.

3.1. Temporal relaxation

In this section we consider the response of macroscopic
transport properties to the application of a magnetic field
for electrons in molecular oxygen under hydrodynamic
conditions. The cross sections for electron scattering in
molecular oxygen detailed in [25, 31, 32] are considered in
this study and displayed in figure 1. The large cross
sections for vibrational excitations in O2 produce a large
asymmetry in velocity space which makes the two-term
approximation for solving the Boltzmann equation inadequate
for the analysis of transient behavior of various transport
parameters from the initial to the final time where all
transport parameters have reached their steady-state values.
A value of lmax = 4 was required in order to achieve
convergence to within 1% for the various transport properties
of interest. This work is an extension of the work in [11]
to consider spatially inhomogeneous transport coefficients in
the presence of nonconservative collisions and for an arbitrary
field configuration. The initial conditions represent the steady-
state magnetic field-free case where the electron swarm is
acted on solely by a dc electric field (E/n0 = 270 Td,
B/n0 = 0 Hx; 1Td = 10−21 V m2, 1 Hx = 10−27 Tm3). At

Figure 2. Comparison of the reduced cyclotron period for various
B/n0 (solid horizontal lines) with the reduced timescales for
momentum and energy relaxation as a function of energy.

time t = 0, a crossed magnetic field is switched on (electric
field is unaltered) and the relaxation properties of the swarm
are followed as a function of time (normalized time n0t). These
steady-state results are well documented [25] and our results
are in agreement with these previous calculations.

To understand the main aspects of the temporal relaxation
of electron swarm in electric and magnetic fields, the
characteristic timescales for momentum (τm) and energy
(τe) relaxation must be compared with the gyration period
(τ = �−1, where � is the gyro-frequency). These
characteristic timescales for momentum and energy relaxation
can be found from the corresponding momentum (νm) and
energy (νe) dissipation frequencies [1, 47]:

νm(ε) =
√

2

m
ε1/2

(
n0Qm(ε) +

∑
i

n0Q
tot
i (ε)

)
, (26)

νe(ε) =
√

2

m
ε1/2

(
2

m

m0
n0Qm(ε) +

∑
i

n0Q
tot
i (ε)

�εtot
i

ε

)
,

(27)

where m0, ε, n0, Qm, Qtot
i and �εtot

i denote the mass of neutral
molecule, the electron energy, the gas number density, the
momentum transfer cross section for elastic collisions, the total
inelastic cross section and the energy loss of the lth inelastic
process. It is evident from the definition of the dissipation
frequencies that these characteristic timescales will vary by
virtue of the variation of the swarm’s energy distribution.
Similar observations have been made for the magnetic field-
free case [1, 33]. The characteristic timescales are shown in
figure 2. We observe that the momentum dissipation occurs
much faster than the energy dissipation due to the fact that cross
section for momentum transfer in elastic collisions dominate
the total cross section for inelastic collisions. When inelastic
collisions start to play a significant role, the efficiency of energy

5
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Figure 3. Temporal relaxation of the mean energy, the effective ionization coefficient and drift velocity components as a function of B/n0 in
a crossed field configuration for electrons in molecular oxygen (full line: flux; dashed line: bulk).

dissipation becomes more pronounced. The application of
magnetic field generally decreases the mean energy of the
swarm and hence both τm and τe increase as a result. Figure 2
emphasizes (particularly when magnetic field is present) that
the energy dependences of τm and τe have to be taken into
account in detail and cannot be replaced by some constant
effective quantities. In general, these characteristic timescales
are clearly evident in the relaxation profiles shown below.

Figure 3 displays the temporal relaxation of the mean
energy, effective ionization coefficient and drift velocity
components for electrons in molecular oxygen in a crossed field
configuration. In figure 4 we show the temporal relaxation of
the diagonal elements of the diffusion tensor and z-component
of the gradient energy vector. In particular, the gradient energy
vector [34] plays a key role in physical understanding of
the effects of nonconservative collisions on electron transport
coefficients. This quantity represents the first-order spatial
variation of the average energy along the swarm. Apart
from studies of the so-called explicit and implicit effects
of nonconservative collisions on transport coefficients, this
quantity plays an important role for conversion of transport
data under the steady-state Townsend conditions into their
hydrodynamic values [17]. The various transport properties
display profiles that are either monotonic relaxation or damped

periodic relaxation. For quantities such as the mean energy or
the diffusion coefficient n0Dyy , relaxation is always monotonic
and occurs on the timescale governed by τe. In contrast,
the relaxation profiles of the drift and diffusion coefficients
exhibit a transition from monotonic decay to damped periodic
decay as the magnetic field strength is increased to values
where τ � τm. For the damped periodic profiles, the
oscillations are on the timescale of the gyro-orbits τ and
the envelope decays on a timescale of τm together with a
further relaxation on the timescale of τe. The existence of
the additional oscillatory behavior in the relaxation profiles is
an imprint of the collective gyrations of the electrons damped
by collisions that exchange energy and momentum. Perhaps
the most striking phenomenon is the existence of transiently
negative excursions of the diffusion tensor elements in both
the E and E × B directions. The existence of transiently
negative diagonal diffusion elements in swarms was observed
in CO2 [15] as well as in rf fields [35] and is explained in greater
detail in [11, 22]. These transient properties are quite general
and have been previously observed for a range of model and
real gases [11, 12, 36].

Considering the effects of nonconservative processes on
the relaxation profiles we observe the following interesting
points. In the early stage of the relaxation process there is a

6
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Figure 4. Temporal relaxation of the diagonal elements of the diffusion tensor and z-component of the gradient energy vector as a function
of B/n0 in a crossed field configuration for electrons in molecular oxygen (full line: flux; dashed line: bulk).

clear distinction between the bulk and flux components of the
longitudinal drift velocity component and diagonal elements of
the diffusion tensor. This is a clear sign of the so-called explicit
effects of nonconservative collisions. Since in this energy
range the ionization dominates the attachment processes the
distinction between the bulk and flux components is entirely
caused by the explicit effects of the ionization processes.
However, in the limit of the strongest magnetic field considered
in this work, we see from figure 3 that the attachment rate
exceeds the ionization rate and hence the negative value of
the effective ionization coefficient follows. The distinctions
between the bulk and flux components of the drift and diffusion
are quite different during various relaxation stages. At the
beginning of the relaxation process, these differences are
quite large and as the relaxation process proceeds further,
their evolution depend on B/n0. For lower B/n0, the
differences between the bulk and flux values upon reaching
the steady state are still remarkable while for higher B/n0 the
differences between the bulk and flux values are significantly
reduced. Generally speaking, the distinction between flux and
bulk components of the drift velocity vector elements is a
consequence of spatially dependent nonconservative collisions
resulting from a spatial variation of average electron energies
within the swarm [20]. If the ionization rate is an increasing

function of electron energy, electrons are preferentially created
in regions of higher energy resulting in a shift in the center of
mass position as well as a modification of the spread about the
center of mass. For molecular oxygen and field configuration
studied here, the electrons are preferentially created at the front
of the swarm in the z-direction and hence the magnitude of
the bulk drift component in this direction is greater than the
equivalent flux component. However, for the E × B drift
velocity component an opposite situation holds. We see for
B/n0 of 500 Hx that upon reaching the steady-state the flux
dominates the bulk value. This is a clear sign that along this
direction the average energy decreases and since the ionization
processes dominate the attachment processes the flux value is
greater than corresponding the bulk component. For B/n0 of
1000 and 2000 Hx, there are essentially no differences between
the bulk and flux values for the E×B drift velocity component
indicating a weak spatial variation of the average energy along
this direction. Our independent Monte Carlo calculations of
spatially resolved transport properties support this physical
picture [37].

In figure 5 we show the temporal evolution of the diagonal
elements of the diffusion tensor for various ψ and B/n0 of 100
and 1000 Hx for the Reid ramp model. The Reid ramp inelastic
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Figure 5. Temporal relaxation of the diagonal elements of the diffusion tensor for B/n0 of 100 and 1000 Hx and various ψ for Reid ramp
model (color lines: multi-term calculations; black lines: two-term approximation).

model of interaction is given by

σm(ε) = 6 Å
2

(elastic cross section)

σinel(ε) =



10(ε − 0.2) Å
2
, ε � 0.2 eV

(inelastic cross section)

0, ε < 0.2eV

m0 = 4 amu

T0 = 0 K, (28)

where m0 and T0 represent the mass and temperature of the
neutral gas particles while ε has the units of eV. The Reid ramp
model has been used extensively as a benchmark under steady-
state [22, 21, 38, 39] and time-dependent [15, 22] conditions

for a variety of field combinations, profiles, and configurations
due to its well-known illustration of the failure of the two-term
approximation. In figure 5 the results obtained by the two-
term approximation are compared with those obtained by a
multi-term theory for solving the Boltzmann equation. Similar
tests have been performed by Winkler and Loffhagen [40, 41].
They employed a multi-term approach to test the validity of
the two-term approximation for electrons in helium, xenon and
molecular nitrogen for E-field under spatially homogeneous
conditions. We extend these studies into domain of spatially
inhomogeneous electron swarms.

We observe a remarkable change in the relaxation profiles
induced by the variation of angle between the fields. Quite
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generally, the relaxation profiles for all diagonal elements of
the diffusion tensor show significant sensitivity with respect to
angle between the fields. We observe that the oscillatory nature
of the relaxation process for n0Dxx and n0Dzz is enhanced
as the angle between the fields increases. In particular, for
parallel fields (ψ = 0◦) the diffusion coefficient along the
electric field n0Dzz is, as expected by symmetry, not altered
by the presence of magnetic field and is equal to the magnetic
field-free case value. However, as the angle between the fields
increases for B/n0 of 100 Hx, we may observe development
of the additional oscillatory behavior in the relaxation profiles
of n0Dzz damped by collisions that exchange momentum and
energy. In the limit of high B/n0 of 1000 Hx, these oscillations
lead to the existence of transiently negative diffusivity. As can
be seen from figure 3, n0Dzz decreases with increasing ψ for
both the collision-dominated regime (B/n0 = 100 Hx) and
magnetic field-controlled regime (B/n0 = 1000 Hx).

Similar but not identical behavior shows diffusion
coefficient along the E×B direction (n0Dxx). In the collision-
dominated regime and in contrast to n0Dzz, n0Dxx increases
for an increasing ψ . Further, and in contrast to n0Dzz, for
B/n0 of 1000 Hx the amplitude of oscillatory feature is more
pronounced than that of n0Dzz. It should be noted that
the amplitude of these oscillations increases with rising ψ

while the steady-state values are a decreasing function of ψ .
There is another distinct property associated with n0Dxx in
the limit of high B/n0: transient negative diffusion exists for
the whole range of ψ considered in this work. Conversely,
n0Dzz becomes transiently negative only in the limit of angles
close to 90◦.

Unlike n0Dxx and n0Dzz, the temporal profiles of n0Dyy

show entirely different nature considering the effects of angle
between the fields on the relaxation process. For parallel
fields (ψ = 0◦), n0Dyy is essentially equal to n0Dxx due
to symmetry properties [22, 21]. However, in contrast to
other diagonal elements of the diffusion tensor, the oscillatory
nature of n0Dyy is reduced as the angle between the fields is
increased. In the limit of a crossed field configuration, these
profiles are monotonic. For the crossed field configuration,
the Lorentz force does not act in this direction and hence there
are no imprinted oscillations on the diffusion coefficient in
this direction. On the other hand, for small angles between
the fields, the electrons are under the action of Lorentz
force producing the oscillatory relaxation profiles. As can
be observed from figure 3, for B/n0 of 1000 Hx and ψ of
0◦ and 30◦, the Lorentz force produces negative transient
diffusivity. When considering the relaxation times, we observe
the following quite general feature in the relaxation profiles:
for both the collision and magnetic field-controlled regime,
the overall relaxation time is an increasing function of ψ . To
be more specific, the overall relaxation times for non-parallel
fields are on the timescale of the energy relaxation. It should be
noted that this appears to be more obvious forn0Dyy comparing
with n0Dxx and n0Dzz. Another striking property is the fact
that the steady-state values of n0Dyy monotonically increase
with increasing ψ . However, one may expect a decrease in
steady-state values of n0Dyy for significantly higher B/n0.

The inadequacy of the two-term approximation is clearly
evident from figure 5. In particular, significant deviations

between temporal profiles in the early and intermediate stages
of the relaxation process can be observed. This is a clear
indication that the initial distribution function and its initial
evolution deviates substantially from isotropy in velocity
space. In general, however, as the magnetic field and the angle
between the fields increase, the deviations between the results
obtained by the two-term approximation and multi-term theory
are significantly diminished. This suggests that the magnetic
field acts to destroy the anisotropy of the velocity distribution
function, consequently inducing enhanced convergence in the
l-index. A similar effect has been recently observed for
electrons in CO2 [15].

3.2. Swarms in ac electric and magnetic fields

To investigate the explicit and implicit effects of nonconserva-
tive collisions on various charged-particle transport properties
in varying configurations of time-dependent electric and mag-
netic fields we consider the benchmark model of Lucas and
Saelee [42]. The details of this model are

σel(ε) = 4ε−1/2 Å
2

(elastic cross section)

σex(ε) =




0.1(1 − F)(ε − 15.6) Å
2
, ε � 15.6 eV

(inelastic
cross section)

0, ε < 15.6 eV

σI (ε) =




0.1 F(ε − 15.6) Å
2
, ε � 15.6 eV

(ionization cross
section)

0, ε < 15.6 eV

P(q, ε′) = 1, m/m0 = 10−3, E/n0 = 10 cos ωt, Td,

B/n0 = B0/n0 cos(ωt + θ), T0 = 0 K. (29)

The parameter F controls the magnitude of the excitation and
ionization cross sections. All scattering events are assumed
isotropic and the cross sections listed above are ‘total’ cross
sections, that is, integrated over all angles. The ionization
partition function P(q, ε′) (where q is the fraction of the
available energy after ionization given to the ejected electron
and ε′ is incident energy) is set equal to unity implying that
all the fractions 0 � q � 1 are equiprobable. The sensitivity
of the electron transport coefficients to post-ionization energy
partitioning has been studied using a Monte Carlo method [43]
and multi-term theory for solving the Boltzmann equation [44].
The utility of such a model lies in the fact that the total cross
section remains constant independent of the parameter F . This
model thus represents a good test on the errors associated with
the treatment of ionization processes as purely inelastic. It
must be emphasized that it is common in the literature on ac
swarms to find ionization processes simply treated as another
inelastic process [45–50]. These previous publications are
complemented by a comprehensive description of electron
kinetics in ac electric and magnetic field when ionization
processes are present.

In figure 6 we demonstrate the influence of the ionization
degree F on the temporal profiles of the mean energy for
different magnetic field amplitudes and phase differences
between the fields for an applied reduced angular frequency
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Figure 6. Temporal profiles of the mean energy as a function of the magnetic field amplitude and phase difference between the fields for the
ionization model of Lucas and Saelee. The solid, dashed and dotted lines (black line: B0/n0 = 0 Hx; red line: B0/n0 = 100 Hx; green line:
B0/n0 = 200 Hx; blue line: B0/n0 = 500 Hx; pink line: B0/n0 = 1000 Hx) represent the mean energy for F = 0, F = 0.5 and F = 1,
respectively.

ω/n0 = 1 × 10−16 rad m3 s−1. We observe that mean
energy decreases with increasing F for fixed B/n0 and phase
difference θ in the collision-dominated regime. After an
ionization process, the remaining energy is always shared
between two electrons while in the case of inelastic collision,
the remaining energy is held by only one electron. As a
consequence, the mean energy after ionization is lower than
that after inelastic collision, a phenomenon usually called
energy dilution due to ionization [51, 52]. The phenomenon
of ionization cooling of the swarm is well known in dc electric
and magnetic fields [16] and is shown in figure 6 to carry over
directly to crossed ac electric and magnetic fields but only
in the collision-dominated regime. For the magnetic field-
free case we note that increasing the ionization parameter
F affects not only the magnitude but also the phase of the
temporal profiles. We observe that the phase lag between
the mean energy and electric field decreases for an increasing
ionization degree F . As B0/n0 increases for a fixed phase
difference between the fields, the phenomenon of ionization
cooling is reduced and in the limit of high B0/n0 it vanishes.
This is a clear sign that the Maxwellization of the high
energy electrons significantly reduces the ionization degree.
On the other hand, as the phase difference θ increases, the
phenomenon of ionization cooling is further strengthened and
becomes more obvious at lower B0/n0 and evident at higher
B0/n0. This follows from the behavior of the ionization rate
in ac electric and magnetic fields for this particular model.
One would expect an increase in ionization rate as the phase
difference between the fields increases. Figure 7 verifies this
prediction.
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Figure 7. The three-dimensional plot of the ionization rate as a
function of the phase difference θ for B0/n0 of 200 Hx for the
ionization model of Lucas and Saelee. The parameter F is set to 0.5.

When considering the effects of the phase difference
on the mean energy the following interesting points can be
made. In the limit of small phase differences, the magnetic
field is large when electric field peaks and electrons cannot
gain much energy from the electric field—the magnetic field
cools the swarm. As a consequence, the mean energy is
significantly reduced. As the phase difference increases, the
magnetic cooling effects are reduced, particularly in phases
where electric field peaks (and magnetic field magnitude is
small) and we observe that the modulation amplitude and
cycle-averaged value are increased. These effects become
more apparent for an increasing B0/n0.
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Figure 8. Temporal profiles of the bulk and flux longitudinal diffusion coefficient n0Dzz as a function of the magnetic field amplitude and
phase difference between the fields for the ionization model of Lucas and Saelee. The solid lines (black line: B0/n0 = 0 Hx; red line:
B0/n0 = 100 Hx; green line: B0/n0 = 200 Hx; blue line: B0/n0 = 500 Hx; pink line: B0/n0 = 1000 Hx) represent the flux profiles while
the dashed lines represent the bulk for F = 0.5.

The variation of the bulk and flux temporal profiles of
the longitudinal diffusion coefficient n0Dzz with the ionization
degree F for four different phase differences between the fields
θ and various magnetic field amplitudes B0/n0 is displayed in
figure 8. For the magnetic field-free case, bulk longitudinal and
bulk transverse diffusion coefficients are enhanced in phases
where significant ionization occurs. The appearance of a spike
in the bulk longitudinal diffusion profiles is indicative of an
inability of the transport property to relax in combination
with a non-monotonically relaxing transport property [10, 33].
The application of the magnetic field significantly affects the
symmetry of both the bulk and flux components. We also
note that increasing B0/n0 for a fixed phase difference θ , the
distinction between the bulk and flux components is reduced.
On the other hand, as the phase difference θ increases, the
explicit effects of ionization become more evident since
the ionization rate monotonically increases with θ . In general,
the flux and bulk diffusion coefficients can vary substantially
from one another not only in magnitude but also in the phase
lags of the temporal profiles.

3.3. Spatial relaxation

In this section we extend previous work on the idealized steady-
state Townsend experiment to include the explicit influence of
nonconservative collisions when electric and magnetic fields
are present and crossed at an arbitrary angle. The system is
schematically represented in figure 9 where charged particles
are emitted at a constant rate from an infinite plane source at
z = z0 and interact with the neutral gas under the influence

Figure 9. Schematic representation of an idealized state-state
Townsend experiment.

of spatially uniform electric and magnetic fields crossed at
arbitrary angles. The boundary conditions on the distribution
function are detailed in [15, 22, 53]. In this section we present
results for the ionization model of Lucas and Saelee defined in
previous section.

In the case of an electric field only, previous work on
the electron spatial relaxation revealed the complex nature
of the relaxation process and associated basic mechanisms.
The nature of the spatial relaxation profiles is dependent
on the interplay between the power dissipated in elastic
collisional processes, power dissipated in threshold collisional
processes and the power deposited into the swarm by the field
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Figure 10. Spatial relaxation of the mean energy for electrons in argon–CF4 mixtures for E/n0 of 15 Td.

[15, 22, 53–55]. For certain gases, there exists a ‘window’ of
electric field strengths where the relaxation profiles are damped
oscillatory in nature, and outside this electric field window the
profiles are monotonic. In [53] it was shown that magnetic
field is able to both suppress and generate oscillatory behavior
of various transport properties as well as modify the spatial
relaxation distance.

Before considering the effects of a magnetic field on
spatial relaxation of the electrons we present one particularly
interesting set of results associated with the spatial relaxation
of the electrons in gas mixtures. In figure 10 we show
the spatial relaxation of the mean energy in pure argon
and mixtures of argon and CF4 at E/n0 of 15 Td. The
cross sections for argon are displayed and detailed in [14]
while the cross sections for CF4 are given in [56]. We
observe that the mean energy in pure argon exhibits a damped
oscillatory relaxation along a decaying profile. However,
by introducing a small amount of molecular admixture
(e.g. CF4) the oscillations are firstly suppressed and then
entirely quenched in the limit of higher concentration of
CF4. By introducing a molecular admixture other collision
processes preferentially lower threshold vibrational excitations
are introduced. These new collision processes lead to more
efficient damping than elastic collisions, by virtue of larger
and different energy loss mechanisms. Similar effects have
been observed experimentally. As an illustrative example, on
the basis of the photon-flux technique, Fletcher showed that by
introducing a small amount of molecular nitrogen, luminous
layers in argon can be quenched.

Figures 11 and 12 display the spatial relaxation of the mean
energy and average velocity component along the z-direction
for the ionization model of Lucas and Saelee (F = 0.5) as a
function of B/n0 in a crossed field configuration, respectively.
The application of a magnetic field leads to significant changes

Figure 11. Spatial relaxation of the mean energy as a function of
B/n0 for the ionization model of Lucas and Saelee. The reduced
electric field E/n0 is set to 10 Td.

Figure 12. Spatial relaxation of the z-component of the average
velocity as a function of B/n0 for the ionization model of Lucas and
Saelee. The reduced electric field E/n0 is set to 10 Td.
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Figure 13. Spatial relaxation of the mean energy as a function of ψ for the ionization model of Lucas and Saelee and B/n0 of 200 Hx. The
reduced electric field E/n0 is set to 10 Td.

in the relaxation profiles. When B/n0 = 100 Hx, we observe
that both the maximal and spatially uniform values of ε and
vz are lower than the case when B/n0 = 0 Hx. This is
caused by magnetic cooling effects associated with gyrations
of the electrons. When B/n0 is increased further to 200 Hx,
we see that the mean energy is much less than the threshold
energy of both inelastic and ionization collision processes,
energy losses via these collisions are reduced, and elastic
collisions are enhanced. The relaxation profiles show weak
irregular oscillations which are damped in the early stage of
the relaxation process. At the highest B/n0 of 500 Hx, the
effects of inelastic and ionization collisions are suppressed
and the relaxation process is dominated by elastic collisions.
Consequently ε and vz relax toward a spatially uniform state
monotonically.

Finally we consider the influence of the angle between the
electric and magnetic fields on the spatial relaxation processes
of electrons. In figure 13 we demonstrate the impact of angle
between the fields on the spatial relaxation of the mean energy
for the ionization model of Lucas and Saelee. For parallel
fields (ψ = 0), the spatial relaxation profiles of the mean
energy is in excellent agreement with those associated with a
pure electric field. This follows from the symmetry property
outlined in [21, 22]. For parallel fields, on average the electrons
are traveling in the direction of the electric and magnetic field
and hence the magnetic field has no explicit effect. As the angle
between the fields increases, both the maximal and spatially
independent (steady-state) values of ε are lower than those
for parallel fields. The physical mechanism for the cooling
action of a magnetic field when electric and magnetic fields are
crossed at arbitrary angle under the hydrodynamic conditions
is given in [16, 21, 22]. In brief, the cooling mechanism is
enhanced as the component of the magnetic field perpendicular
to the electric field (and hence the angle between the fields)

is increased. This means that the cooling mechanism is the
strongest in the limit of a crossed field configuration. Another
interesting point which can be observed from these profiles
is associated with the influence of nonconservative ionization
collisions. First we see that the mean energy decreases
when increasing F for all field orientations, except in region
near the source (reduced distances less than approximately
0.05 Torr m). In region near the origin, the mean energy is
directly affected by the source. Second, our careful calculation
of spatially uniform values of the mean energy and average
velocity revealed a clear disagreement with the same quantities
obtained under the hydrodynamic conditions. A physical
discussion of these phenomena is detailed in [17].

4. Conclusion

In this work we have presented briefly a systematic multi-
term solution of the nonconservative Boltzmann equation
in the time-dependent hydrodynamic and steady-state non-
hydrodynamic regime for charged-particle swarms under the
influence of spatially homogeneous electric and magnetic
fields. This theory was then applied to a series of model
and real gases to address the errors associated with various
approximation generally found in low-temperature plasma
oriented literature. In particular we have identified what
we believe to be the key issues associated with the correct
treatment of temporal and spatial non-locality of charged-
particle swarms in varying configurations of electric and
magnetic fields. In particular we have observed that magnetic
field at right angle to an electric field induces damped
oscillatory temporal relaxation profiles for the drift and
diffusion and diffusion elements in the E and E×B directions.
Most strikingly, the negative diffusion was observed in the
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profiles of both the bulk and flux diffusion elements in these
directions for sufficiently high magnetic fields. We have
demonstrated the differences which can exist between the bulk
and flux transport coefficients during the relaxation process
and the origin of these differences. In addition to the magnetic
field strength, the variation of the angle between the fields on
temporal relaxation of the diagonal elements of the diffusion
tensor was considered. It was found that various diffusion
coefficients show different sensitivities to the magnetic field
strength and angle between the fields. The errors associated
with the two-term approximation for solving the Boltzmann
equation are highlighted during the initial, intermediate and
final stage of the relaxation process.

In the context of ac studies when electric and magnetic
field are time dependent we have demonstrated how important
correct treatments of nonconservative collisions and magnetic
fields are. First, the treatment of ionization processes as
inelastic processes can generate twofold errors in transport
coefficients: it neglects the cooling action of ionization
processes and neglects the effects on the center of mass
associated with the generation of new electrons. It should
be emphasized that the flux and bulk transport properties
can vary substantially from one another, and theories which
approximate the bulk transport coefficients by the flux transport
properties are in general not only wrong in magnitude but also
in the phase lags of the temporal profiles. These phenomena
have been studied in varying configurations of electric and
magnetic fields where magnetic field strength, phase difference
between the fields and angle between the fields significantly
alter the temporal profiles of various transport properties.

The non-hydrodynamic kinetic theory for solving the
Boltzmann equation and Monte Carlo simulation code have
been used to study the synergism of nonconservative collisions
and magnetic field on spatial relaxation of electrons in
an idealized steady-state Townsend experiment. First, we
demonstrated that we were able to suppress the traditional
Franck–Hertz oscillations observed in pure argon by the
introduction of a small fraction of CF4 into the system. In
addition, for the first time, we have presented results that
investigate the effect of varying the angle between the electric
magnetic fields on the spatial evolution of the swarm when
nonconservative collisions are operative. It was found that
the nature of the profiles could be controlled by varying the
angle: Frank–Hertz oscillations could be suppressed while
oscillation periods could be modified.
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IEEE Trans. Plasma Sci. 31 711
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Makabe T 2011, in preparation

[38] White R D, Brennan M J and Ness K F 1997 J. Phys. D: Appl.
Phys. 30 810
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