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Abstract. The Franck-Hertz experiment with neon gas is modelled as an idealised steady-state Townsend
experiment and analysed theoretically using (a) multi-term solution of Boltzmann equation and (b) Monte-
Carlo simulation. Theoretical electron periodic electron structures, together with the ‘window’ of reduced
fields in which they occur, are compared with experiment, and it is explained why it is necessary to
account for all competing scattering processes in order to explain the observed experimental ‘wavelength’.
The study highlights the fundamental flaws in trying to explain the observations in terms of a single,
assumed dominant electronic excitation process, as is the case in text books and the myriad of misleading
web sites.

1 Introduction

1.1 The experiment and its interpretation

The quantized nature of atomic energy levels was con-
firmed in 1914 through the seminal experiment of Franck
and Hertz [1] involving electrons drifting in a vapour of
mercury atoms in response to an applied voltage. Details
of the experimental arrangement can be found in standard
text books (e.g. [2]), articles [3–7] and numerous dedicated
web sites, and commercial off the shelf Franck-Hertz tubes
(see e.g. [8]) can readily be obtained for the undergradu-
ate laboratory, with various gases filling the tube. How-
ever, generally speaking, the proliferation in availability
of hardware has not been matched by any corresponding
enlightenment of the underlying physics. Quite the oppo-
site in fact: the traditional description omits, oversimpli-
fies or downright misrepresents what really happens in the
Franck-Hertz drift tube, and otherwise does not do justice
to the brilliance of the experimental design. Nowhere is
the problem more evident that for neon gas, the focus of
the present article.

The key to the operation of the experiment is the for-
mation of a periodic structure within the drift tube, with
a wavelength determined by the quantized energy levels
(not just a single level) of the atom. This periodic profile
is projected onto an external circuit through the agency of
a third (grid) electrode placed between the cathode and
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the anode. While there may be questions about the in-
trusive nature of this grid, i.e., whether it perturbs the
phenomenon under investigation, it is the generally poor
understanding of the periodic structure itself which is of
greatest concern. Thus representation of the electrons in
terms of a mono-energetic, unidirectional beam, influenced
by a single quantized level of the atom, leading to a uni-
form, saw tooth structure (see figure 6 of [6]), is completely
incorrect, both qualitatively and quantitatively. Quite the
opposite situation prevails in fact: electron velocities are
randomized by elastic collisions, resulting in an almost
isotropic distribution of velocities. The broad range of
electron energies means several inelastic channels are open
simultaneously, and the wavelength of the periodic struc-
ture is therefore generally determined by a composite of
several quantized states of the atom, not just one. The pe-
riodic structure is smoothly varying, not sawtooth, and is
uniform only sufficiently far downstream from the source.
Put another way, the influence of the source may extend
over a distance corresponding to a number of wavelengths,
and the anode should therefore not be too close to the
source. Another operational consideration is that periodic
structures form, and therefore the experiment can operate,
only within a certain window of voltages and gas pressures.
The traditional argument has nothing to say on these mat-
ters, and neither do crude mean free path arguments [6].
The richness and complexity of the physics associated with
the electrons in a Franck-Hertz drift tube, and the condi-
tions for satisfactory operations, can be best understood
with any rigour only within the context of modern gaseous
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electronics. The literature on this approach has been de-
veloped for more than a decade, but is still to be accepted
by the physics community at large. The three methods of
gaseous electronics involve:

– accurate numerical solutions of the Boltzmann kinetic
equation;

– Monte-Carlo simulation; and
– fluid modelling.

This paper discusses the first two methods for neon gas.
Our own experimental results are given for ease of refer-
ence and for the sake of completeness, and to highlight
the dangers of trying to understand the observations on
the basis of an incorrect physical model. In many ways,
the Franck-Hertz experiment with neon, as discussed here,
highlights most clearly everything that is wrong with the
traditional explanation given in the literature.

We emphasize that there is no question whatever that
the Franck-Hertz experiment confirmed the existence of
quantised atomic energy levels. Rather, our aim is to un-
derstand more rigorously how that quantization emerges
in experiment, and to promote a more up to date way of
understanding the inherently rich physics.

1.2 Periodic structures in gaseous electronics

It is interesting to note that oscillations of the Franck-
Hertz type are actually ubiquitous in gaseous electronics,
for example in striations [9], Holst-Oosterhuis luminous
layers [10], steady-state Townsend experiment observa-
tions using the photon flux technique [11] and periodic
structures in low temperature plasmas [7,12–14]. The un-
derlying physics is similar in all cases though the con-
nection with the original Franck-Hertz experiment is not
always acknowledged.

The method of sampling the wavelength in the Franck-
Hertz experiment involves the insertion of a grid elec-
trode, which almost certainly perturbs the structure. A
non-intrusive method of observation, such as the photon
flux technique reported by Fletcher [11], offers a far more
satisfactory means of sampling periodic structures. In fact,
in what follows we refer to Fletcher’s results for neon in
order to resolve an anomaly in the measured Franck-Hertz
current-voltage profile, which we think may be caused by
the grid itself.

1.3 Outine of this article

The outline of this article is as follows: in Section 2 we
give a brief description of the Franck-Hertz experiment
for neon and some results for a commercially available
drift tube, along with the traditional interpretation. In
Section 3, we explain the way in which microscopic,
atomic properties, like cross-sections and threshold en-
ergies, are reflected in macroscopically measurable quan-
tities, like the anode current, using both kinetic theory,
specifically the Boltzmann equation, and Monte-Carlo
simulation. A brief discussion of a multi-term spherical

Fig. 1. Measured Franck-Hertz curve for neon using the com-
mercially available Leybold Didactiv GMβH apparatus [8] at
room temperature.

harmonic/eigenfunction solution of the Boltzmann equa-
tion [4], along with a Monte-Carlo simulation [15] for the
non-equilibrium and non-hydrodynamic evolution of the
electron distribution function is presented in Section 3.
Section 4 highlights the experimental and operational con-
siderations including how the periodic spatial structures
manifest themselves in the I-V characteristics. The two
computational methods are examined and compared with
each other, and with experiment in Section 5. Particular
focus is placed on the interpretation of the results and
on the ‘window’ of reduced fields in which the periodic
behaviour is observed.

2 The Franck-Hertz experiment in neon
and common interpretations of the results

In the Franck-Hertz experiment electrons are emitted from
a heated cathode, then accelerated firstly by a potential
U1 (between the cathode and the first gate) and secondly
by a voltage U2 (between the first and second gates), with
a retarding potential U3 (between the second gate and the
anode). The retarding potential U3 acts as a control grid
only allowing electrons above a certain value to be col-
lected as current at the anode. With a ramping potential
U2, the collected current goes through successive maxima.
The periodic structure of the electron distribution func-
tions within the drift tube is reflected in the periodic-
ity in the anode current as a function of U2. In Figure 1
we present results for neon from a commercially available
Franck-Hertz drift tube [8] modelled schematically as in
Figure 2. According to the traditional text book inter-
pretation of the Franck-Hertz experiment, electrons are
accelerated due to the field (without elastic scattering)
until they have sufficient energy to suffer an electronic ex-
citation collision with the neon atom, and the process is
repeated until it reaches the anode. This is effectively an
assumption of a beam-like distribution of electron veloc-
ities, which in turn implies a sawtooth profile of electron
properties within the drift tube, of energy wavelength cor-
responding to the lowest threshold of energy for excitation
of the atom, which for neon is 16.6 eV.
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The picture of the internal profile should be reflected
in the I-V characteristic in the external circuit. However,
even a cursory analysis of the measured I-V profile iin
Figure 1 indicates a wavelength of approximately 18 eV,
at odds with the prediction of the standard argument. In
order to try to salvage the situation, it is often argued
that the measurements actually reflect the transition to
the 3S1 state, with threshold energy 18.38 eV. Unfortu-
nately it is not clear how or why the electron picks out
exactly this state from the multitude of available possible
states to excite. The laboratory manual accompanying our
system least recognizes that the usual argument must be
supplemented with a statement about probability. This
view of the relevant physics is probably driven by the
observation of visible bands between the two electrodes
which are a result of neon atoms excited to the 3p states
decaying through the 3s states through the emission of a
visible photon. Nothing is said, however, regarding how or
if the effects of the various inelastic channels can be com-
bined, there is no mention of elastic scattering, and the
argument is otherwise ad hoc. As is now recognized, any
serious physical analysis of the experiment requires the
cross-sections for each of the scattering processes (elastic
and inelastic), and a distribution function of energies in
order to weight them. The electron distribution function
is obtained as a solution of the Boltzmann kinetic equa-
tion, which incorporates the cross-sections for the scatter-
ing processes. Electron properties within the drift tube are
then calculated as averages over the distribution function,
and all processes, both elastic and inelastic, are accounted
for rigorously. That is the approach outlined in 2000 by
Robson et al. [4], initially for mercury, but applicable to
any gas. Monte-Carlo simulation, in which the averaging
is done directly, provides an alternative rigorous picture.
Both are discussed in this article in the context of neon
gas, as detailed below.

3 Theoretical treatments and simulations

3.1 Kinetic theory treatment: Multi-term
eigenfunction solution of the Boltzmann equation

The governing equation describing a swarm of free light
charged particles moving through a gas under the applica-
tion of an electric field E under steady state conditions is
the time-independent Boltzmann equation for the phase
space distribution function f(r, c) [16]:

c · ∇f +
qE

m
· ∂f
∂c

= −J(f). (1)

Here r and c denote respectively the position and velocity
coordinates in phase space while q and m are the charge
and mass of the particle respectively. The collision opera-
tor J describes the rate of change of f due to binary inter-
actions with the background gas and for elastic processes
we utilise the original Boltzmann collision operator [16]
while for inelastic processes such as electronic excitation

we implement the semi-classical generalisation of Wang-
Chang et al. [17]. For ionization processes we implement
the ionization collision operator detailed in [18].

Solution of the Boltzmann equation (1) requires repre-
sentation of the space and velocity dependence of f(r, c).
Below we present a brief discussion on the relevant
representations.

3.1.1 Treatment of the velocity dependence: Multi-term
spherical harmonic expansion

The first step in any analysis is typically the representa-
tion of the distribution function in directions of velocity
space through an expansion in spherical harmonics [19]:

f(r, c) =
∞∑

l=0

l∑

m=−l

f (l)
m (r, c)Y [l]

m (ĉ) , (2)

where Y [l]
m (ĉ) are spherical harmonics and ĉ denotes the

angles of c. While it is traditional (in the two-term approx-
imation) to set the upper bound of the l-summation to 1
and set m = 0 (i.e. a Legendre polynomial expansion), we
do not make such a restrictive assumption in this theory.

Various numerical techniques are applicable to repre-
sent the speed/energy space [19,20]. In this paper we em-
ploy an expansion in terms of generalised Sonine (gener-
alised Laguerre) Rνl(αc) polynomials [21]:

f (l)
m (r, c) = w(α, c)

∞∑

ν=0

Fα(νlm; r)Rνl(αc), (3)

which are orthonormal with respect to a Maxwellian
weight function w(α, c) = (α2

2π )3/2 exp{−α2c2

2 }, where
α2 = m/kTb. The parameter Tb is chosen to be the
charged-particle temperature or an arbitrary basis tem-
perature [22]. These are traditionally referred to as the
‘two-temperature theory’ [18,22].

Substituting (2) and (3) into (1), and utilising the or-
thonormality of the basis functions, we obtain the follow-
ing infinite set of partial differential equations for the mo-
ments Fα(νlm; r):

∞∑

ν′=0

∞∑

l′=0

l′∑

m′=−l′

[
〈νlm||J +

qE

m
· ∂
∂c

+ c · ∇||ν′l′m′〉
]

× Fα(νlm) = 0 (4)

where 〈νlm||J+ qE
m · ∂

∂c +c·∇||ν′l′m′〉 are matrix elements
of the collision and streaming operators [18].

3.1.2 Treatment of the spatial dependence: Eigenfunction
expansion in the non-hydrodynamic regime

The Franck-Hertz experiment is specifically a non-
hydrodynamic phenomena. For the steady state and plane
parallel conditions in the prototype model considered here,
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there is a source of electrons from z = z0 emitted at a
constant rate with a velocity distribution S(c). The prob-
lem is completed by specifying the boundary conditions
on f at the electrodes. For the semi-infinite half-plane
problem under consideration here, the details for prescrib-
ing the boundary conditions are found in [4,23,24] but
essentially amount specifying components of the source
distribution (spherical harmonic projections f (l)

m (r, c)) at
z = z0, and requiring certain conditions on the phase-
space distribution function at infinity. The simplest tech-
nique is a discretisation in space (e.g. finite difference or
pseudo-spectral method) requiring however a computa-
tionally demanding solution of large system of coupled ma-
trix equations [4,24,25]. The spatial relaxation behaviour
is influenced by the source distribution in addition to the
field and scattering processes of the gas. At sufficiently
large distances from the source however, the impact of the
source distribution is lost and the relaxation behaviour of
the electrons is representative of the electron-atomic scat-
tering processes within the gas. Hence the focus of the
current Boltzmann equation analysis is on the asymptotic
relaxation of the distribution function and its moments to
their respective equilibrium values. To elucidate the basic
physics, we prefer to adopt the eigenfunction methodology
developed in [4,23]. The eigenvalue equation associated
with the spherical harmonic decomposition (4) is given
by:

∞∑

ν′=0

∞∑

l′=0

l′∑

m′=−l′

[
〈νlm||J +

qEz

m

∂

∂cz
+ czK||ν′l′m′〉

]

× ψ(νlm;α) = 0 (5)

where K is the eigenvalue and ψ is the corresponding
eigenfunction. The spectrum of eigenvalues is generally
discrete, with a representation {Kn, n = 0, 1, 2, . . .} (as-
sumed order such that the |Re (Kn) | increases with n) and
associated eigenfunctions {ψn, n = 0, 1, 2, . . .}. Asymp-
totically the system approaches the state ψ0 determined
by the eigenfunction associated with the eigenvalue K0,
i.e. f ∼ exp (K0z), and K0 is the first Townend coefficient.
While all eigenmodes contribute to the spatial behaviour
for the general problem, for the semi-infinite half-plane
problem under consideration, in the downstream asymp-
totic regime only those Kn (n > 0) with a non-negative
real component satisfy the upper boundary condition at
infinity. The rate at which the state is approached is con-
trolled by the eigenvalue with lowest magnitude negative
real component, K1. This eigenvalue will play a signifi-
cant role in elucidating the fundamental physics associ-
ated with the Franck-Hertz experiment in neon.

The spatial dependence of the phase-space distribution
function and associated integral properties of interest can
be expressed in the asymptotic limit as a series [4,23], e.g.
the mean energy

ε(z) =

∫
1
2mc

2f(z, c)dc∫
f(z, c)dc

= ε∞ + ε1 exp (K1(z − z0)) + . . .

(6)

where ε∞ is the asymptotic value of the average en-
ergy. For elastic collisions only, K1 is real and the spatial
development is monotonic relaxation to the asymptotic
state. When K1 becomes complex however the spatial de-
velopment has an oscillatory nature, with a wavelength
Δz = 2π/Im(K1), and a characteristic relaxation length
Λ of 1/|Re(K1)|. The reader is referred to [4,23] for details
on the implementation and calculation of the eigenvalues
and eigenfunctions. This procedure has been benchmarked
against models for which the eigenvalues and eigenfunc-
tions are known analytically [4,23].

3.2 Monte-Carlo simulation treatment

The Monte-Carlo simulation technique used to evaluate
the spatial profiles under steady-state Townsend condi-
tions has been detailed elsewhere [15] and we will high-
light briefly the important aspects of the simulation. In
this Monte-Carlo simulation code electrons are ejected
isotropically and sequentially from the cathode (filament)
surface into the infinite half space with an initial energy
distribution. The trajectories of a large number of elec-
trons are followed under the influence of an electric field
as they undergo collisions with background neon atoms.
The electron’s motion is sampled at sufficiently high fre-
quency (determined by the mean collision time) to find
the time to next collision via direct numerical integration
of the integral equation for the collision probability [26].
Once the moment of the next collision is established, the
nature of the collision is determined by using the rela-
tive probabilities of the various collision types [15,27,28].
When an ionization collision occurs, the set of all dynamic
properties (the time of the ionization collision, the posi-
tion and velocity) of secondary/ejected electron are placed
at the stack. When the primary electron reaches the an-
ode surface or is otherwise lost in a collision event, the
first available electron from the stack is then followed.
These secondary electrons from the stack are assumed to
be released isotropically although facility exists to enforce
a specified angular distribution. Thermal motion of the
background neutral particles and electron-electron inter-
actions are neglected. The electrodes are considered to
be perfectly absorbing. To obtain the spatially resolved
steady state profiles, further manipulation of the Monte-
Carlo sampling of the phase-space distribution function
f(r, c, t) is required. We may interpret the distribution
function as a sum of Dirac delta functions:

f(r, c, t) =
N(t)∑

k=1

δ (rk(t) − r) δ (ck(t) − c) (7)

where N(t) is the number of electrons at time t. To obtain
the steady-state distribution function f(r, c) we integrate
(7) over all time [15]. With the steady-state distribution
function, one then may evaluate the spatially resolved
steady state profile through the relevant discretization
(boxing) in space and associated averages over veloc-
ity and remaining configuration space. For example, the
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Fig. 2. Schematic representation of the Franck-Hertz exper-
iment, in which a steady stream of electrons emitted by the
cathode into a gas forms a macroscopic periodic structure of
wavelength Δz in the drift region 0 ≤ z ≤ d, reflecting quan-
tization of gas atoms. In the idealized model of standard ar-
guments, where atoms have a single, quantized level of energy
εI , Δz = εId/eV, where d is the distance to the control grid,
which is at a potential V with respect to the cathode. As V in-
creases, the periodic pattern shrinks, and the current IA in the
external circuit goes through a series of maxima and minima,
resulting in an oscillatory IA-V characteristic of ‘wavelength’
ΔV = εI/e. In reality, however, the picture is far more compli-
cated, since atoms have more than one quantized level, many
scattering channels are open simultaneously, and ΔV cannot
be simply represented in terms of any single energy level.

mean energy in the jth box (i.e. between zj −Δz/2 and
zj +Δz/2) has been calculated as follows:

〈ε〉j =

(
1
Δz

∫ zj+Δz/2

zj−Δz/2

εfSST(z,v)drdv

)−1

× 1
Δz

∫ zj+Δz/2

zj−Δz/2

fSST(z,v)drdv

≈
(

N∑

k=1

Δtjk

)−1 N∑

k=1

εj
kΔt

j
k , (8)

where fSST(z,v) is the steady state distribution function,
εj

k is the value of the mean energy to be sampled when the
kth electron is contained in jth box, Δtjk is the residence
time of the electron in that box, Δz is the width of the
box, and N is the total number of electrons which appear
there. For details the reader is referred to [15].

4 Experimental considerations

4.1 Schematic representation of the experiment

A schematic representation of an idealised Franck-Hertz
experiment is displayed in Figure 2. We have a source
of electrons emitted from z = 0 into the neon gas occu-
pying the space between the electrodes. This is equiva-
lent to a steady-state. Townsend experiment common in
swarm physics [29]. The electric field is assumed to be

constant and uniform between the two parallel plate elec-
trodes. For the current study it is sufficient to focus on the
semi-infinite geometry and consider the electrode to ap-
proach infinity. In the real Franck-Hertz experiment there
is a control grid downstream from the source which se-
lectively filters electrons above a prescribed energy to be
collected by the anode and register as a current.

4.2 External I-V curve vs. internal periodic structure

It is axiomatic that the act of measurement should not
affect the quantity being measured. In the case of the
Franck-Hertz experiment, the grid should act in a non-
intrusive way, without perturbing the quantity being sam-
pled, namely, the periodic electron structure which forms
between the cathode and the grid. Thus the I-V character-
istic projected onto the external circuit should be in one-
to-one correspondence with the internal profile, at least to
within experimental error. However, as explained below,
there is a violation, both qualitative and quantitative, of
this basic precept for the Franck-Hertz experiment with
neon. In particular, we suggest that the substructure near
the minima in the I-V profile shown in Figure 1 is not a
reflection of the internal profile because:

(a) There is no such substructure evident in the direct,
non-intrusive measurements of Fletcher [11] of the
electron profile in the steady state Townsend exper-
iment (effectively the Franck-Hertz experiment with-
out a grid) for neon, or indeed any other gas.

(b) Neither does any such substructure appear in the
periodic profile calculated theoretically using ei-
ther rigorous solution of the Boltzmann equation or
Monte-Carlo simulation, (see Figs. 4-6 below): the
profile is smoothly varying everywhere, and charac-
terised by a single, distinctive wavelength at suffi-
ciently large distances from the source.

We therefore suggest that the substructure in the I-V pro-
file for neon is an artefact of the measurement process,
most probably due to the perturbative nature of the grid.
A direct way of establishing this would be to let VG → 0
(or equivalently U3 → 0 in the terminology of the com-
mercial equipment [8]), and indeed our own data suggest
that the substructure weakens considerably in this limit.
Whatever its origin, the substructure of the I-V should be
discounted as reflecting any sort of quantization property
of the neon atom, and attention should be focussed on the
main structure, with voltage V (or U2 as used in [8]). Note
that while the determination of an accurate value of ΔV is
a prime experimental consideration, its interpretation in
terms of the spectrum of excited energy levels of the atom
is a separate theoretical matter, as discussed further1 in
Section 5.

1 This is diametrically opposed to the conclusions of Rapior
et al. [6], who however base their arguments on an assumed
but unphysical sawtooth periodic structure, with perturbations
calculated from simplified mean free path arguments and a
constant cross-section.
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Fig. 3. (Color online) The electron impact cross-sections for
neon. We employ a momentum transfer cross-section for elas-
tic processes while the inelastic and ionization processes are
assumed isotropic (see text for details).

4.3 Operational considerations

There are two basic factors crucial to the successful op-
eration of the Franck-Hertz experiment for any gas, neon
in particular. These are either ignored completely or sim-
ply inexplicable in terms of the standard, unphysical ‘saw
tooth’ profile argument:

(a) A periodic structure can form in the drift tube and the
experiment can therefore operate satisfactorily, only
within a well defined window of voltages and gas pres-
sures. This is discussed further for neon in Section 5.2.

(b) The influence of the source may extend some way
downstream, and a pattern characterized by a sin-
gle, fundamental wavelength, characteristic of the gas
only, becomes established only after a certain relax-
ation distance. The drift region must obviously be
longer than this distance, so that the grid falls in
the asymptotic region, for otherwise the external I-V
curve will be contaminated by the influence of the
source. The relaxation distance and the fundamen-
tal wavelength can be found from eigenvalue analy-
sis of the Boltzmann equation (see Sect. 5.2 below).
For practical purposes, however, simply ensuring that
several oscillations exist in the drift tube should be
sufficient to guarantee satisfactory interpretation of
the experiment in terms of a single fundamental en-
ergy wavelength εf , i.e., an operational criterion is
V > εf . This is the situation shown in Section 5.2.
Since εf is around 18 V for neon, it is meaningful to
try to extract fundamental information only at volt-
ages substantially in excess of this.

5 Results and discussion

5.1 Experimental configuration, input cross-sections
and scalings

In this study we employ the set of cross-sections for
electrons in neon prescribed by Hayashi [30] and pre-
sented in Figure 3. These cross-sections are based on

Fig. 4. Spatial relaxation of electrons in neon simulated using
a Monte-Carlo simulation technique (top: 1 Td; middle: 2 Td;
bottom: 3 Td).

the benchmarked set of [31] which were extended to
higher energies and benchmarked in [32]. Elastic scat-
tering is anisotropic in nature as described by the mo-
mentum transfer cross-section, while all non-elastic cross-
sections are assumed isotropic. The temperature is fixed
at 293 K. Since the collision operator is proportional to
the number density n0, the spatial position scales as n0z,
while the eigenvalues scale as Kn/n0. In what follows we
present quantities scaled by a representative mean free
path λ = 1/

(√
2n0σ0

)
where σ0 = 10−20 m2. Likewise all

transport properties are functions of the reduced electric
field E/n0. We consider the reduced electric field range:
1−100 Td (1 Td = 10−21 Vm2).

5.2 Spatial relaxation profiles in neon: Relaxation
lengths and windows for oscillatory relaxation

In this Section we focus on the general properties of the
relaxation profiles for electrons injected in neon gas under
the action of an applied spatially homogeneous electric
field. In Figures 4−6 we display the MC simulated relax-
ation profiles for the average energy of electrons released
with a mono-energetic distribution at 1 eV into neon gas
under the action of an applied field ranging from 1 Td to
60 Td. Although only profiles of the average energy are
displayed here, the same qualitative behaviour is present
for all other macroscopic properties such as the number
density and the average velocity. For reduced fields below
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Fig. 5. Spatial relaxation of electrons in neon simulated us-
ing a Monte-Carlo simulation technique (top: E/n0 = 5 Td;
middle: 10 Td; bottom: 15 Td).

2 Td, we observe that the relaxation behaviour is mono-
tonic. As we increase the field however, we observe as ex-
pected, that a window of field strengths exists where the
relaxation behaviour is (damped) oscillatory in nature. We
will defer a discussion of the wavelength of the oscillations
to Section 5.3. The upper bound on the window of oscilla-
tory relaxation (not shown here) is approximately 300 Td
where relaxation returns to a monotonic/quasi-monotonic
nature.

In these profiles we observe that the distance required
for the transport properties to relax to their asymptotic
steady states varies with the applied reduced field. The re-
laxation distance has a maximal property with the largest
relaxation distance appearing around 10 Td. The relax-
ation distance is drastically reduced at high fields (note
the change of scale in Fig. 6).

The relaxation profiles in neon are consistent with the
previous discussions on this topic [4,5,24,33] and consis-
tent with the experimental results presented in Section 2.
The periodic nature in the collector current as a function
of the ramped voltage can be related to the spatial struc-
ture of the average energy of the electrons within the drift
tube. For reduced field strengths such that the electronic
excitation modes can not be excited, energy loss due to
collisions is via elastic collisions and is essentially continu-
ous, and the monotonic/quasi-monotonic nature of the re-
laxation profiles then follow. For field strengths such that
energy loss via electronic excitation is significant, the dis-
crete nature of the energy loss in this regime results in the

Fig. 6. Spatial relaxation of electrons in neon simulated us-
ing a Monte-Carlo simulation technique (top: 40 Td; middle:
50 Td; bottom: 60 Td).

Fig. 7. Variation with reduced electric field of the real and
imaginary components of the eigenvalues (or equivalent) corre-
sponding to the asymptotic behaviour. The normalized eigen-
values K∗

1 = K1λ , where λ =
√

2n0σ0 is a representative mean
free path used to scale the eigenvalues.

periodic behaviour in the relaxation profiles. The decaying
nature of the oscillatory profiles is primarily determined
by the elastic scattering processes [4,24].

5.3 Eigenvalue governing the asymptotic behaviour

In Figure 7 we present the real and imaginary
parts of the reduced eigenvalue K∗

1 which govern the
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asymptotic relaxation to the steady-state. In the multi-
term Boltzmann equation calculation of this eigenvalue,
we have made an assumption to treat ionization as an in-
elastic process (i.e. we neglect the ejected electron). We
observe that K∗

1 is complex for reduced fields greater
than approximately 1.2 Td which is consistent with the
the behaviour demonstrated in the Monte-Carlo profiles
of Figures 4−6. Using traditional arguments, the spacing
between successive peaks should be given by the relation
eEΔz = εI , where εI is a representative threshold en-
ergy. Hence, theoretically the relevant reduced eigenvalue
should have the following functional form:

Im (K∗
1 ) =

2π(E/n0)Td

10
√

2εI(eV)
. (9)

Examination of Figure 7 highlights that the imaginary
part of K∗

1 is approximately proportional to the reduced
electric field strength E/n0 for those reduced fields in the
window. The relaxation length associated with the asymp-
totic relaxation is determined by the renormalised relax-
ation length Λ∗ = 1/|Re(K∗

1 )|. The maximal property in
the relaxation length is observed at approximately 8 Td
with a significantly reduced relaxation length at higher re-
duced fields. Again, the behaviour of the real component
is qualitatively consistent with the profiles in Figures 4−6.

5.4 Wavelengths, threshold energies and interpretation

In this section we investigate the relation between the
wavelength of the spatially periodic structures in the en-
ergy profiles and the representative ‘threshold energy’ of
the electronic excitation process. Using a fast Fourier
transform, we have extracted the relevant asymptotic
wavelengths from the Monte-Carlo profiles and scaled
them for comparison with reduced eigenvalue K∗

1 . The
results are presented in Figure 7. The results are quali-
tatively similar however for a given field the wavelength
calculated using the Monte-Carlo simulation is larger
(or equivalently Im(K∗

1 ) is smaller) than that from the
Boltzmann equation eigenvalue theory. More generally,
the wavelength is longer when we treat ionization as a
true non-conservative process. This result is consistent
with the physics of the problem: in a true ionization event,
the excess energy is now shared between the ejected and
scattered electron. Hence, on average the scattered and
ejected electrons must travel further in the field in order to
have sufficient energy to overcome the excitation thresh-
old energy. The increase in the wavelength associated with
treating ionization explicitly then follows [15,24].

Using the traditional textbook interpretation of the
Franck-Hertz experiment, these results could be inter-
preted as different representative threshold energies εI for
the two different techniques. Using least squares to fit the
wavelength of the spatially periodic structures to a repre-
sentative threshold energy via equation (9), we find that
the Boltzmann equation eigenvalue theory predicts a rep-
resentative threshold energy of 18.78 ± 0.06 eV while the
Monte-Carlo simulation predicts a representative thresh-
old energy of 19.0±0.2 eV. This should be compared with

Table 1. Threshold energies and approximate maximum cross-
sections for the various electron induced processes in neon [30].

Process Threshold Maximum cross-section
(eV) (10−20 m2)

2p53s 3P2 16.62 0.01
2p53s 3P1 16.67 0.012
2p53s 3P0 16.72 0.0024
2p53s 1P1 16.85 0.12
2p53p 3S1 18.38 0.033
2p53p 2P 18.97 0.026
2p54s 2S 19.66 0.033

Ionization 21.56 0.78

the approximate experimental result of 18 eV. It is instruc-
tive at this time to compare these values with the actual
thresholds for the various collision induced processes pro-
cesses in neon as detailed in Table 1. As discussed in Sec-
tion 2, using the most elementary of traditional textbook
interpretations of the Franck-Hertz experiment, one might
expect a wavelength associated with the lowest 3P exci-
tation threshold 16.62 eV threshold. With a knowledge
of the magnitudes of the various cross-sections, the wave-
length might naturally be associated with the 1P 16.85 eV
electronic excitation process, or possibly more accurately
as the ionization threshold process at 21.56 eV.

The results presented here, both experimental and the-
oretical/simulation, indicate that threshold energy infor-
mation can not be inferred directly from the wavelength of
the periodic structures when there are excitation processes
with closely spaced threshold energies and cross-sections
magnitudes of the same order. The distribution of energies
of the electrons within the drift chamber means that all
scattering processes listed in Table 1 are open for reduced
electric fields above the lower bound of the window. In par-
ticular, one may associate the periodic structures present
in the profiles as representative of some weighted average
of the various inelastic processes available. For neon con-
sidered here, the dominant contributions are from the two
largest cross-sections, 1P electronic excitations and the
ionization processes, with 16.85 eV and 21.56 eV thresh-
old energies respectively. The relative excitation rates for
the various excitation/ionization processes will vary with
the applied field. We must emphasize that it is incorrect
to interpret the 18 eV experimental result to mean that
the excitation to the 2p53p 3S1 (with threshold of approx-
imately 18 eV) is the dominant process reflected in the
Franck-Hertz profiles.

6 Concluding remarks

In this study we have investigated the Franck-Hertz ex-
periment for neon, using a commercially available drift
tube, and have focussed on rigorous interpretation of the
current-voltage characteristic in the external circuit in
terms of the periodic electron structure within the Franck-
Hertz drift tube. The internal profile has been calculated
theoretically using electron-neon atom scattering cross-
sections in two distinct ways: (a) Accurate solution of
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Boltzmann’s kinetic equation; and (b) Monte-Carlo sim-
ulation. All open scattering channels, both elastic and
inelastic, are accounted for rigorously in both these ap-
proaches, in contrast to the standard, but physically un-
tenable picture of a beam of electrons, in which only a sin-
gle inelastic channel is open, and all others are artificially
suppressed. The rigorous methods discussed in this arti-
cle produce smoothly varying curves, with wavelengths in
good agreement with experimental results. Substructures
are, however, not observed in the theoretical profiles, and
evidence is advanced to explain why these are due to the
perturbative influence of the grid, rather than any funda-
mental properties of the atoms per se.
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