
Nuclear Instruments and Methods in Physics Research B 279 (2012) 84–91
Contents lists available at SciVerse ScienceDirect

Nuclear Instruments and Methods in Physics Research B

journal homepage: www.elsevier .com/locate /n imb
Spatially resolved transport data for electrons in gases: Definition,
interpretation and calculation

S. Dujko a,b,c,⇑, R.D. White b, Z.M. Raspopović a, Z.Lj. Petrović a
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The spatiotemporal evolution of electron swarms in the presence of electric and magnetic fields is inves-
tigated to facilitate understanding temporal and spatial non-locality in low-temperature plasmas. Using
two independent techniques, a multi-term solution of Boltzmann’s equation and a Monte Carlo simula-
tion technique, the synergism of an applied magnetic field and non-conservative collisions (ionization
and/or electron attachment) is demonstrated as a means to control the non-locality of relaxation pro-
cesses. In particular, oscillatory features in the spatial and temporal profiles are demonstrated, and
shown to be enhanced or suppressed through the magnetic field strength, the angle between the electric
and magnetic fields, and the degree of ionization. Finally we discuss the impact of field configurations and
strengths on the transport properties, highlighting the distinctions in the measured transport properties
between various experimental configurations when non-conservative processes are present.
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1. Introduction poral development of an electron swarm where magnetic fields
The theoretical investigation of charged-particle transport pro-
cesses in neutral gases under the influence of electric and mag-
netic fields is a topic of great interest both as a problem in
basic physics and for its potential for application to modern tech-
nology [1,2]. One of the major challenges in these investigations
is an accurate representation of the spatiotemporal evolution of
the phase-space distribution function and the associated trans-
port properties of an electron swarm moving under the influence
of electric and magnetic fields. Relaxation processes in electron
swarms are related to various problems of gaseous electronics
such as modeling of non-equilibrium plasma discharges [3–6],
modeling of gaseous detectors of elementary particles [7], model-
ing of transient phenomena in swarm physics [8–12] and physics
of gas lasers [13]. In the plasma modeling community, it is well
known that within many plasma discharges sustained and con-
trolled by electric and magnetic fields, these fields can vary in
space, time and orientation depending on the type of discharge.
Although there has been a tremendous amount of research into
temporal and spatial non-locality of electron transport for conser-
vative systems and electric field only situations (see, e.g.,
[6,12,14,15] and references therein), the study of the spatiotem-
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are included explicitly and when the transport is greatly affected
by non-conservative collisions (collisions where the number of
particles that are modeled changes, e.g., ionization and/or elec-
tron attachment) has not been developed to such a level. First,
this may be due to the unavoidable additional complexity associ-
ated with introducing a magnetic field into the theories and sim-
ulations (see e.g., [12,16–19]). Second, investigations related to
the effects of non-conservative collisions on the spatiotemporal
development of the electron swarm are very few. Under steady-
state Townsend conditions (SST), where large spatial gradients
in number density of charged particles exist in the vicinity of
electrodes or in the vicinity of disturbing sources, Li et al. [20],
Dujko et al. [21] and Takeda and Ikuta [22] have considered the
explicit effects of ionization and attachment on the spatial relax-
ation profiles for the ionization model of Lucas and Saelee [23]. It
was shown that both the ionization and attachment processes
strongly affect the relaxation profiles and further relations re-
quired for the conversion of hydrodynamic transport properties
to those found in the SST experiment were also identified [21].
However, in some cases, a knowledge of both the spatial and tem-
poral development of electron swarm properties is required, for
example to investigate the transient phenomena and relaxation
times/lengths in a bounded plasma discharge or to analyze the
electron kinetics in space and/or time varying electric and mag-
netic fields. The spatiotemporal development of electron swarms
also has implications for the correct implementation of transport
data in fluid models of plasma discharges, particularly under
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conditions where the local field approximation is of limited
applicability due to large spatial and/or temporal variation in
the electric and magnetic fields. On a more fundamental level,
the spatiotemporal evolution of electron swarms has implications
for how the measured swarm transport properties under different
experimental conditions should be calculated and interpreted
[21,24].

We begin this paper with a brief review of multi-term theory for
solving the non-conservative Boltzmann equation involving spa-
tiotemporal variations when electric and magnetic fields are pres-
ent and crossed at arbitrary angles. In addition to the Boltzmann
equation analysis, we discuss our Monte Carlo method for elec-
trons under both hydrodynamic and non-hydrodynamic condi-
tions and incorporating the effects of non-conservative collisional
processes. We focus on two situations: (i) spatiotemporal develop-
ment of a pulse of electrons, and (ii) spatial relaxation of electrons
under the SST conditions. After giving brief reviews of theoretical
methods, we then provide numerical examples for certain model
and real gases of special interest, highlighting recent new results.

2. Theory

2.1. Boltzmann equation analysis

The behavior of electrons in gases under the influence of electric
and magnetic fields is described by the phase-space distribution
function f(r,v, t) representing the solution of the Boltzmann
equation

@f
@t
þ c � @f

@r
þ q

m
½E þ c � B� � @f

@c
¼ �Jðf ; f0Þ; ð1Þ

where r and c denote the position and velocity co-ordinates, q and
m are the charge and mass of the swarm particle and t is time. The
electric and magnetic fields are assumed spatially homogeneous
with magnitudes E and B, respectively. In what follows, we employ
a co-ordinate system in which E defines the z-direction while B lies
in the y—z plane, making an angle w with respect to E. Swarm con-
ditions are assumed to apply and Jðf ; f0Þ denotes the rate of change
of f due to binary collisions with the neutral molecules only. The
original Boltzmann collision operator [25] and its semiclassical gen-
eralization [26] are used for elastic and inelastic processes, respec-
tively. The attachment and ionization collision operators employed
are detailed in [27,28].

The directional dependence of f in velocity space is represented
by an expansion in terms of spherical harmonics:

f ðr; c; tÞ ¼
X1
l¼0

Xl

m¼�l

f ðlÞm ðr; c; tÞY
½l�
mðĉÞ; ð2Þ

where Y ½l�mðĉÞ are spherical harmonics and ĉ denotes the angles of c.
The errors associated with the two-term approximation (when the
distribution function significantly deviates from isotropy in veloc-
ity space) and inadequacies of a Legendre polynomial expansion
(when density gradients are not parallel to the field) are high-
lighted in our previous publications [1,12,18,28] and avoided in
this work.

The speed dependence of the coefficients f ðlÞm ðr; c; tÞ can be rep-
resented in a variety of ways [28]. In this work, we use an expan-
sion around a Maxwellian at an arbitrary basis temperature Tb in
terms of modified Sonine polynomials [12,18]. For time-dependent
fields, the basis temperature is also time dependent, e.g., Tb ¼ TbðtÞ
and used to optimize convergence of this expansion. Under the
hydrodynamic conditions [29–31], the spatial dependence of f is
treated by the familiar density gradient expansion:
f ðr; c; tÞ ¼
X1
s¼0

f ðsÞðc; tÞ � ð�rÞsnðr; tÞ: ð3Þ

The continuity of charged particles in phase-space requires

@n
@t
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where C is the charged particle flux and Sðr; tÞ is the production rate
per unit volume per unit time arising from non-conservative pro-
cesses. Assuming the functional relationship (3) the flux and source
term could be also expanded in terms of powers of the density
gradients:

Cðr; tÞ ¼WIðtÞnðr; tÞ � DIðtÞ � rnðr; tÞ þ � � � ; ð5Þ
Sðr; tÞ ¼ Sð0ÞðtÞnðr; tÞ � S ð1ÞðtÞ � rnðr; tÞ þ S ð2ÞðtÞ : rrnðr; tÞ þ � � � ;
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where WðtÞI and DIðtÞ define, respectively, the flux drift velocity
and flux diffusion tensor. Substitutions of expansions (5) and (6)
into the continuity Eq. (4) results in truncation the second order
in the density gradients, the time-dependent diffusion equation:

@n
@t
þWðtÞ � rn� DðtÞ : rrn ¼ �RaðtÞn; ð7Þ

where RaðtÞ, W(t) and D(t) are, respectively, the loss rate coefficient,
bulk drift velocity, and the bulk diffusion tensor. These transport
properties contain explicit contributions from non-conservative
collisions and are given by

RaðtÞ ¼ Sð0ÞðtÞ �
Z

JR½f ð0Þðc; tÞ�dc; ð8Þ
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where JR denotes the reactive part of the collision operator.
The bulk transport coefficients are measured and tabulated in

swarm experiments. From Eqs. (9) and (10), it is clear that the bulk
drift velocity is associated with the rate of change of the position of
the center-of-mass of the swarm while the bulk diffusion coeffi-
cient describes the rate of change of spread of the swarm about
its center-of-mass. The explicit influence of non-conservative colli-
sions on the swarm’s center-of-mass transport is described by the
terms Sð1Þ and Sð2Þ. Obviously, in the absence of non-conservative
collisions, the bulk and flux transport coefficients coincide. One
should be aware of the differences in the definitions of both sets
of transport coefficients, and ensure that the data employed in
their models is consistent with data required by their models.
The results in Section 3 demonstrate the large differences fre-
quently observed between these two sets of data. In plasma
modeling, the most appropriate procedure would be to use the
experimental swarm data (e.g., bulk transport coefficients) for
the analysis of the validity of the cross sections and then to calcu-
late the flux transport coefficients which are necessary as input
data in fluid modeling of plasma discharges.

To determine all the transport coefficients defined in Eqs. (8)–
(10) in the presence of non-conservative collisions, truncation of
Eq. (3) at s ¼ 2 is necessary. This, together with Eq. (1) yields a
hierarchy of coupled kinetic equations. Comprehensive details of
the hydrodynamic theory and numerical procedure when both
the electric and magnetic fields are present, are given in our previ-
ous publications [1,12,18].



Fig. 1. Schematic representation of an idealized steady-state Townsend experiment
considered in this work.
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In many plasma discharges, however, the existence of sources
and/or sinks, physical boundaries and/or spatially varying fields
can give rise to non-hydrodynamic behavior. In this case, the spatial
dependence of the distribution function must be treated explicitly
and the density gradient expansion given by Eq. (3) is of limited
applicability. In this work, we consider an idealized SST experi-
ment, schematically represented in Fig. 1. The charged particles
are emitted at a constant rate from an infinite plane source at
z ¼ z0 and interact with the neutral gas under the influence of spa-
tially uniform electric and magnetic fields, generally crossed at
arbitrary angles. The steady-state Boltzmann equation must be
solved and here we use a second-order, finite differencing scheme
with appropriate modifications at the boundaries to solve the gen-
erated hierarchy of kinetic equations. The boundary conditions on
the distribution function are detailed in [14,19]. The explicit
expressions for the space-dependent transport properties are given
in our previous publications [12,14].
2.2. Monte Carlo method

In this work we apply a Monte Carlo simulation code that fol-
lows a large number of electrons (typically 105—106) through a
neutral gas under the influence of spatially homogeneous electric
and magnetic fields. Electrons gain the energy from the external
electric field and dissipate it through collisional transfer to the
neutral gas molecules by elastic and different types of inelastic col-
lisions, including reactive collisions. Under the hydrodynamic con-
ditions, it is assumed that an electron swarm develops in an
infinite space. Under the SST conditions, the primary electrons
are released one by one from the disturbing source into the half
space. In the present Monte Carlo code we follow the spatiotempo-
ral evolution of each electron through time steps governed by the
minimum of two relevant time constants: mean collision time and
cyclotron period for the E � B field. These finite time steps are used
to solve the integral equation for the collision probability in order
to determine the time of the next collision. Once the moment of
the next collision is established, the nature of the collision is deter-
mined by using the relative probabilities of the various collision
types. All electron scattering are assumed to be an isotropic regard-
less of the collision nature, specific process and energy.

In order to follow the spatiotemporal development of the elec-
tron swarm under the influence of spatially homogeneous electric
and magnetic fields under hydrodynamic conditions, we have re-
stricted the space and divided it into boxes. Every box contains
100 points and these points are used to sample spatial parameters
of the electron swarm. This concept of our code enabled us to fol-
low the development of the swarm in both real space and normal-
ized to 6r, where r is the standard deviation of the Gaussian
distribution in space. The spatially resolved electron transport
properties including the average energy/velocity have been deter-
mined by counting the charged particles and their energies/veloc-
ities in every cell. Therefore, we may follow the spatial profiles of
electron positions as well as spatial profiles of the average en-
ergy/velocity as they develop in space and time and within the
swarm.

Under the non-hydrodynamic conditions when both the explicit
and implicit gradients in charged particle number density exist, the
sampling of spatially resolved transport data for electrons is not so
simple. In particular, under the SST conditions along different
points of a discharge there exist different electrons originating
from the source at different times. In order to describe this physical
situation accurately, the principal axis z has been divided into a
large number of small boxes of width Dz and infinite over perpen-
dicular axes. Any property may be defined in jth box (i.e., between
zj � Dz=2 and zj þ Dz=2) as:

hnij ¼
1
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Z zjþDz=2

zj�Dz=2
fSSTðz;vÞdrdv
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where fSSTðz;vÞ is the steady state distribution function, nj
k is the va-

lue of the quantity to be sampled when the kth electron is contained
in the jth box, Dtj

k is the residence time of the electron in that box,
and N is the total number of electrons that appear there. The rea-
sons why the residence time of the electrons must be considered
in the above sampling formula are given in [33]. For further details
the reader is referred to Dujko et al. [21].
3. Results and discussion

3.1. The transition to the hydrodynamic regime: spatiotemporal
evolution of a pulse of charged swarm particles

In this section we study how hydrodynamic conditions develop
in space and time for a pulse of electrons in an unbounded gas,
similar in nature to the traditional time-of-flight experiment. In
addition, we present two examples of hydrodynamic transport
coefficients obtained in the hydrodynamic limit, which show the
simultaneous effects of magnetic fields and non-conservative colli-
sions. It should be emphasized that to study the transition to
hydrodynamic conditions, we cannot use the simplifying methods
developed to study hydrodynamic conditions (viz. density gradient
expansions), and the full space–time variation of the distribution
function must be sampled/calculated.

To understand the fundamental effects of ionization on the spa-
tiotemporal development of the electron transport properties we
consider electrons in the ionization model of Lucas–Saelee model
[23]. In this model, the cross sections are specified as follows:

reð�Þ ¼ 4��1=2 Å
2

rexð�Þ ¼ 0:1ð1� FÞð�� 15:6Þ Å
2
; P 15:6 eV

0; � < 15:6 eV

(

rIð�Þ ¼ 0:1Fð�� 15:6Þ Å
2
; P 15:6 eV

0; � < 15:6 eV

(
;

ð12Þ

where re;rex and rI are the cross sections for elastic, inelastic and
ionization collisions, respectively. Other details of the model in-
clude �i ¼ 15:6 eV;T0 ¼ 0 K;m=M ¼ 10�3 where m and M denote
the electron and molecular mass, respectively. The parameter F con-
trols the magnitude of the cross sections for inelastic collisions and
ionization: if F ¼ 0, no ionization occurs, if F ¼ 0:5 the cross sections
for excitation and ionization are equal and finally if F ¼ 1, no exci-
tation occurs.



Fig. 2. Spatiotemporal profiles of the density profiles for the instants 0.2, 0.4, 0.6
and 0:8 ls for the ionization model of Lucas and Saelee as a function of parameter F.
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Fig. 2 displays the spatiotemporal development of a swarm of
charged particles along the electric field direction for the ionization
model of Lucas and Saelee. The reduced electric field E=n0 (where
n0 is the gas number density and is set to 3:54� 1022 m�3 which
corresponds to the pressure of 1 Torr at 273 K) is 50 Td
ð1 Td ¼ 10�21 Vm2Þ. The spatial density profiles are normalized
using a total number of charged particles for a given instant of
time. Fig. 3(a and b) illustrates spatiotemporal development of
the average energy along the swarm. We see that parameter F
strongly affects the spatiotemporal development of the swarm.
For F ¼ 0, the existence of oscillatory features in the profiles of
the spatial distribution of particles and average energy is clearly
evident. The transient spatial structures in the density and average
energy are similar to those observed in the steady-state Townsend
and Franck–Hertz experiments [20,21,34]. The basic characteristics
of these oscillations are controlled by strong competition between
elastic and inelastic energy losses. If the collisional energy loss is
governed essentially by ‘continuous’ energy loss processes then
there are no oscillations in the profiles (e.g., when the mean swarm
energy is much less than the lowest energy threshold and elastic
collisional processes are dominant, or when mean swarm energies
are much greater than the lowest energy threshold) while if the
collisional energy loss is dominated by ‘discrete’ energy loss pro-
cesses then we have an oscillatory behavior in the profiles.

When the ionization degree F is increased, the oscillatory fea-
ture in the profiles is significantly reduced even though the total
Fig. 3. Spatiotemporal profiles of the mean energy for the instants of 0.2 and 0:4
cross section for non-elastic processes remains unchanged. In addi-
tion, we observe that the average energy decreases when increas-
ing F, particularly at the leading edge of the swarm. This decrease
of the local mean energy and transition from oscillatory to non-
oscillatory spatiotemporal profiles is caused by the energy dilution
effect associated with the ionization processes [35]. After an ioni-
zation process, the remaining energy is always shared between
two electrons, while in the case of an inelastic collision, the
remaining energy is held only by one electron. As a consequence,
the mean energy after ionization is lower than that after an inelas-
tic collision, a phenomenon usually called energy dilution due to
ionization. The remaining two slow electrons undergo more elastic
collisions which always tend to damp this oscillatory behavior. In
the literature, it is not unusual for ionization to be treated as
merely another conservative inelastic collisional process, entirely
ignoring the effect of particle production. If this approximation
were to hold in our calculations, there would have been no varia-
tion in the calculated profiles with respect to F.

Another interesting point is to compare the relaxation times for
different processes. Transport coefficients (mean energy, drift
velocity and diffusion coefficients) are fully relaxed after 25 ns
for the case where F ¼ 0:5 and E=n0 of 50 Td. Our careful analysis
based on a Boltzmann equation analysis and Monte Carlo simula-
tions has revealed that an oscillatory feature in the profiles is still
present. The oscillatory feature in the profiles of the energy distri-
bution function and associated swarm parameters is removed after
approximately 500 ns. However, even under these conditions, the
swarm is not fully relaxed in space due to the presence of signifi-
cant diffusive fluxes induced by the gradients in the number den-
sity of charged particles. It is found that the full spatial relaxation is
achieved under conditions when diffusion fluxes due to gradients
in electron number density are much less than the corresponding
drift due to the electric field force. Only under these conditions,
the swarm is fully relaxed in space and local velocities at the lead-
ing and trailing edges of the swarm remain unchanged in time.

In Fig. 4 we illustrate the impact of an orthogonal magnetic field
on the spatial density profile and spatially-resolved energy distri-
bution function for the ionization model of Lucas and Saelee. The
parameter F is set to 0.5 while E=n0 ¼ 50 Td and the profiles are
shown for the instant of 0:1 ls. When the reduced magnetic field
of 250 Hx ð1 Hx ¼ 10�27 Tm3Þ is applied the swarm is more local-
ized in space due to the explicit orbital effect which acts to inhibit
diffusion in a plane perpendicular to the magnetic field. As a con-
sequence, the number of periodic structures is less than for mag-
netic field-free case; however, the oscillatory feature is more
ls for the ionization model of Lucas and Saelee as a function of parameter F.



Fig. 4. Spatial density profiles and spatially-resolved distribution functions for magnetic field-free case and B=n0 of 250 Hx for the instant 0.1. Calculations are performed for
the ionization model of Lucas and Saelee ðF ¼ 0:5Þ and E=n0 of 50 Td.
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pronounced. We see that a swarm of charged particles for magnetic
field-free case is symmetric with respect to x-axis. When magnetic
field is applied, the swarm is shifted towards the �x direction
determined by the E � B drift. From the profiles of the energy
distribution function, it is seen that the most energetic electrons
are localized at the leading edge of the swarm. The application of
a magnetic field leads to severe spatial segregation of the electrons
and depopulation of the high energy electrons from the tail of the
energy distribution function.

In order to illustrate the importance of investigating the spatio-
temporal development of a swarm of charged particles and associ-
ated spatially-resolved data, in Fig. 5 we display the steady-state
transport parameters as a function of E=n0 and B=n0 for the ioniza-
tion model of Lucas and Saelee in a crossed field configuration. The
parameter F is set to 0.5 and all calculations are performed for zero
gas temperature. The mean energy is a decreasing function of B=n0

due to the well-known phenomenon of magnetic cooling. This phe-
nomenon results from an inability of the electric field to efficiently
pump the energy into the swarm as B=n0 increases. Only in the lim-
it of high values of E=n0 where the collision frequency is much
higher than the cyclotron frequency, the mean energy shows little
sensitivity with respect to the magnetic field. A similar behavior is
exhibited in the ionization rate. The explicit effects of ionization
are clearly evident from the profiles of the longitudinal drift veloc-
ity and longitudinal diffusion coefficient. We see that ionization
starts to affect WE and n0Dzz for E=n0 greater than 5 Td. The value
of E=n0 for which this occurs increases with B=n0. The bulk compo-
nents dominate the flux components and differences between
these two sets of data can be up to 30%. The distinction between
flux and bulk components of both drift velocity vector elements
and diagonal elements of the diffusion tensor is a consequence of
spatially dependent ionization processes resulting from a spatial
variation of average electron energies within the swarm (see
Fig. 3). For the present model, the ionization rate is an increasing
function of electron energy, and hence electrons are preferentially
created in regions of higher energy. This results in a shift in the
center of mass position as well as a modification of the spread
about the center of mass.
3.2. Non-hydrodynamic regime: spatial relaxation of electrons under
SST conditions

In this section we extend previous work on the idealized SST
experiment to include the explicit influence of a magnetic field
when the electric and magnetic fields are crossed at arbitrary an-
gles. As an illustrative example of spatial relaxation processes for
electrons in real gases, we consider spatial relaxation in the mix-
tures of argon and molecular gases.

To understand the synergism of elastic and inelastic collisions
on the one hand, and the angle between the electric and magnetic
fields on the other hand, on the spatial relaxation of electrons we
use the so-called step model, previously employed by Li et al.
[19]. The details of this model are

rm ¼ 6 Å
2
;

ri ¼ 0:1 Å
2
�i ¼ 2 eV;

m0 ¼ 4 amu T0 ¼ 0K;

ð13Þ

where the inelastic collisions are characterized by a cross section ri

and a threshold �i while rm is the cross section for elastic collisions.
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c d

Fig. 5. Variation of the mean energy (a), longitudinal drift velocity component (b), ionization rate (c) and longitudinal diffusion coefficient (d) with E=n0 and B=n0 in a crossed
field configuration for the ionization model of Lucas and Saelee ðF ¼ 0:5Þ. Bulk values in (b) and (d) are represented with the full lines while for the flux values, dashed lines
are used.

Fig. 6. Spatial relaxation of the mean energy and longitudinal average velocity component for the step model for various field orientations.
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Fig. 7. Spatial relaxation of the mean energy for electrons in argon–CH4, N2, and O2 mixtures for E/n0 of 15 Td.
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m0 is the mass of the background neutral particles while T0 is the
temperature of the background gas.

Fig. 6 displays the spatial relaxation of the mean energy and
longitudinal drift velocity components as a function of the angle
between the fields, for B=n0 of 500 Hx. For parallel fields ðw ¼ 0�Þ,
the spatial relaxation profiles of the mean energy and average
velocity vz are in excellent agreement with those associated with
a pure electric field. This follows from the symmetry property out-
lined by White et al. [17]. These general properties were demon-
strated under hydrodynamic conditions and as demonstrated
here carry over to the case where non-hydrodynamic conditions
prevail. The same symmetry properties impose the following:
vx ¼ vy for w ¼ 0� and vy ¼ 0 for w ¼ 90�. For parallel fields, on
average the electrons are traveling in the direction of the electric
and magnetic field and hence the magnetic field has no explicit ef-
fect. Under the same field orientation, we observe that both e and
vz exhibit a damped oscillatory relaxation along a decaying profile
for a chosen set of conditions. However, as the angle between the
fields increases, both the maximal and spatially independent (stea-
dy-state) values of e and vz are lower than those for parallel fields.
The physical mechanism for the cooling action of a magnetic field
when electric and magnetic fields are crossed at an arbitrary angle
has been detailed in our previous publications [17,18]. In brief, the
cooling mechanism is enhanced as the component of the magnetic
field perpendicular to the electric field (and hence the angle be-
tween the fields) is increased. This means that the cooling mecha-
nism is the strongest in the limit of a crossed field configuration.

In Fig. 7 we show the spatial relaxation of the mean energy in
pure argon and mixtures of argon and CH4, argon and N2 and argon
and O2. The cross sections for argon are developed by Hayashi [36],
the cross sections for CH4 are displayed and detailed in [37], while
the cross sections for N2 and O2 are developed by Stojanović and
Petrović [32] and Itikawa [38], respectively. We observe that the
mean energy in pure argon exhibits a damped oscillatory relaxa-
tion along a decaying profile. However, by introducing a small
amount of molecular admixture, the oscillations are in the first
stage suppressed and then entirely quenched. We see that the
most efficient quencher is O2. This suggest that presence of low
threshold rotational and vibrational molecular excitation processes
are very efficient in damping by virtue of larger and different en-
ergy loss mechanism comparing to elastic collisions. Similar effects
have been observed experimentally. Fletcher showed that by intro-
ducing a small amount of N2 in low current, low pressure and stea-
dy-state discharges in helium, neon and argon, the existing
luminous layers throughout the inter-electrode space can be
quenched [39].
4. Conclusion

In this work we have briefly presented a systematic multi-term
solution of the non-conservative Boltzmann equation in the time-
dependent hydrodynamic and steady-state non-hydrodynamic re-
gimes when both the electric and magnetic fields are present and
crossed at arbitrary angles. Our Monte Carlo simulation technique
is also presented under the same conditions and applied in parallel
with the Boltzmann equation analysis to a series of model and real
gases to identify the key issues associated with the correct treat-
ment of temporal and spatial non-locality of electron swarms in
varying configurations of electric and magnetic fields in the pres-
ence of non-conservative collisions. The importance of treating
ionization as a true non-conservative and particle producing pro-
cess has been demonstrated through the studies of spatiotemporal
evolution of the density profile and average energy along the
swarm for the ionization model of Lucas and Saelee. The transient
spatial structures in the energy distribution functions are reflected
in the transient spatial structures in the density profiles – the nat-
ure of which is similar to those observed in the steady-state Town-
send and Franck–Hertz experiments. Our results indicate that care
must be taken to interpret phenomena in transport properties
measured under different experimental arrangements, particularly
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when electron transport is greatly affected by non-conservative
collisions.
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